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Abstract

We show how to use commuting �ows to infer the spatial distribution of income

within a city. A simple workplace choice model predicts a gravity equation for com-

muting �ows whose destination �xed e�ects correspond to wages. We implement this

method with cell phone transaction data from Dhaka and Colombo. Model-predicted in-

come predicts separate income data, at the workplace and residential level, and by skill

group. Unlike machine learning approaches, our method does not require training data,

yet achieves comparable predictive power. We show that hartals (transportation strikes)

in Dhaka reduce commuting more for high model-predicted wage and high skill com-

muters.

∗
The authors are grateful to the LIRNEasia organization for providing access to Sri Lanka cell phone data, and especially to Sriganesh

Lokanathan, Senior Research Manager at LIRNEasia. The authors are also grateful to Ryosuke Shibasaki for navigating us through the cell

phone data in Bangladesh, to Anisur Rahman and Takashi Hiramatsu for the access to the DHUTS survey data, and International Growth

Center (IGC) Bangladesh for hartals data. The cell phone data for Bangladesh is prepared by the Asian Development Bank for the project

(A-8074REG: “Applying Remote Sensing Technology in River Basin Management”), a joint initiative between ADB and the University of

Tokyo. We are grateful to Lauren Li, Akira Matsushita and Zhongyi Tang, who provided excellent research assistance. We sincerely thank

David Atkin, Alexander Bartik, Abhijit Banerjee, Sam Bazzi, Arnaud Costinot, Dave Donaldson, Esther Du�o, Gilles Duranton, Jean-benoît

Eymeoud, Ed Glaeser, Seema Jayachandran, Sriganesh Lokanathan, Danaja Maldeniya, Melanie Morten, Ben Olken, Steve Redding, members

of the LIRNEasia BD4D team, and seminar participants at MIT, LIRNEasia, NEUDC 2016, the Harvard Urban Development Mini-Conference,

ADB Urban Development and Economics Conference, UEA 2019, NBER Cities and Global Economy Conference, for constructive comments

and feedback. We thank Dedunu Dhananjaya, Danaja Maldeniya, Laleema Senanayake, Nisansa de Silva, and Thushan Dodanwala for

help with Hadoop code and GIS data in Sri Lanka. We gratefully acknowledge funding from the International Development Research Centre

(IDRC) and The Weiss Fund for the analysis of Sri Lanka data, and from the International Growth Center (IGC) for the analysis of Bangladesh

data. We also acknowledge Darin Christensen and Thiemo Fetzer’s R code to compute Conley standard errors (http://www.trfetzer.com/

using-r-to-estimate-spatial-hac-errors-per-conley/), on which we built our code.

†
Harvard University. Email: gkreindler@fas.harvard.edu

‡
Boston University. Email: miyauchi@bu.edu

1

http://www.trfetzer.com/using-r-to-estimate-spatial-hac-errors-per-conley/
http://www.trfetzer.com/using-r-to-estimate-spatial-hac-errors-per-conley/
mailto:gkreindler@fas.harvard.edu 
mailto:miyauchi@bu.edu


2

Measures of urban economic activity at �ne temporal and spatial scales are important yet rare.

Such data is necessary to understand how cities respond to localized shocks such as changes

in transportation infrastructure or �oods, and to help governments target scarce public re-

sources. These issues are especially salient in large cities in developing countries, which are

growing fast yet are least covered by conventional data sources. At the same time, compre-

hensive new data sources on urban behavior, especially individual mobility and commuting,

are becoming available worldwide. Indeed, academic research publications using call detail

records (CDR) or cell phone data covered at least 19 out of 62 countries in Africa and Asia as

of 2020. Meanwhile, less than 10% of the urban population in sub-saharan African countries

is covered by a census of �rms with wage data.
1

In this paper, we provide a theory-based method to predict the spatial distribution of urban

economic activity from commuting choices. The revealed-preference logic of our approach is

simple. A core function of cities is to connect workers and jobs (Duranton and Puga 2015).

While many factors enter into workplace choice decisions, areas with high wages should

disproportionately attract workers, keeping distance and home locations �xed. We propose

inverting this reasoning to infer the relative wage at a location based on its “attractiveness”

as a commuting destination.

We formalize this intuition by building on recent urban economics models of commuting

choices. In these models, work location decisions aggregate up to a gravity equation on com-

muting �ows, and destination �xed e�ects are proportional to log wages. This property holds

for a general class of models developed to evaluate urban policies and transport infrastructure

(Redding and Turner 2015, Redding and Rossi-Hansberg 2017). We also show how to apply a

similar method when wages and the commuting elasticity di�er �exibly by skill group.

We implement our approach using call detail record (CDR) data from two large metropolises:

Colombo, Sri Lanka and Dhaka, Bangladesh. CDR data is a prototypical example of “big data”

available in developing countries (Björkegren 2018), and it contains phone user location for

every transaction. We construct individual home and work locations by observing a user’s

1
Authors’ calculations (Appendix A).
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location at di�erent times of the day over time. Commuting �ows constructed this way have

very �ne geographic resolution and correlate strongly with commuting �ows from a trans-

portation survey from Dhaka. We use this data to estimate the model gravity equation.

Next, we assess how well this simple measure captures real di�erences in income. First,

we show that model workplace income is a robust predictor of workplace commuter income

data from a large transportation survey in Dhaka. Second, in both cities, model-predicted

residential income is a robust predictor of a census residential income proxy.

To set the right benchmark for the predictive performance, we also implement a supervised

learning approach (elastic net regularization) using hundreds of features from cell-phone data

and geographic measures (Zou and Hastie 2005, Blumenstock et al. 2015). The model predic-

tion, despite being computed without any training data, explains between 70% and 90% as

much income variation compared to the supervised learning approach. Hence, the destination

�xed e�ects act as a “summary statistic” for most information in cell phone data.

We also estimate and validate the model extension with multiple worker skills.

The ideal application of our income-prediction method and of the high-frequency com-

muting data is to trace out heterogeneous impacts of urban events and policies, such as trans-

portation shocks, lockdowns or �oods. We study hartals, a type of strike intended to disrupt

transportation and economic activity in Bangladesh. We �nd larger reductions in commut-

ing on hartal days for commuters with higher model-predicted income, high skill, and long

commute.

We build on a growing literature using quantitative urban models. While papers in this

literature often use gravity equations to estimate structural parameters as part of a broader

exercise (Ahlfeldt et al. 2015, Monte et al. 2018, Owens et al. 2020, Tsivanidis 2019, Severen

2019, Heblich et al. 2018, Dingel and Tintelnot 2020), our focus is to use gravity equations to

construct proxies of the spatial distribution of wages. Another related literature uses machine

learning to empirically predict wealth and consumption at individual or regional level (Blu-

menstock et al. 2015, Jean et al. 2016, Glaeser et al. 2017). A key feature of our approach is that

it does not require training data, relying instead on a simple and general theory of commuting

behavior.
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We believe that one promising path for “big data” in economics is using revealed prefer-

ence techniques to infer attributes of choice options, such as workplace wages in our paper

or spatial aspects of consumption behavior (Athey et al. 2018, Davis et al. 2018, Agarwal et al.

2018).

1 Cell-Phone Data and Commuting Flows

Cell phone transaction data. We use call detail record (CDR) data from large operators in

Sri Lanka and Bangladesh to compute detailed commuting matrices. CDR data includes an

observation for each transaction, such as outgoing or incoming voice call and text messages,

or GPRS internet connections. Each observation has a timestamp, the anonymized participant

user identi�ers, and their cell tower locations. Towers are unevenly distributed in space; they

are denser in urban and developed areas. We focus on the greater metropolitan areas around

the capital cities of Colombo and Dhaka. The data covers a little over a year in Sri Lanka and

four months in Bangladesh in the early 2010’s.
2

We construct commuting trips by assigning “home” and “work” locations for each user.

Home (work) locations are identi�ed as the most frequent towers with a transaction between

9pm to 5am of the next day (10am to 3pm) during weekdays excluding hartal days. For ro-

bustness, we also construct daily commuting trips.
3

We then aggregate over users to obtain

an origin-destination (OD) matrix of commuting �ows between every pair of cell towers.

Google Maps travel time. As a proxy for travel costs, we obtain estimated typical driving

travel times between pairs of cell towers using the Google Maps API. In each city we obtain

Google data for 90,000 randomly selected pairs of towers, and interpolate to pairs with nearby

origin and nearby destination. We use predicted time without tra�c congestion. Using pre-

dicted time with tra�c congestion in Colombo, where such data was available, yields virtually

identical model-predicted wages (Table G.4).

2
In Bangladesh, the data only covers outgoing voice calls. Our sample covers the Western Province in Sri

Lanka, and the Dhaka, Narayanganj, and Gazipur Districts in Bangladesh.

3
To construct daily commuting trips, on a given day, we de�ne a user’s origin as the location of the �rst

transaction between 5am to 10am, and the user’s destination as the location of the last transaction between

10am and 3pm. If transaction data is missing in either time interval, commuting behavior is not observed for

that user-day (Table G.1).
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Household transportation survey. We use individual survey data from the 2009 Dhaka Ur-

ban Transport Network Development Study or DHUTS (JICA 2010). The survey covers 16,394

randomly selected households in the Dhaka City Corporation (DCC), Dhaka’s urban core.

Home and work locations are at the level of 90 “survey areas.” Our main analysis sample cov-

ers 12,510 commuters who live and work within the DCC, with positive income from work,

excluding students, homemakers, and the unemployed.

Population Censuses. We use census data from 2011 in Bangladesh and 2012 in Sri Lanka,

the closest years to our cell phone data. Since the census does not report income in either

country, we obtain the �rst principal component of houshold assets (house building materials,

toilet facilities, water and electricity connection) at the �nest geographic unit available.
4

The

residential income proxy at the cell tower level is the average across overlapping census units,

weighted by overlap area with the tower.

Representativeness of Commuters in Cell Phone Data. In Dhaka, commuting �ows de-

rived from cell phone data are strongly related to those from the DHUTS commuting survey,

including when controlling for log travel time, origin and destination survey area �xed e�ects

(Table G.2). This is consistent with previous research validating cell-phone-based commuting

�ows (Calabrese et al. 2011, Wang et al. 2012, Iqbal et al. 2014). The decay of commuting �ows

with travel time is virtually identical between the two data sources (Figure G.2, Panel A).

Residential population density from cell phone data is correlated with census population

density at the level of 1,866 and 1,201 cell phone towers in the two cities, with R2 = 0.61 in

Dhaka and R2 = 0.49 in Colombo (Table G.3). The slope is 1.16 for both cities, hence cell

phone data slightly over-represents population in denser areas. This type of bias does not

automatically a�ect our results as our approach uses workplace choice shares conditional on

a residential location. In section 2.4 we further allow choices to di�er by worker skill.

4
In the study areas, there are 2,381 Grama Niladhari (GN) in Sri Lanka, and 3,704 mauza in Dhaka.



6

2 Model: Commuting Flows, Gravity, and Wages

Is it possible to infer the spatial distribution of wages from commuting �ows? The interaction

between wages and commuting costs to determine urban structure is fundamental in classical

urban economics models (Alonso 1960, Mills 1967, Muth 1968). Here, we explore this insight

using a new generation of models inspired from the trade literature, designed to better match

spatially disaggregated urban data (Ahlfeldt et al. 2015).

2.1 Workplace Choice Model

Space is partitioned into a �nite set of locations, which may serve as both residential and work

locations. We discuss how to map model locations to the data in section 2.3.

There is a unit mass of workers, and each worker ω sequentially decides her residential

location (or origin) i, and then her work location (or destination) j. Conditional on residing

in location i, the utility of worker ω if she chooses destination j is:

Uijω =
WjZijω

Dτ
ij

(1)

Wj is the wage per e�ective unit of labor supply at location j (all �rms at location j o�er the

same wage), Dij is the travel time between i and j, and Zijω is an idiosyncratic utility shock

that is i.i.d. following the Fréchet distribution, with scale parameter normazlied to one and

shape parameter ε.
5

Each worker supplies one unit of labor and earns income Wj.

Each worker observes the shocks Zijω and chooses the work location j where Uijω is

maximized. The probability that a worker commutes to j conditional on residing in i is given

by
6

πij|i =
(Wj/Dτ

ij)
ε

∑s(Ws/Dτ
is)

ε
(2)

5
We follow Ahlfeldt et al. (2014) and assume that Zijω are preference shocks. Tsivanidis (2019) alternatively

assumes that Zijω are productivity shocks and derives expected income as “commuter market access”. Appendix

C shows that our results are robust to alternate assumptions, and estimates a model where Zijω and Dij partly

a�ect productivity and utility.

6
Assuming joint home and work location choice leads to the same conditional choice probabilities πij|i as

residential terms (amenities, rent) cancel out (Ahlfeldt et al. 2015). However, if workers choose their workplace

�rst and then the home location (e.g. migrants), destination �xed e�ects would not exclusively capture destina-

tion wages.
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Taking logs, and denoting log quantities by lowercase letters:

log(πij|i) = εwj − ετdij − log

(
∑

s
exp (εws − ετdis)

)
(3)

2.2 Estimating the Gravity Equation

We estimate equation (3) using the empirical Poisson pseudo-maximum likelihood (PPML)

method with two-way �xed e�ects:

log(E[πij|i]) = ψj − βdij + µi (4)

where µi and ψj are origin and destination �xed e�ects. We use PPML, rather than OLS, to

deal with zero commuting �ows (Silva and Tenreyro 2006, Dingel and Tintelnot 2020).
7

This equation allows us to measure the attractiveness of each destination j after accounting

for the fact that conditional commuting probabilities also depend on log commute duration.

Importantly, in our model, ψj is proportional to the (relative) log wage at j with a factor

of ε, the Fréchet dispersion parameter. Our main goal is to recover the ψj’s from observed

commuting choices. For this purpose, it is not necessary to model explicitly how wages are

determined in equilibrium. The mapping between commuting choices and wages holds in any

general equilibrium model that micro-founds the gravity equation for commuting �ows with

a discrete commuting choice model.
8

To obtain relative wage levels, we further need to know ε, the Fréchet parameter, which

governs the variance of idiosyncratic preference shocks. In section 3, we will estimate ε in

Dhaka using data on average wages by location in the city. When such data is not available,

ε may also be estimated from the overall variance of wages in the entire city, as in Ahlfeldt

et al. (2015).

7
Log travel time as a measure of commuting costs o�ers a good �t (Figure G.2).

8
Our model does not include workplace amenities. If these di�er considerably across space, the gravity

destination �xed e�ects will capture the combined e�ect of wages and amenities. Our empirical results in section

3 address empirically the extent to which our measure is correlated with wages.
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2.3 Mapping Model Locations to Geographic Areas

A key advantage of the model is that locations can be mapped directly to two-dimensional

urban data. However, exactly how we map model locations to locations in the data may not

be innocuous for inferring wages. The di�culty of de�ning appropriate geographic units is

related to the “modi�able areal unit problem” in geography (Fotheringham and Wong 1991),

and to the problem of de�ning urban areas in economics (Rozenfeld et al. 2011, Baragwanath

et al. 2019).

We show how to solve this issue in a theory-consistent way. Assume that each Voronoi cell

j consists of Nj sub-locations and workers draw independent Fréchet shocks at the levels of

these sub-locations. Hence, the model implies a gravity equation at the level of sub-locations.

However, a gravity equation continues to hold at the level of the larger Voronoi cells under

two simplifying assumptions: that all sub-locations within j o�er the same log wage wR
j , and

that all sub-location in j are located in the same place in space (and hence they are equally

distant to any given origin i). Using standard Fréchet properties, the underlying log wage wR
j

is expressed as:
9

ψR
j = εwR

j = ψj − log
(

Nj
)

, (5)

where ψj is the destination �xed e�ect from the gravity equation between Voronoi cells. In

other words, we need to adjust the destination �xed e�ects by subtracting a term (log(Nj))

that is increasing in the number of sub-locations in each cell.

Implementing this adjustment requires taking a stand on Nj, i.e. the number of indepen-

dent Fréchet shocks drawn per Voronoi cell j. Theory does not o�er strong guidance on how

to select Nj. Here, we assume that Nj is proportional to the geographic area of Voronoi cell j,

that is, Fréchet shocks are drawn for each vertex on a square lattice. We also show robustness

to assuming Nj = 1 and to aggregating our raw data at the level of square grid cells (Tables

G.6, G.9, and Figure G.5).

9
When wages di�er across sub-locations within j, ψR

j corresponds to a CES aggregate of these wages.
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2.4 Estimating Wages Separately by Skill Group

Skill inequality is salient in cities like Dhaka and Colombo, and our baseline model does not

capture this. We now extend our method to estimate wages separately by skill group.

We consider two types of models. In our �rst model, workers are either low-skill (L) or

high-skill (H) and face separate log wage pro�les wL
j and wH

j and elasticities of commuting

cost with respect to travel time τL
and τH

. All agents have a common Fréchet shape pa-

rameter ε. As before, our goal is to estimate composite wage terms ψs
j = εws

j for all j up

to a constant and distance terms βs = ετs
for each skill s ∈ {L, H}. Equation (2) expresses

commute probabilities πs
ij|i separately by skill s. The average commuting probability (that we

observe in our cell phone data) is πij|i = (1− λH
i )πL

ij|i + λH
i πH

ij|i where λH
i is the share of

high skill at residential location i (measured from census data). Because πij|i is not log-linear

in the parameters of interest, we estimate the model using maximum likelihood (Appendix B).

In our second model, each residential location i has a “representative agent” with prefer-

ences given by a weighted mean, with weights that depend on λH
i , the share of high skill at

i. Agents from i earn log wages wH
j λH

i + wL
j (1− λH

i ) at j and have commuting elasticity

τHλH
i + τL(1− λH

i ). Plugging into equation (4), our estimating equation becomes:

log(E[πij|i]) = ψL
j (1− λH

i ) + ψH
j λH

i − βL(1− λH
i )dij − βHλH

i dij + µi (6)

This equation is intuitive: each destination has two levels of “attractiveness,” ψL
j = εwL

j and

ψH
j = εwH

j . Loosely speaking, ψH
j are identi�ed from commuting probability patterns from

origins with large shares of high-skilled in the census. We estimate (6) using PPML with origin

and destination �xed e�ects, log duration interacted with skill shares, and destination-speci�c

linear slopes in λH
i .

The two models are identical when residences are completely segregated by skills (λH
i = 0

or 1). In the intermediate case, we show by simulation that the two data generating process

are closely aligned when using the same pro�les of wL
j and wH

j (Appendix B). Because of the

simpler estimation procedure, we use the second model as our benchmark. Appendix B has

results from the �rst model.
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2.5 Estimation Results: Gravity and Wages

We estimate gravity equation (4) using cell phone commuting �ows and Google Maps travel

times. Our goal is to recover the destination �xed e�ects, which in the model are proportional

to workplace log wages. The estimation sample is non-holiday weekday commuting trips

between pairs of towers excluding nearby and very distant towers.
10

Table 1 reports the results, based on commuting �ows between 1,859 locations in Dhaka

(columns 1-3) and between 1,201 locations in Colombo (columns 4-6). The gravity equation is

estimated with commuting �ows constructed from assigned home and work locations for 1.5

and 1 million commuters in the two cities (columns 1,3,4, and 6), and using the commuting

�ows identi�ed at the daily level (columns 2 and 5).

Commuting probability decreases strongly with travel time. Interestingly, although the

average commuting trip is 25% longer on average in Sri Lanka, the coe�cients are similar

(-2.44 in Column 1 and -2.19 in Column 4). This is a substantive �nding, as the two cities

di�er in terms of economic development, population, and urban structure (mono- vs poly-

centric). At the same time, these elasticities are substantially lower in magnitudes than in

the United States (between 4 to 8, Monte et al. (2018) and Owens et al. (2020)), potentially

re�ecting di�erences in the disutility of commuting time.

Turning to our model with skill heterogeneity, we estimate equation (6) using PPML, data

on aggregate bilateral commuting �ows, and residential-level skill shares from the popula-

tion census. High-skilled is de�ned as literate in Dhaka, and having secondary education in

Colombo. The travel time elasticity is smaller in absolute value for the high skill group, im-

plying that low skill workers commute closer to home. Tsivanidis (2019) �nds a similar result

using commuting �ows data by skill. Our method only requires aggregate commuting �ows

and the residential skill shares.

Figure 1 displays smoothed estimated wages in Dhaka and Colombo using choropleth

maps. Our estimated, area adjusted measure ψR
j is proportional to log wages, with factor ε

10
In Dhaka, we exclude 31 days with transportation strikes (hartals). Tower pairs closer than 3 minutes are

excluded as they may capture calls randomly connecting to di�erent towers (“tower-bouncing”) rather than real

commuting. Destination �xed e�ects estimated including nearby and same tower pairs are virtually identical

(Table G.4).
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(the Fréchet shape parameter). Estimated wages are higher near city centers and alongside

some (but not all) major road corridors. Moreover, secondary centers are visible, especially in

Dhaka. The next sections will compare these results with independent income proxies.

Destination �xed e�ects using di�erent estimation methods are highly correlated: estimat-

ing on disjoint samples (Table D.1), using daily commuting �ows instead of home and work

assignment, when we use travel times with congestion in Colombo, and when we include

neighboring and same tower pairs in the samples (Table G.4). Using OLS instead of PPML

leads to a �atter pro�le of destination �xed e�ects due to many zero commuting �ows (57%

of all possible tower pairs in Bangladesh and 15% in Sri Lanka). We obtain virtually identical

results when allowing travel time to enter non-parametrically (as deciles of the travel time

distribution).

Low- and high-skill destination �xed e�ects are positively correlated with the destination

�xed e�ects from the benchmark model, with respective correlation coe�cients 0.71 and 0.80

in Dhaka and 0.43 and 0.67 in Colombo. However, the model also points to independent

variation by skill: low- and high-skill destination �xed e�ects are weakly correlated in Dhaka

and negatively correlated in Colombo, with correlation coe�cients 0.17 and -0.37, respectively.

3 Validation: Model-Predicted and Survey Workplace Income in Dhaka

Our �rst validation exercise compares income from the model and survey income from the

DHUTS survey. We compute average income at the workplace level in each survey area in

the DCC, the �nest geographic location available in the DHUTS survey.
11

Our procedure predicts that the area adjusted destination �xed e�ects ψ̂R
j corresponds

to the log labor income multiplied by ε, the Fréchet shape parameter of worker unobserved

preferences. Panel (A) of Table 2 shows the scatter plot between ψ̂R
j against survey income,

at the level of 88 survey areas. We expect a slope of ε−1
and obtain a regression slope of

0.12 (with standard deviation 0.03), implying ε̂ = 8.3. This estimate is slightly higher than

previous estimates in Berlin (6.83; Ahlfeldt et al. 2015) and London in the 19th century (5.25;

11
Given that government jobs are typically paid less yet include large non-monetary bene�ts (such as job

tenure) and are centrally located, our baseline estimation sample excludes government workers. Including them

does not substantially change our results (Table G.7).
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Heblich et al. 2018), suggesting that idiosyncratic shocks are less important in our context.

Panel (A) shows that model-predicted wages are signi�cantly correlated with survey wages.

In Panel (B), we repeat this exercise separately by skill, using the extended model described

in Section 2.4. We �nd that model income for one skill group predicts survey income for the

same skill, with a much weaker relationship across skills.

Turning to predictive power, the bivariate relationship in Panel (A) has R2 = 0.25 and

Root-Mean Squared Error (RMSE) = 0.22. A perfect �t would imply R2 = 1 and RMSE= 0 if

wages are measured without noise in the DHUTS data. Our results might indicate that our

model has poor predictive power, or that wages are measured with noise. We believe the latter

concern is warranted. For example, 25% of survey areas have fewer than 50 observations, and

the survey records total monthly income, which may include non-labor income.

To set the right benchmark given the potential for measurement error in this validation

data, we compare the model prediction with a supervised-learning approach (elastic net regu-

larization) using 498 features from cell-phone data and geographic data. We view this exercise

as the state of the art method to do prediction when training data is available (Blumenstock

et al. 2015). To implement this, we randomly select half of all survey areas as “training data,"

and predict survey income in the other half as “test data," using either OLS or elastic net

regularization. See Appendix E for details.

Panel (C) of Table 2 reports the average test and training R2
and RMSE statistics over 100

random splits. Model-predicted income alone predicts 22% of the variation in the test data

(column 1). The area of the tower voronoi cell, an intuitive predictor of economic activity

from cell phone data, has test R2 = 0.09 (column 2).
12

Including all features from cell-phone

data raises test R2
to 0.24, a slight improvement over just using the model-predicted income

(Column 3). The same pattern holds for RMSE. This result indicates that the model-predicted

income (one statistic computed from cell phone data) summarizes nearly all information about

predicting workplace income in this context, despite the parsimonious model and functional

form speci�cation for travel cost.

Another important factor for R2
is geographic extent. In Section 5, we show that including

12
Cell phone operators tend to locate more towers in locations with high activity (Figure G.1).
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peri-urban areas drastically increases R2
.
13

Severen (2019) and Tsivanidis (2019) perform validation exercises for commuting-choice

models similar to ours, estimated using commuting data from survey or administrative data.

Using �ne divisions (census tracts), Severen (2019) �nds that model wages estimated using

commuting �ows barely predict tract-level wages in Los Angeles. Tsivanidis (2019) �nds that

model-predicted wages across 19 urban areas in Bogotá predict survey wages, with an R2 =

0.36. These results suggest that the geographic aggregation level may also matter. However,

in our setting, aggregating up does not change predictive power signi�cantly (Figure G.5).

Table G.5 shows that the model income is statistically signi�cantly correlated with survey

income after controlling for employment density, distance to the central business district, and

log model residential income. Table G.6 shows that our results are robust to several alternate

gravity equation speci�cations. Table G.7 uses an individual-level speci�cation and shows

that our main result is robust to controlling for workplace sorting along observable worker

characteristics and other controls.

4 Validation: Model-Predicted Income and Residential Income Proxies

We next use a residential income proxy constructed from population census data to validate

the model prediction at the residential location level. Model-predicted residential income at

tower i is de�ned as

∑
j

ψ̂R
j Vij/Vi (7)

where j indexes workplace towers, ψ̂R
j is the area adjusted destination �xed e�ect at j, Vi is

total residential population at i, and Vij is the commuting volume from i to j. We focus on

model �t and not the magnitude of the slope in this exercise, because the income proxy is not

measured in the same units as actual income.

Table 3 shows the results in Dhaka and Colombo. Model residential income is a strong

predictor of the income proxy at the cell tower level (panel A). The R2 = 0.55 (Dhaka) and

13
In a machine learning application, Blumenstock et al. (2015) �nds R2 = 0.41 when restricting to 37 urban

DHS clusters in Rwanda, compared to 0.62 when including both rural and urban clusters. Jean et al. (2016)

do not report results separately by urban areas. Within entire countries, R2
ranges between 0.37 and 0.55 for

DHS-cluster level predicted consumption.
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0.77 (Colombo) is high, partly because of the coverage of suburban areas.

We next benchmark the predictive power to a supervised learning method (panel (B) Ta-

ble 3) in Dhaka.
14

The procedure is similar to Panel (B) in Table 2. Test R2
is 0.55 when

using model-predicted income alone (column 1). The test R2
when using the cell phone tower

Voronoi cell area alone is 0.71 (column 2), and the supervised-learning method using all fea-

tures increases it to 0.73. Model-predicted residential income alone achieves about 75% of the

predictive power of using all the cell-phone data metrics.

5 Practical Guidance: Spatial Coverage and Resolution

What factors a�ect the predictive performance of our method? We explore this issue using

model-predicted residential income and census income proxy data to guide future applications

of this method.

Our approach performs better when the analysis includes both urban core and peri-urban

areas. In both cities, the explanatory power of model residential income increases as we in-

clude areas further away from the city center. Adjusted R2
goes from 0.2 at the 10 km cuto�

to 0.5 and 0.7 at 30 km cuto� in Dhaka and Colombo, respectively (Figure G.3).
15

Model performance is not sensitive to the level of spatial aggregation. We combine cell

phone towers into square grid cells, and estimate the gravity equation at this level. In both

cities, regressing the census income proxy on model-predicted residential income yields sta-

ble adjusted R2
between 0.6 and 0.9 for grid cells of between 2 and 10km wide (Figure G.5).

(Gravity distance slopes are also stable.)

Overall, the method is best suited to applications that cover a large urban area, and is

likely not sensitive to the spatial aggregation unit.

14
Unfortunately, we do not have access to features of cell phone data to implement the supervised learning

approach in Colombo.

15
Related, average residential income from the (DHUTS) survey data – only available in Dhaka’s urban core

– is di�cult to predict, both using model residential income, and using other measures such as distance to CBD

or residential density.
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6 Application: The Heterogeneous Impacts of Hartal on Commuting

Cities in developing countries experience frequent shocks that disrupt commuting, such as

�oods, transportation strikes, protests or violence. Measuring how di�erent types of com-

muters are a�ected by such shocks is a key step in understanding volatility in urban economic

activity. We now show how to use high-frequency cell phone data combined with our method

to study the heterogeneous impacts of urban shocks.

We study this question in the context of hartal, a form of political strike that involves a

partial shutdown of urban transportation and businesses. They are common in South Asia,

and especially in Bangladesh (UNDP 2005). On hartal days, typically announced a few days in

advance by unions or political groups, groups of people enforce the transportation shutdown,

especially on major roads and in certain locations. There were 33 hartal days over the 4

months in our sample (Ahsan and Iqbal 2015).
16

We estimate the impact of hartal on commuting to work and heterogeneity using the

following speci�cation:

Cωijt = β · hartalt + βW · hartalt · ψj + βD · hartalt · dij + µω + ηm(t) + εωijt (8)

where Cωijt is a dummy for whether commuter ω with home location i and work location j

travelled from home to work on day t, and hartalt is a dummy for hartal dates.

We �rst focus on the interactions between hartal and ψj, the standardized area adjusted

wage at j, and dij, standardized log commute duration between i and j. We estimate ψj using

commuting data on non-hartal weekdays following the procedure in Section 2. We include

month �xed e�ects ηm(t) and commuter �xed e�ects µω , to account for potential di�erences

in calling behavior on hartal days that may a�ect the measure of commuting.
17

Table 4 shows the results. Commuting to work falls by 7.7% on Hartal days (column 1).

The magnitude of the e�ect is consistent with previous studies on hartals in more speci�c

settings (Ashraf et al. 2015, Ahsan and Iqbal 2015). Appendix F reports robustness exercises.

16
The study period preceded parliamentary elections and was marked by general instability and more fre-

quent hartals than in previous years.

17
Results are similar for a sample of frequent callers (Table F.1).
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Commuters working in high-productivity areas (high ψj) are more sensitive to hartal dis-

ruptions (column 2).
18

Speci�cally, commuters with model-predicted wage one standard de-

viation above the mean reduce their commuting to work by 10.6%, an e�ect that is 26% larger

than the average e�ect. This could be due to more disruption of production activity in more

productive areas, or due to higher commuting cost (for example, due to the danger of physi-

cal violence) for higher-income commuters. Distinguishing between these mechanisms is an

interesting question beyond the scope of this paper.
19

Hartal a�ects long-distance commuters

more: a standard deviation longer commute is associated with a 2.7pp more negative hartal

e�ect. However, the coe�cient on the destination wage barely changes, showing that the

productivity e�ect is mostly independent of commute duration.

We now use our method to study how hartal a�ects workers of di�erent skills. We use

model-derived wages for low- and high-skilled (ψ
L
j and ψ

H
j ) estimated in section 2.5 and stan-

dardized. Assume that the average hartal treatment e�ect for commuter ω of skill s ∈ {L, H}

is βs + βs
Ddij + βs

Wψ
s
j . This yields the following speci�cation

Cωijt =βL · hartalt · (1− λ̂H
ij ) + βH · hartalt · λ̂H

ij

βL
W · hartalt · ψL

j · (1− λ̂H
ij ) + βH

W · hartalt · ψH
j · λ̂

H
ij +

βL
D · hartalt · dij · (1− λ̂H

ij ) + βH
D · hartalt · dij · λ̂H

ij +

µω + ηm(t) + εωijt

where we interact the hartal terms in (8) with the predicted share of high-skilled among com-

muters from i to j, λ̂H
ij = V̂H

ij /(V̂L
ij + V̂H

ij ), where V̂s
ij = Vs

i π̂s
ij|i is the model-predicted com-

muting �ow of skill s between i and j, and Vs
i is population of skill s from the census.

For both skills, commuting to work is negatively a�ected by hartal, and the e�ect is

stronger for commuters with higher (skill-speci�c) wages (column 4). The high-skilled are

more a�ected on average, yet the low-skill hartal e�ect is more sensitive to (low-skilled) des-

18
Mean-reversion is a potential concern because destination �xed e�ects are estimated on non-hartal days.

To investigate this, we ran a placebo hartal exercise, estimating the gravity equation for a dummy switched on

for a random set of weekdays. Coe�cients in Table 4 become an order of magnitude smaller.

19
Remote work is unlikely to explain this pattern. Dingel and Neiman (2020) estimate that in 2020, only 12%

of jobs in Bangladesh can be done entirely at home.
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tination wage. Hence, the low-wage, low-skilled are least a�ected.

The distance interactions are both negative and statistically indistinguishable. Skill dif-

ferences documented above are likely not due to commuting technologies, such as access to

private vehicles.

Overall, we �nd consistent results of stronger hartal disruptions for high productivity and

high-skill workers in Dhaka. These results illustrate how our methods to infer the spatial

distribution of income can be used to measure heterogeneous e�ects of high-frequency urban

events.
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Figures and Tables

Table 1: Gravity Equation Estimation Results

Commuting Probability

(1) (2) (3) (4) (5) (6)

log Travel Time -2.44 -2.55 -2.19 -2.22

(0.0011) (0.0003) (0.0015) (0.0001)

log Travel Time × Low Skill -3.68 -5.00

(0.11) (0.36)

log Travel Time × High Skill -1.91 -1.57

(0.04) (0.08)

City Dhaka Dhaka Dhaka Colombo Colombo Colombo

Commuting Measure Home-Work Daily Home-Work Home-Work Daily Home-Work

Number of Destination FE 1,859 1,868 1,859 1,201 1,201 1,201

Number of Trips 1.5e+6 1.9e+7 1.5e+6 9.4e+5 1.3e+8 9.4e+5

Observations 3.4e+6 3.4e+6 3.4e+6 1.3e+6 1.3e+6 1.3e+6

Pseudo R
2

0.67 0.82 0.66 0.88

Notes. This table reports estimates of the gravity equations (4) and (6) by Poisson pseudo-maximum likelihood

(PPML) method with two-way �xed e�ects. The outcome variable is commuting probability πij|i from cell phone

tower i to j conditional on residing in i, computed from cell phone data and aggregated over weekdays. In

Bangladesh, we exclude hartal days. Commuting �ows are constructed from assigned home and work locations

(columns 1,3,4,6) and using the commuting �ows identi�ed at the daily level (columns 2 and 5) using cell phone

data as described in Section 1. Travel time between towers from the Google Maps API. The sample is all tower

pairs with travel time between 180 seconds and the 99th percentile. High-skilled is de�ned as literate in Dhaka

(67% of the population), and having secondary education or more in Colombo (80% of the population). Two-way

clustered standard errors at the origin and destination level are reported in parentheses.
∗p ≤ 0.10,

∗∗p ≤ 0.05,

∗∗∗p ≤ 0.01.
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Table 2: Average Workplace Income: Model Prediction and Survey Data in Dhaka

(A) Raw Correlation

(B) Raw Correlation By Skill

log Survey Income (workplace)
Low Skill High Skill

(1) (2) (3) (4) (5) (6)

ε × log Model Income (workplace)
Low-Skilled 0.06*** 0.06*** 0.01 -0.01

(0.02) (0.02) (0.01) (0.01)

High-Skilled 0.04 -0.00 0.07*** 0.08***

(0.03) (0.03) (0.01) (0.02)

Observations 87 87 87 87 87 87

Adjusted R2 0.09 0.01 0.08 0.00 0.23 0.23

RMSE 0.30 0.32 0.31 0.17 0.15 0.15

(C) Comparison with supervised learning using features derived from cell-phone data

(1) (2) (3) (4)

Features

log Model Income

(workplace)

log Tower Area All CDR Features

(3) + log Model Income

(workplace)

Training R
2

0.26 0.16 0.44 0.44

Training RMSE 0.20 0.22 0.17 0.17

Test R
2

0.22 0.09 0.24 0.24

Test RMSE 0.22 0.24 0.22 0.22

Observations 88 88 88 88

Notes. This table compares survey and model predictions of average workplace income. The slopes in panels (A)

and (B) identify ε−1
, the inverse Fréchet shape parameter. The unit of analysis is a survey area from the DHUTS

survey. The survey sample is 11,006 commuters who live and work inside the Dhaka City Corporation, who re-

port positive income, excluding students, homemakers, the unemployed, and government workers. The outcome

variable is the average income of survey respondents who work in a survey area, using log income truncated at

the 99th percentile. In panel (B) we compute average survey income separately by skill; high skill is de�ned as

literate (67% of the population). Model-predicted workplace income in survey area b is ∑j∈b yjVW
j /VW

b where j
is a cell phone tower, yj = ψ̂R

j is the area adjusted destination �xed e�ect at j, VW
j = ∑i Vij and VW

b = ∑j∈b VW
j

denote workplace population in tower j and survey area b, respectively (Vij is the commuting volume from i to

j). In panel (B) we use skill-speci�c destination �xed e�ects estimated using equation (6) and skill-speci�c pre-

dicted volume, de�ned as Vij
V̂L

ij

V̂L
ij +V̂H

ij
where V̂s

ij is predicted commuting volume of skill s. Regressions in panels

(A) and (B) are weighted by survey area employment population from the DHUTS survey (skill-speci�c in panel

B).

In Panel (C), Test (Training) R2
and RMSE indicate the average R2

in the test (training) data over 100 random

splits. See Appendix E for the description of the supervised learning method (elastic-net regularization) and cell

phone data feature construction.
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Table 3: Average Residential Income: Model Prediction and Residential Income Proxy

(A) Raw Correlation

(i) Dhaka (ii) Columbo

y = 0.89x + 1.79
       (0.06)  (0.08)

R2 = 0.55
RMSE = 0.97
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y = 1.29x + 3.04
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(B) Comparison with supervised learning using features derived from cell-phone data

(Dhaka)

(1) (2) (3) (4)

Features

log Model Income

(residential)

log Tower Area All CDR Features

(3) + log Model Income

(residential)

Training R
2

0.56 0.71 0.77 0.80

Training RMSE 0.93 0.75 0.67 0.63

Test R
2

0.55 0.71 0.73 0.73

Test RMSE 0.94 0.75 0.72 0.72

Observations 1844 1844 1844 1844

Notes. This table compares a census proxy and model predictions of average residential income. The unit

of analysis is a cell phone tower. Income proxy is the �rst principal component of census residential assets

(weighting each census block by its area overlap with the Voronoi cell). Average model residential (take-home)

income at tower i is ∑j yjVij/Vi where j indexes workplace towers, yj = ψ̂R
j is the area adjusted destination �xed

e�ect at j, Vi is total residential population at i, and Vij is the commuting volume from i to j. Regressions in both

panels are weighted by tower residential population (from cell phone data). Panel (B) repeats the analysis in Table

2 panel (B). See Appendix E for details. Table G.8 shows that model residential income is statistically signi�cantly

correlated with survey income after controlling for residential density, distance to the central business district,

and model workplace income.



26

Table 4: The Heterogeneous Impacts of Hartal on Commuting

Work Commute (% change vs weekday)

(1) (2) (3) (4)

Hartal -0.077
∗∗∗

-0.078
∗∗∗

-0.078
∗∗∗

(0.004) (0.004) (0.004)

Interactions: Hartal ×
(βL

) % Low Skill -0.050
∗∗∗

(0.010)

(βH
) % High Skill -0.075

∗∗∗

(0.004)

Dest. FE (z) -0.028
∗∗∗

-0.025
∗∗∗

(0.005) (0.005)

(βL
W) % Low Skill × Dest. FE Low Skill (z) -0.051

∗∗∗

(0.013)

(βH
W) % High Skill × Dest. FE High Skill (z) -0.014

∗∗∗

(0.005)

Log Duration (z) -0.027
∗∗∗

(0.002)

(βL
D) % Low Skill × Log Duration (z) -0.032

∗∗∗

(0.007)

(βH
D) % High Skill × Log Duration (z) -0.026

∗∗∗

(0.002)

Commuter FE X X X X

P-value βL = βH
0.02

P-value βL
W = βH

W 0.01

P-value βL
D = βH

D 0.46

Observations 1.5e+07 1.5e+07 1.5e+07 1.5e+07

Notes. This table reports the impact of hartal days on the probability to commute to work. The sample includes

all commuters with distinct home- and work- locations (35% of all users), who travel at least once during hartal

and non-hartal days. The sample is all days with data on commuting (including days when the user is observed to

not travel), excluding holidays and weekends. All speci�cations include commuter and month �xed e�ects. The

outcome is normalized to 1 on weekdays, so coe�cients represent percentage changes on hartal days relative to

weekdays. All variables interacted with hartal are standardized. The destination �xed e�ects, as well as skill-

speci�c destination �xed e�ects are estimated in Table 1. The share of high skilled among i to j commuters is

λ̂H
ij = V̂H

ij /(V̂L
ij + V̂H

ij ) where V̂H
ij = VH

i π̂H
ij|i, and VH

i is the high-skilled residential population at i (measured

from census data), and π̂H
ij|i is the model-predicted commuting probability for high-skilled. Table F.1 shows

similar results when restricting to a sample of frequent callers.
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A Conventional and Modern Data Availability in Developing Countries

Fine-grained spatially disaggregated data on wages at the �rm location is rare and di�cult

to access in developing countries. For example, the Bangladesh economic census does not

include labor costs data, and we were not able to acces Sri Lanka economic census microdata.

To illustrate, we document data availability for the 27 largest countries in Sub-Saharan

Africa (accounting for > 95% of the population in the region). We chose this region as it is

undergoing rapid urban growth and urban transformation.
1

Of these, 16 ever had an economic census, 11 covered informal �rms. However, at most 4

included wage data, which accounts for between 5.6 and 8.6% of the urban population of all

countries in the sample. (The 2014 Ghana and 2015 Zimbabwe censuses included wage data,

while for the ongoing censuses in Mali and Togo we do not know if wage data was collected.)

By contrast, big data that can be used to construct urban commuting �ows is increasingly

available in developing countries.

To illustrate, we identi�ed 19 countries out of 62 countries in South Asia and Africa, where

call detail record (CDR) data have been used in academic papers.
2

In other contexts, public

transport transactions, geolocated tweets or other smartphone app location data, may be used

to construct urban commuting �ows. Smartphone location data is becoming increasingly pop-

ular and available to researchers, and even more so since the onset of the Covid-19 pandemic.

B Model Extension and Estimation: Worker Skill Heterogeneity

In section 2.4 we introduced two model extensions with skill heterogeneity. In this section

we provide additional detail on model derivation, estimation, and simulation results. We also

1
For each country, we checked the national statistics agency website as well as the Google Search results

for the terms “economic census,” “�rm census,” “establishment census,” “enterprise census,” and “business reg-

istry,” in English, French or Portuguese. We could not �nd o�cial census reports for Ethiopia and Zambia, while

the Mali and Togo censuses are still ongoing. Detailed results available upon request. Data on urban popu-

lation from https://en.wikipedia.org/wiki/Urbanization_by_country and https://en.wikipedia.org/wiki/List_of_

sovereign_states_and_dependent_territories_in_Africa.

2
In August 2020, we searched on Google Scholar using the following keywords “call detail records” and the

country name.

https://en.wikipedia.org/wiki/Urbanization_by_country
https://en.wikipedia.org/wiki/List_of_sovereign_states_and_dependent_territories_in_Africa
https://en.wikipedia.org/wiki/List_of_sovereign_states_and_dependent_territories_in_Africa
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present results from the �rst model.

First, we derive the expression for aggregate commuting �ows in the �rst model. Assume

that workers are either low-skill L or high-skill H. The two skills face di�erent log wage

pro�les (wL
j )j and (wH

j )j and di�erent commuting elasticities τL
and τH

, and have the same

Fréchet shape parameter ε. Equation (3) now holds separately by skill, and the aggregate

commuting �ow is Poisson distributed with mean given by:

E Vij = VL
i

exp(εwL
j − ετLdij)

∑s exp(εwL
s − ετLdis)

+ VH
i

exp(εwH
j − ετHdij)

∑s exp(εwH
s − ετHdis)

(B.1)

In our data we observe aggregate commuting �ows Vij, not separately by skill. However,

equipped with census data on VL
i and VH

i , the low- and high-skill residential populations at

i, we can estimate ψs
j = εws

j and βs = ετs
for all j and s ∈ {L, H} in (B.1). We use maximum

likelihood and implement a standard gradient ascent algorithm that has good convergence

properties, yet is not guaranteed to �nd the global maximum.

In the second model, we assume that a representative commuter has preferences given by a

weighted mean with weights given by the skill shares at their residential location. Agents from

i earn log wages wH
j λH

i + wL
j (1− λH

i ) and have commuting elasticity τHλH
i + τL(1− λH

i ).

Plugging into equation (4), the estimating equation becomes:

log(E[πij|i]) = ψL
j (1− λH

i ) + ψH
j λH

i − βL(1− λH
i )dij − βHλH

i dij + µi (B.2)

Before applying these methods on real data, we explore their performance on data that is

simulated based on (B.1), and using the geographic structure in Dhaka. Both methods perform

well to recover underlying parameters. Table B.1 shows that the distance slopes are broadly

accurate, and that the log-linear speci�cation (B.2) disentangles the two vectors of destina-

tion �xed e�ects to a great extent (although not perfectly). Indeed, the o�-diagonal terms in

columns 2 and 3 are smaller than the diagonal terms. However, the log-linear speci�cation

performs worse for low-skilled workers.

We next estimate the gravity equation with two skills. In Dhaka, we de�ne high-skill as

literate, and use the fraction of population that is literate from the population census. (Overall,

67% of the population is literate. Interpolated at the tower level, this fraction ranges from 31%
to 100% with a mean of 76% and standard deviation 11%.) In Colombo, we de�ne high-skill

as having secondary education or more. (Overall, 80% of the population has a secondary

education. At the tower level, this fraction ranges from 57% to 95% with a mean of 82% and

standard deviation 6%.)

Table B.2 reports results from the gravity equation with two skills. Columns 1 and 3 repli-

cate columns 3 and 6 in Table 1. In both countries, the high skilled have a shallower slope on

travel time. This could be due to a lower disutility of distance (e.g. if high-skilled can a�ord

faster or more convenient travel modes).

Table B.3 replicates the validation exercise from Table 2 by skill, at the level of 87 survey

area in the DCC that appear in the DHUTS survey. The one-skill model income predicts both

low-skilled and high-skilled survey income, with higher R2
for the latter. Using the log-linear

gravity equation, low-skilled model income predicts low-income survey income. Importantly,

columns 4 and 5 show that the “o�-diagonal” terms are zero, meaning that this method is

successful in discriminating between low- and high-skill wage patterns. Using the maximum

likelihood estimate of the gravity equation, only the high-skilled model income is positively

predictive of survey income (columns 7-10).
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Table B.1: Numerical Simulation Check: Estimating Gravity with Two Skill Groups

(1) (2) (3) (4) (5) (6)

Estimation Method: Pooled Log-linear MLE

Outcome ψ̂j ψ̂L
j ψ̂H

j ψ̂L
j ψ̂H

j

Panel A. Destination Fixed E�ects

True Low Skill FE ψL
j 0.26*** 0.73*** 0.03* 0.95*** 0.01

(0.01) (0.04) (0.02) (0.01) (0.00)

True High Skill FE ψH
j 0.71*** 0.25*** 0.96*** 0.00 1.00***

(0.01) (0.04) (0.02) (0.01) (0.00)

Observations 1,840 1,840 1,840 1,859 1,859

Adjusted R2 0.95 0.54 0.88 0.94 0.99

Panel B. Distance Slopes

Estimation Method: Pooled Log-linear MLE
True

parameter

log Travel Time -2.43

log Travel Time × Low Skill -3.61 -4.00 -4.00

log Travel Time × High Skill -1.98 -2.00 -2.00

Notes. This table uses simulated data to compare estimated parameter values with true values. Data is simulated

for the 1,859 towers in Dhaka and the actual skill-speci�c population. Destination �xed e�ects for the two skills

are the sum of a common normal component (sd=0.8) and a skill-speci�c component (sd=0.4). Commuting �ows

are drawn from a Poisson distribution with mean given by (B.1). The distance slopes for low- and high-skilled are

βL = ετL = −4 and βH = ετH = −2. The �rst column shows results from the pooled regression (3) estimated

with PPML. The next two columns use the log-linear speci�cation (B.2) estimated with PPML. The last two

columns use maximum likelihood estimates of (B.1), using zero as initial values for both sets of destination �xed

e�ects. Panel A regresses estimated low- and high- skill destination �xed e�ects on the true values. Panel B

reports the estimate (and true) distance coe�cients.

Table B.2: Gravity Equation with Skills: Estimation Results

(1) (2) (3) (4)

Low Skill × log Travel Time -3.68*** -3.88 -5.00*** -3.20

(0.11) (0.36)

High Skill × log Travel Time -1.91*** -2.10 -1.57*** -2.10

(0.04) (0.08)

City Dhaka Dhaka Colombo Colombo

Estimation Method Log-Linear MLE Log-Linear MLE

Corr(ψ̂L,MLE
j , ψ̂L,LL

j ) 0.80 0.90

Corr(ψ̂H,MLE
j , ψ̂H,LL

j ) 0.86 0.77

Number of Destination FE 1,859 1,859 1,201 1,201

Number of Trips 1.5e+6 1.5e+6 9.4e+5 9.4e+5

Observations 3.4e+6 3.4e+6 1.3e+6 1.3e+6

Notes. This table estimates the gravity equation for models with two skill groups. Columns 1 and 3 estimate

the log-linear equation (B.2) using PPML, while columns 2 and 4 estimate equation (B.1) using a custom gradi-

ent ascent algorithm and maximum likelihood, where destination �xed e�ect are initialized at the values from

columns 1 and 3, respectively. Columns 2 and 4 report in each country the correlation between the destination

�xed e�ects obtained from the two methods, for each skill group.
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Table B.3: Average Workplace Income by Skill: Model Prediction and Survey Data in Dhaka

Outcome: log Survey Income (workplace)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Low High Low High Low High Low High Low High

Explanatory variables: ε× log Model Income (workplace)
Pooled 0.09** 0.08***

(0.04) (0.02)

Log-linear Low 0.06*** 0.06*** -0.01

(0.02) (0.02) (0.01)

Log-linear High 0.07*** -0.00 0.08***

(0.01) (0.03) (0.02)

MLE Low 0.02 -0.08 -0.05**

(0.03) (0.05) (0.02)

MLE High 0.07*** 0.15** 0.11***

(0.01) (0.06) (0.02)

Observations 87 87 87 87 87 87 87 87 87 87

Adjusted R2 0.07 0.21 0.09 0.23 0.08 0.23 -0.00 0.21 0.08 0.25

Notes. This table compares survey and model predictions of average workplace income, by skill. See notes for

Table 2. In the DHUTS survey, low-skilled is de�ned as at most primary school (38% of all commuters).

C Model Extension and Estimation: Preference or Productivity Shocks

In the main analysis, we assume that an agent earns income directly proportional to her wage.

Formally, the Fréchet shocks Zijω and travel time Dij a�ect utility but not income. Here, we

relax this assumption and allow Zijω and Dij to a�ect income instead. We show that the model

income continues to be correlated with survey income. Furthermore, we develop a method to

estimate the degree to which Zijω and Dij a�ect income instead of preferences.

Model. Assume that income is given by Yαz,αd
ijω = WjZ

αz
ijωD−ταd

ij , where αz,αd ∈ [0,1]
respectively control the extent to which the shocks Zijω and travel time Dij a�ect income.

For example, when αz = 1 and αd = 0, shocks a�ect utility and income equally, while travel

time only a�ects utility. We derive formulas for expected income in the following four extreme

extreme cases:

Ey0,0
ijω = wj

Ey1,1
ijω =

1
ε

log

(
∑

s
exp (εws − ετdis)

)
− K

Ey0,1
ijω = wj − τdij

Ey1,0
ijω = Ey1,1

ijω + τdij

(C.1)

where K is a constant term that does not depend on locations.

When neither shocks nor travel time a�ect income (as assumed in our main speci�cation

and in Ahlfeldt et al. 2014), income is simply the destination wage. In the second case, travel

time and income a�ect income but not preference directly (as assumed in Tsivanidis 2019).

In this case, the expression for expected income has the form of “commuting market access”

(Tsivanidis 2019).
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In the general case, log income is a convex combination of the four extreme cases described

above:

yαz,αd
ijω = αzαd · y1,1

ijω + αz (1− αd)y1,0
ijω + (1− αz)αd · y0,1

ijω + (1− αz) (1− αd)y0,0
ijω. (C.2)

Using (C.1) and dropping the constant K, this simpli�es to

Eyαz,αd
ijω =

αz

ε

[
log

(
∑

s
exp (εws − ετdis)

)
+ ετdij

]
+

1− αz

ε

[
εwj
]
+

αd
ε

[
−ετdij

]
(C.3)

Validation for the four extreme cases. Table C.1 shows the results of the OLS regression of

average workplace survey income on model workplace income under the four extreme cases

in equation (C.3). In all of these regressions, we expect the slope of ε−1
.

In all cases, we �nd that model income is signi�cantly correlated with survey income. In

terms of the model �t (R
2

and RMSE), we �nd the best �t when Zijω is on income and Dij
is on preference (Column 3). Our baseline assumption (both Zijω and Dij are on preference;

Column 1) performs the second, followed by the case with both Zijω and Dij are on income;

Column 2). We also �nd a larger regression slope in Column (2). This indicates that the

estimates of ε may di�er depending on the model assumptions.

Table C.1: Robustness of Workplace Income Validation with Di�erent Assumptions on Id-

iosyncratic Shocks and Travel Cost

log Survey Income (workplace)

(1) (2) (3) (4)

ε× log Model Income (workplace) 0.12
∗∗∗

0.22
∗∗∗

0.12
∗∗∗

0.12
∗∗∗

(0.03) (0.06) (0.03) (0.04)

Zijω Preference Income Income Preference

Dij Preference Income Preference Income

Adjusted R2 0.25 0.2 0.31 0.06

Root Mean Squared Error 0.22 0.23 0.22 0.25

Observations 88 88 88 88

Notes. The results of OLS regressions between survey income and model income under four di�erent assump-

tions on idiosyncratic shocks and travel cost expressed in equation (C.1).

Estimating Parameters αz,αd,ε in a general case. The above framework also allows us to

estimate αz,αd,ε using survey income data. These structural parameters illustrate the sources

of spatial frictions in intra-city labor market, hence they are of independent interest aside from

the prediction of income.

We estimate the parameters αz, αd and ε by OLS the equation:

yS
ijω = ρ1X̂1

ij + ρ2X̂2
j + ρ3X̂3

ij + εS
ijω, (C.4)

where yS
ijω is survey-based income of commuter ω who lives at i and works at j. Asymptoti-

cally, we have

α̂z =
ρ̂1

ρ̂1 + ρ̂2
, α̂d =

ρ̂3

ρ̂1 + ρ̂2
, and ε̂ =

1
ρ̂1 + ρ̂2

. (C.5)
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Table C.2 reports the estimates of αz, αd, and ε based on estimating equation (C.4) with

OLS, and using transformation (C.5). We report two types of standard errors: based on the

Delta method (in round parentheses) and based on bootstrapping at the origin survey area

level (in square parentheses). In columns 1-2, we estimate the full equation (C.4), and we �nd

that α̂d is close to zero with a small and insigni�cant negative value, and the other parameters

are imprecisely estimated when using bootstrapped standard errors. Given that the model

restricts ρ3 ≥ 0 (from αd ∈ [0,1]), in columns 3-4 we restrict the coe�cient on travel time

to be equal to zero (ρ3 = 0) and estimate the other two parameters. This increases the point

estimate for α̂z and slightly lowers that for ε̂ while improving precision.

These results show that idiosyncratic shocks partly a�ect income, while travel time is most

consistent with a pure utility cost.

Table C.2: How Pref. Shocks and Travel Time A�ect Income: Estimated Structural Parameters

(1) (2) (3) (4) (5)

Full model
Constrained model

(αd = 0)

Shock productive αz 0.21 -0.10 0.27 0.56 0.55

(0.05) [4.68] [0.26] (0.10) [0.10]

Shock distance αd -0.57 -1.09 0.03 0 0

(0.50) [7.89] [0.07]

Shape parameter ε 12.84 16.97 11.85 9.09 9.11

(7.59) [60.25] [3.80] (1.16) [1.36]

Observations 10,947 10,947 10,947 10,947 10,947

Bootstrap clusters 71 71 71

Notes. This table reports estimates of the structural parameters that control the degree to which idiosyncratic

shocks a�ect income (αz), travel time a�ects income (αd), and the Fréchet shape parameter ε, using the procedure

described in Appendix C. We estimated equation (C.4) by regressing individual log survey income from the

DHUTS survey on the three model-predicted terms. In columns 4 and 5, we restrict the third coe�cient that

corresponds to travel time to be zero (ρ3 = 0). The estimates for αz, αd and ε in this table are transformations of

the estimated OLS coe�cients as detailed in equation (C.5). Columns 1 and 4 report standard errors computed

using the Delta method. Columns 2, 3, and 4 report results from 100 bootstrap runs where we cluster at the

origin survey area level (70 survey areas with at least one out-commuter in DHUTS survey). The coe�cient is

the median estimate and standard errors in square parentheses. Column 3 censors ρ̂1 ≥ 0 and ρ̂2 ≥ 0.

D Robustness: Gravity Equation Over-identi�cation

In this section, we estimate the gravity equation on two disjoint samples to understand the

stability of the estimated parameters. In each city, we estimate the gravity equation on the

sample of nearby towers, and on the sample of distant towers. We use as cuto� the travel

time such that aggregate commuting �ows are roughly equal below and above the cuto� (13

minutes in Dhaka and 18 minutes in Colombo).

Table D.1 shows the results. Panel A shows that the distance coe�cient is stable when es-

timating on these disjoint samples. (In Colombo, it is slightly steeper when estimated for long

commutes.) Moreover, the resulting destination �xed e�ects estimated on the two disjoint

samples are highly correlated (0.88 and 0.86 in the two cities).

Panel B repeats the validation exercise in Bangladesh. Column 1 repeats the analysis Panel

A in Table 2, while the next two columns use model income computed using destination
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�xed e�ects from the gravity equation estimated on the “close” and on the “far” samples,

respectively. In both cases, the model income measure is predictive of log survey income,

with a similar slope. The explanatory power is higher when using the “far” sample.

Table D.1: Overidenti�cation: Estimating on “Close” and “Far” Tower Samples

(1) (2) (3) (4) (5) (6)

Dhaka Colombo

Sample: Pooled Close Far Pooled Close Far

Panel A. Gravity Equation

log Travel Time -2.19*** -2.10*** -2.43*** -2.44*** -2.42*** -2.49***

(0.01) (0.01) (0.01) (0.00) (0.01) (0.01)

Corr(ψ̂Close
j , ψ̂Far

j ) 0.88 0.86

Number of Destination FE 1201 1193 1199 1859 1741 1852

Number of Trips 9.4e+5 4.7e+5 4.7e+5 1.5e+6 7.3e+5 7.4e+5

Observations 1.3e+6 1.8e+5 1.2e+6 3.4e+6 1.6e+5 3.1e+6

Pseudo R2 0.66 0.80 0.49 0.67 0.80 0.44

Panel B. Validation (Outcome: log Survey Income, Workplace)

ε× log Model Income (workplace) 0.12*** 0.09*** 0.11***

(0.03) (0.02) (0.02)

Observations 88 88 88

Adjusted R2 0.25 0.15 0.27

Notes. This table reports results when estimating the gravity equation using only nearby (or only distant) tower

pairs. Panel A estimates gravity equation using home-work commuting �ows (columns 1 and 4 reproduce results

from Table 1). The sample is all tower pairs at least 180 seconds away. In columns 2 and 3, we restrict to towers

below and above 13 minutes, respectively. In columns 5 and 6, we restrict to towers below and above 18 minutes,

respectively. In columns 3 and 6 we report the correlation between the two vectors of destination �xed e�ects

using the two disjoing samples. Panel B regresses log survey income at the workplace level on the log of our

model income measure (at the workplace level). Column 1 reproduces Table 2, while the next two columns use

destination �xed e�ects estimated using the two disjoint samples. Robust standard errors in parentheses.

E Supervised-Learning Method Details

In Sections 3 and 4, we compare the predictive power of a single model-predicted income

measure, and of a supervised learning approach that uses multiple features derived from cell

phone data. This appendix describes the details of the supervised-learning approach.

The main steps of our procedure as as follows. We begin by computing a large set of

cell phone tower-level metrics from cell phone data. Following Blumenstock et al. (2015), we

then use elastic net regularization (Zou and Hastie 2005) to �t a linear model without over-

�tting the data. We then assess the predictive power on a hold-out testing sample. The rest

of this section explains the details of feature construction, model �tting and hyper-parameter

calibration, and of the comparison with the model-predicted income measure.

Extracting a Large Set of Quantitative Metrics from Cell-Phone Data

To construct our set of features from cell phone data, whenever the data allows we closely

follow Steele et al. (2017), who use cell phone data to map poverty in Bangladesh. We then add

additional hour-and-location level metrics.
3

To capture nonlinear patterns, for each variable

described below, we include both the variable and its logarithm. Altogether, we have 498

tower-level features from this procedure.

3
“Transactions” refers to outgoing call in Bangladesh, as only this type of call is recorded in the data.
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User-level characteristics averaged at home and work locations. The �rst set of features

measures averages at users’ home and work towers. We construct the following statistics for

each user for the entire sample period.

1. Number of transactions

2. Number of places: unique number of towers that the user ever visits

3. Radius of Gyration: the sum of squared distances from each visited tower (each trans-

action) to the centroid of all visited towers

4. Entropy of places: −∑i∈Ni
Pi log Pi, where Pi is the fraction of transactions at tower i,

and Ni is the set of all towers visited by i

For each tower, we then take the average of these metrics, once for all users for whom this

tower is their home location, and once for all users for whom this tower is their work location.

Altogether, we obtain 8 metrics (4 metrics × 2 (home and work)).

Hourly statistics at the tower level. The second set of features is constructed for each

hour of the day and each tower. We �rst compute the following statistics for each tower, date

and hour:

1. Number of transactions

2. Number of unique users who made transactions

3. Average travel time distance to home locations of users who made at least one transac-

tion at the tower on the speci�ed date and hour

4. Average travel time distance to work locations of users who made at least one transac-

tion at the tower on the speci�ed date and hour

5. Average duration of calls

We then aggregate these statistics at the tower level, separately for weekends and week-

days (excluding Hartal days). Together, we have 240 (5 metrics × 24 hours × 2 (week-

days/weekends)) features.

Tower areas. The last statistic is the geographic area of the voronoi cell that contains the

tower. We choose this statistic as a particularly compelling predictor of economic activity

because cell phone operators tend to strategically locate towers at a high spatial frequency in

areas where they expect high (cell phone) activity.

Our �nal set of cell phone features includes all the variables above, and for each one, its

logarithm. In total, we have 498 features (2 × (8+240+1)).

Elastic Net Regularization for Relevant Feature Selection

Given the large number of features (or variables) relative to the number of observations, our

next step is to use a supervised learning model that has good out-of-sample predictive power

and does not over�t the training data set. Following Blumenstock et al. (2015), we use elastic

net regularization, which is a regularized linear regression method that minimizes the sum of

squared deviations from a linear model, minus a penalty term. The penalty term is the sum

of an absolute value or L1
penalty (as in LASSO regression) and a quadratic or L2

penalty (as

in ridge regression):

λ
p

∑
j=1

(αβ2
j + (1− α)|β j|) (E.1)

where β j is the coe�cient on feature j, and λ and α are hyperparameters.

We implement the elastic net regularization in the following steps. First, we randomly
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select 50% of our survey areas as our “training data," and predict the survey income of the

remaining survey areas as “test data." Second, we implement the elastic net regularization

to select relevant features and �t the model. Third, we assess the predictive performance of

the model in the test data. Our primary measure is test R2
, de�ned by the sum of squared

prediction error divided by the total sum of squares. Lastly, we repeat this exercise 100 times,

and report the average test R2
(as well as the training R2

).

Our baseline results use α = 0.5. We show in robustness exercises below that this pa-

rameter choice does not signi�cantly a�ect our results. For λ, a typical strategy used in the

literature is cross-validation. Due to the very small sample (88 observations), this does not

perform well in our case. Instead, we select λ to maximize the R-squared in the test data over

100 random splits of the data into training and test. Given that we are using the test data for

choosing λ, the predictive power we obtain is likely an upper bound of the true predictive

power. Below, we show that choosing λ based on cross-validation within the training data

set performs worse (for survey workplace income prediction).

Additional Robustness Results with DHUTS Survey Workplace Income

Hyperparameter λ using cross-validation. Here we replicate Table 2 panel (B) where the

elastic net hyperparameter λ is computed via cross-validation. For each iteration of splitting

the training and test data set, we further split the training data set into N folds. Within these

N set of samples, we repeat training the data with N− 1 subsets and predict the in remaining

subset. We repeat this procedure N times, and compute the sum of squared prediction resid-

uals. We choose λ that minimizes the prediction error, and we use the chosen λ to once again

train the model with the entire training data set, and evaluate the predictive performance

using the test data set.

Table E.1 reports the results. Column (1) is the OLS prediction with the model-predicted

income, and Columns (2)-(7) are the results of the elastic net using all cell phone data features.

Column (2) simply reproduces Panel (B) of Table 2 where λ is chosen to maximize the test R2
.

Columns (3)-(7) show the results when we choose λ based on di�erent number of folds for

cross-validation.

Table E.1: Predicting Workplace Income: Choosing Hyperparameter with Cross-Validation

(1) (2) (3) (4) (5) (6) (7)

OLS

(log Model Income)

Elastic Net

(All CDR Features)

Maximize Test R
2

CV CV CV CV CV

Training R
2

0.26 0.44 0.44 0.48 0.50 0.51 0.53

Test R
2

0.22 0.24 0.19 0.18 0.13 0.16 0.12

Number of Folds for CV 3 5 10 20 44

Observations 88 88 88 88 88 88 88

Columns (3)-(7) show that the test R2
falls when we use the cross-validation procedure for

choosing λ. In fact, test R2
is lower than the OLS with model-predicted income. At the same

time, training R2
is higher than in columns (1) and (2), suggesting that poorer predictive

performance is likely due to over�tting. Over�tting is unavoidable given the small sample
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size.
4

Hyperparameter α robustness. α = 1 assigns all weight to the L2
norm, which is equiv-

alent to the ridge regression. α = 0 assigns all weight to the L1
norm, which is equivalent to

LASSO. Test R2
for α = 0,0.25,0.5,0.75 and 1 is 0.17, 0.24, 0.24, 0.24 and 0.23, respectively.

F Additional Results: the Impact of Hartal

Figure F.1: Impact of Hartal on Commuting to Work
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Notes. This �gure shows the event study impact of the onset of a hartal event on the probability to commute to

work. The sample is based on all commuters whose long-term home and workplace towers are di�erent (35%
of all users), who travel at least once on hartal days, and once on non-hartal days. The sample is all days with

commuting data (including stationary trips). “Trip to Work” is a dummy for making a proper trip (origin distinct

from destination) to the long-term workplace location (de�ned based on non-Hartal days).

The event study in Figure F.1 shows that there is a fall in commuting to work at the onset of

hartal strikes. The point estimates are consistent with anticipation and a partial reduction in

commuting to work on the day before the onset of hartal.

To construct this �gure, we proceed as follows. First, we compute calendar date �xed

e�ects using the regression Cωt = ψt + µω + εωt where ω denotes a commuter, t denotes a

calendar date, and Cωt is a dummy for commuting to work. (Figure F.2 plots these �xed e�ects,

normalized as percentage changes relative to the mean of the outcome variable on non-hartal,

non-holiday workdays.) Next, we adjust the date �xed e�ects by the average di�erences on

Friday (the main free day in Bangladesh) and Saturday (the other weekend day). We exclude

holidays from the sample, as well as the 5 days in the sample that are both hartal and weekend.

Lastly, we construct hartal “onset” events. We require at least two days between hartal events,

which leads to a sample of six hartal onset events (see the thin vertical red lines in Figure F.2).

We use an unbalanced panel pooling the six hartal events. For each event, we include up to

5 days prior to the �rst hartal day, excluding holidays. If another hartal takes place in this

4
Indeed, for the residential asset prediction (where the sample size is over 1,000) the cross-validation and

choosing λ to maximize the test R2
perform similarly (not reported).
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preceding period, we exclude it and all previous days. We include all consecutive hartal days

after it starts.

Table F.1 replicates Table 4 using a sample of frequent callers. The patterns of results is

very similar, thus alleviating the concern that commuting reductions during hartal may be

driven by commuters making fewer calls rather than commuting to work less.

Figure F.2: Commuting by Calendar Date (Hartals, Holidays and Weekends)
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Notes. This �gure shows average commuting probability by calendar date. The Y axis plots the percentage

change relative to the mean on non-hartal, non-holiday workdays. The sample and outcome are as in Figure

F.1. The �gure plots calendar date �xed e�ects from a regression of any trip commuting dummy on commuter

and calendar date �xed e�ects. Hartal dates are from Ahsan and Iqbal (2015) and public holidays from https:

//www.timeanddate.com/holidays/bangladesh/. The red vertical lines indicate hartal event onset date for the six

hartal events. Friday is the main free day in Bangladesh, and Saturday is the other weekend day. Five days in

the sample are both hartal and weekend: August 13, September 18, November 4, 10, and 27, and December 15.

We drop these throughout the analysis.

https://www.timeanddate.com/holidays/bangladesh/
https://www.timeanddate.com/holidays/bangladesh/
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Table F.1: The Heterogeneous Impacts of Hartal on Commuting: Frequent Commuter Sample

Work Commute (% change vs weekday)

(1) (2) (3) (4)

Hartal -0.053
∗∗∗

-0.053
∗∗∗

-0.053
∗∗∗

(0.004) (0.004) (0.004)

Interactions: Hartal ×
(βL

) % Low Skill -0.025
∗∗

(0.012)

(βH
) % High Skill -0.051

∗∗∗

(0.004)

Dest. FE (z) -0.022
∗∗∗

-0.019
∗∗∗

(0.005) (0.005)

(βL
W) % Low Skill × Dest. FE Low Skill (z) -0.049

∗∗∗

(0.012)

(βH
W) % High Skill × Dest. FE High Skill (z) -0.008

(0.006)

Log Duration (z) -0.028
∗∗∗

(0.002)

(βL
D) % Low Skill × Log Duration (z) -0.025

∗∗∗

(0.008)

(βH
D) % High Skill × Log Duration (z) -0.029

∗∗∗

(0.003)

Commuter FE X X X X

P-value βL = βH
0.05

P-value βL
W = βH

W 0.00

P-value βL
D = βH

D 0.70

Observations 3.9e+06 3.9e+06 3.9e+06 3.9e+06

Notes. This table replicates Table 4 on the sample of frequent callers, de�ned as those who have commuting data

on at least half of all days (61 out of 122 days), who account 8.3% of all commuters.
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G Additional Figures and Tables

Figure G.1: Administrative Units and Cell Phone Voroni Cells in Dhaka
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Notes. This �gure shows the map of cell phone tower Voronoi cells in Dhaka, Bangladesh (Panel A), and in Colombo, Sri Lanka (Panel

B). The yellow shaded area is the Dhaka City Corporation (DCC), the urban core of Dhaka, the main sample in the DHUTS transportation

survey. The overall study area covers for Dhaka are three districts in Bangladesh: Dhaka, Gazipur, and Narayanganj, and the entire Western

Province in Sri Lanka. The Voronoi cell of a tower is the locus of all points closer to that tower than to any other tower.

Table G.1: Cell Phone Data Coverage at User-Day Level

Dhaka, Colombo,

Bangladesh Sri Lanka

Panel A. Home-Work Commuting Flows
(1) Unique users 5.1e+06 3.0e+06

(2) Users with home and work towers 4.9e+06 2.6e+06

(3) Users (distinct home and work towers) 1.6e+06 9.9e+05

(4) Users (gravity equation sample) 1.5e+06 9.4e+05

Panel B. Daily Commuting Flows
(5) Unique users 3.6e+06 3.0e+06

(6) Weekdays in sample 87 282

(7) All user-days possible (= (5)× (6)) 3.1e+08 8.4e+08

(8) User-days with data (daily trips) 3.8e+07 2.4e+08

(9) Coverage rate (= (8)/(7)) 12.4% 28.1%

(10) Trips (distinct origin and destination towers) 2.1e+07 1.4e+08

(11) Trips (gravity equation sample) 1.9e+07 1.3e+08

Notes: This table describes data coverage in the two countries. Panel A reports the number of commuters based on our home-work classi�-

cation. Row 1 indicates the number of commuters with at least one home tower (based on calls between 9pm and 5am) or at least one work

tower (based on calls between 10am and 3pm). Row 2 indicates the number of commuters with both home and work towers. Row 3 restricts

to distinct towers, and row 4 to our baseline gravity equation estimation sample, towers more than 180 seconds away and closer than the

99th percentile of the duration distribution. Panel B reports information about daily commuting trips. A daily trip is a pair of origin and

destination towers visited by the same user during a single day, in the intervals 5am-10am and 10am-3pm, respectively. Row 5 indicates

the number of unique users who have at least one trip on a weekday. (We do not have this number for Sri Lanka so we use the number of

users from row 1.) Row 6 is the number of calendar weekdays in the data. Row 7 is the product of the previous two, which is the theoretical

upper bound of user-day combinations that could appear in the data. (Note that in practice some users only start using a cell phone partway

through the period, so this is an overestimate.) Row 8 describes the actual number of daily trips. Row 9 reports coverage for daily trips.

Rows 10 and 11 replicate rows 3 and 4 for daily trips.
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Figure G.2: Commuting Flows from Survey Data and Cell Phone Data

Panel (A) Survey vs Cell Phone Data Panel (B) Commuting Flows vs Home-Work Flows
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Notes. This �gure compares the decay of commuting �ows with travel time in survey and cell phone data.

The unit of analysis is 7,836 survey area pairs in Panel A, and 1.6 · 106
and 1.4 · 106

tower pairs in Dhaka and

Colombo in Panel B, respectively. Panel A compares commuting �ows from the DHUTS survey (red, dash) and

from cell phone data (blue, solid) in Dhaka. Panel B compares daily commuting trips (blue, solid) and home-

work commuting trips (black, dash). See Section 1 for the de�nition of home-work and daily commuting trips.

In each graph, commuting �ows are �rst averaged within each of 100 equal bins of log travel time below the

99th percentile, and the plot shows the local linear regression of log mean commuting �ow on log travel time.

This procedure avoids the bias due to zero commuting �ows, which is important for survey and home-work

commuting data. The DHUTS sample (described in Table G.2) has 12,510 commuters. The cell phone data

sample has 18 · 106
trips in Panel A, and 38 · 106

daily trip and 5.2 · 106
for home-work trips in Dhaka, and

237 · 106
daily trips and 2.6 · 106

home-work trips in Colombo, in Panel B. In Panel A, pointwise bootstrapped

95% con�dence intervals clustered at the origin survey area shown in gray.

Table G.2: Comparison of Commuting Flows from Survey Data and Cell Phone Data

Flow survey data (DHUTS)

(1) (2) (3) (4)

Log �ow cell phone data 0.63
∗∗∗

0.70
∗∗∗

0.30
∗∗∗

0.53
∗∗∗

(0.020) (0.026) (0.059) (0.049)

Log duration -1.05
∗∗∗

-0.51
∗∗∗

(0.17) (0.11)

Origin and destination

�xed e�ects Yes Yes

Observations 6026 6026 6026 6026

Notes: This table shows the relationship between commuting �ows from two di�erent data sets in Dhaka: the

DHUTS transportation survey (outcome) and home-work comuting �ows from cell phone data (explanatory

variable). The survey sample consists of the 12,510 commuters who live and work within the 90 survey areas

inside the DCC and who report positive income from work, excluding students, homemakers, and the unem-

ployed. (The sample includes government workers.) An observation is a pair of survey areas from the DHUTS

survey. The coe�cients show the estimates from the Poisson pseudo-maximum-likelihood (PPML) estimation

of DHUTS commuting �ow on log �ows from cell phone. We use PPML to deal with the presence of zeros in

DHUTS commuting �ows (Silva and Tenreyro 2006). If cell phone commuting �ow data is a perfect measure of

commuting �ows, one would expect coe�cients equal to one. Standard errors are clustered at the origin survey

area level.
∗p ≤ 0.10,

∗∗p ≤ 0.05,
∗∗∗p ≤ 0.01.
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Figure G.3: Distance to CBD and R2
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Figure G.4: Population Density and

R2

Notes. This �gure shows how the R2
of census residential income proxy depends on the sample of locations

included in the analysis. In Figure G.3, we restrict the sample to cell phone towers within a certain distance to the

CBD. The graph plots the adjusted R2
when regressing census income proxy on model residential income. The

�gure also plots the local linear regression of population density (per square km) for towers at a given distance

to the CBD. Figure G.4 shows the relation between population density at the distance cuto� and the achieved

adjusted R2
. Interestingly, the relationship between the population density at the distance cuto� and adjusted

R2
is similar in the two cities, suggesting a more general relationship.

Figure G.5: Prediction R2
and Geographic Aggregation Level
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Notes. This graph shows the R2
of the regression of census income proxy on model residential income, at

di�erent levels of aggregation. For k = 2, . . . ,10 we aggregate cell phone towers into grid cells of size k · 0.01
in decimal coordinates (equal to approximately k · 1.11 kilometers). We aggregate commuting �ows and run

the gravity equation at this level, and recover average residential income. (Note, we do not area adjust the

destination �xed e�ects as grid cells have approximately equal area.) The gray lines (right Y axis) indicate the

number of grid cells in the aggregated data.
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Table G.3: Comparison of Residential Population from Cell Phone Data and Population Census

log Residential Density log Residential Population

(cell phone) (cell phone)

(1) (2) (3) (4)

log Residential Density 1.16
∗∗∗

1.16
∗∗∗

(census) (0.03) (0.14)

log Residential Population 0.57
∗∗∗

0.40
∗∗∗

(census) (0.07) (0.04)

City Dhaka Colombo Dhaka Colombo

Observations 1,866 1,201 1,866 1,201

Adjusted R
2

0.61 0.49 0.25 0.24

Notes: This table shows the representativeness of the cell phone data at the residential level. The unit of analysis

is a Voronoi cell around each cell phone tower in the greater metropolitan area of each city (Dhaka, Gazipur,

and Narayanganj districts in Bangladesh, and Western Province in Sri Lanka). In cell phone data, residential

population is de�ned as out-commuting �ow. Census residential population in a Voronoi cell is computed as the

average census population in the �nest available census geographic units , weighted by their area overlap with

the Voronoi cell. The high adjusted R-squared in columns (1) and (2) indicates a strong association between the

geographic density from the two data sources. The comparatively lower adjusted R-squared in columns (3) and

(4) may be due to the fact that cell phone operators tend to assign cell phone towers to equalize the subscriber

coverage per tower. Conley standard errors with 5 km distance cuto� shown in parentheses.
∗p ≤ 0.10,

∗∗p ≤
0.05,

∗∗∗p ≤ 0.01.

Table G.4: Gravity Equation Robustness: Destination Fixed E�ects

Destination Fixed E�ects (Benchmark)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Dest FE (Daily Flows) 0.98
∗∗∗

1.09
∗∗∗

(0.01) (0.01)

Dest FE (Full Sample) 0.95
∗∗∗

1.03
∗∗∗

(0.01) (0.01)

Dest FE (OLS with log(volume)) 3.58
∗∗∗

3.20
∗∗∗

(0.04) (0.04)

Dest FE (OLS with log(volume + 1)) 7.06
∗∗∗

5.32
∗∗∗

(0.11) (0.12)

Dest FE (Nonparameric Gravity Equation) 0.98
∗∗∗

0.98
∗∗∗

(0.003) (0.003)

Dest FE (Travel Time with Congestion) 0.98
∗∗∗

(0.003)

Estimation Method PPML PPML OLS OLS PPML PPML PPML OLS OLS PPML PPML

City Dhaka Dhaka Dhaka Dhaka Dhaka Colombo Colombo Colombo Colombo Colombo Colombo

Observations 1,859 1,859 1,859 1,859 1,859 1,201 1,201 1,201 1,201 1,859 1,201

Adjusted R
2

0.92 0.88 0.81 0.68 0.98 0.92 0.87 0.82 0.62 0.98 0.99

Notes. This table compares destination �xed e�ects computed under di�erent assumptions. The outcome in the �rst four (last �ve) columns

is the destination �xed e�ects from the �rst (third) column in Table 1. Each row uses destination �xed e�ects (FE) from the gravity equation

estimated di�erently. The (destination FE estimated in the) �rst row uses daily commuting �ows (columns 2 and 4 in Table 1). The second

row uses all tower pairs below the 99th percentile of the travel time including same-tower pairs (which account for over half of all commuting

�ows), with travel time censored from below at 180 seconds. The third row estimates the gravity equation by OLS dropping all tower pairs

with zero commuting �ows (to allow for logarithms). The fourth row estimates the gravity equation by OLS using log commuting �ow

plus one as outcome. The �fth row estimates the gravity equation with log travel time entering non-parametrically instead of linearly, as

dummies for the deciles of log travel time. The last row uses the travel time from Google Maps query with tra�c congestion taken into

account. (The query for Sri Lanka was sent for 8am on Friday, August 26, 2016, one month prior to this date.) Most coe�cients are close to

1 and the R2
is above 0.8, except for the third and fourth rows. High regression coe�cients of the third and fourth rows indicate that the

destination e�ects are �atter if we estimate the gravity equation by OLS ignoring zero �ows, due to sample selection. Standard errors in

parentheses.
∗p ≤ 0.10,

∗∗p ≤ 0.05,
∗∗∗p ≤ 0.01.
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Table G.5: Average Workplace Income: Model Prediction and Survey Data in Dhaka

log Survey Income (workplace)

(1) (2) (3) (4) (5)

ε× log Model Income (workplace) 0.12
∗∗∗

0.11
∗∗∗

0.17
∗

(0.03) (0.03) (0.09)

log Employment Density 0.11
∗∗ −0.07 −0.06

(0.06) (0.05) (0.05)

log Dist. to CBD −0.18
∗∗∗ −0.14

∗∗∗ −0.15
∗∗∗

(0.03) (0.02) (0.03)

ε×log Model Income (residential) −0.12

(0.15)

Adjusted R2 0.25 0.06 0.33 0.42 0.42

Root Mean Squared Error 0.22 0.24 0.22 0.21 0.21

Observations 88 88 88 88 88

Notes. Robustness of Table 2 controlling for employment density, distance to CBD, and the model residential

income.

Table G.6: Robustness: Average Workplace Income and Survey Income Comparison

log Survey Income (workplace)

(1) Daily

Flows

(2) Excluding

Neighboring Towers

(3) Without

Area Adjustment

(4) Include

All Origins

Panel A. Log Survey Income
log Model Income (workplace) 0.13

∗∗∗
0.24

∗∗∗
0.10

∗∗∗
0.08

∗∗
0.21

∗∗∗
0.08 0.11

∗∗∗
0.18

∗∗

(0.03) (0.06) (0.02) (0.03) (0.05) (0.08) (0.03) (0.08)

Geographic Controls X X X X

Adjusted R2 0.26 0.44 0.2 0.41 0.25 0.41 0.21 0.45

Observations 88 88 88 88 88 88 89 89

Panel B. Log Survey Income Residual on Demographics
log Model Income (workplace) 0.07

∗∗∗
0.13

∗∗∗
0.05

∗∗∗
0.05

∗∗
0.11

∗∗∗
0.03 0.06

∗∗∗
0.08

(0.02) (0.04) (0.01) (0.02) (0.02) (0.05) (0.01) (0.05)

Geographic Controls X X X X

Adjusted R2 0.21 0.28 0.16 0.26 0.18 0.25 0.2 0.27

Observations 88 88 88 88 88 88 89 89

Notes. Robustness for Table 2 and Table G.5. Odd and even columns correspond to the speci�cations in columns

1 and 5 of Table G.5. The �rst two columns use commuting �ows de�ned at the daily level instead of com-

muting �ows from home and work assignment (see Section 1 for the de�nition). The next two columns de�ne

workplace income at the survey-area level excluding commuters whose origin towers are within 180 seconds of

the destination cell tower, when we aggregate up from cell tower level. The next two columns use destination

�xed e�ects not adjusted for Voronoi cell tower. The last two columns include commuters from DHUTS survey

whose origin locations are outside the DCC area. (In the main analysis, we exclude households outside of DCC,

because the 18 corresponding survey areas are signi�cantly coarser and detailed information on sampling is not

available.)
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Table G.7: Individual Income: Model Predictions and Survey Data

log Survey Income

(1) (2) (3) (4)

Model log Income (workplace) 0.11
∗∗∗

0.04
∗∗∗

0.03
∗∗∗

0.02
∗∗

(0.02) (0.01) (0.01) (0.01)

log Travel Time 0.12
∗∗∗

0.13
∗∗∗

0.07
∗∗∗

(0.02) (0.01) (0.01)

log Dest. Dist. to CBD −0.05
∗∗∗ −0.05

∗∗∗
0.01

(0.01) (0.02) (0.02)

log Dest. Commuting Zone Area −0.04
∗∗∗ −0.06

∗∗∗ −0.07
∗∗∗

(0.02) (0.02) (0.02)

Male 0.46
∗∗∗

(0.02)

Age 0.01
∗∗∗

(0.001)

Level of education 0.17
∗∗∗

(0.01)

Origin FE X X X

Occupation and Sector FE X

Government Worker No No Yes Yes

Observations 10,948 10,948 12,348 12,347

Adjusted R
2

0.02 0.03 0.03 0.28

Notes: This table regresses log income from the DHUTS survey on model-predicted income and controls. The

unit of observation is a survey respondent in the sample described in Table 2. Model-predicted income for a

pair of origin and destination survey areas is the weighted average of tower-pair model income, with weights

given by tower-to-tower commuting �ows. Formally, for survey areas a and b, yab ≡∑i∈a,j∈b Vij/Vab · yj, where

i ∈ a and j ∈ b index towers, yj = ψ̂R
j is the area-adjusted destination �xed e�ect at j, and Vab ≡ ∑i∈a,j∈b Vij is

the total �ow between a and b. We assign to each survey respondent the predicted income between his or her

home and work survey areas. Columns 2, 3 and 4 include origin survey area �xed e�ects, and column 4 includes

occupation and job sector �xed e�ects. Conley standard errors with 5 km distance cuto� in parentheses. (For

computational purposes, when including �xed e�ects, the standard errors are computed after residualizing the

�xed e�ects.)
∗p ≤ 0.10,

∗∗p ≤ 0.05,
∗∗∗p ≤ 0.01
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Table G.8: Average Residential Income: Model Prediction and Residential Income Proxy

Census Residential Income Proxy

(1) (2) (3) (4)

Panel A. Dhaka
log Model Income (residential) 0.89

∗∗∗
0.64

∗∗∗

(0.06) (0.23)

log Residential Density 0.67
∗∗∗

0.37
∗∗∗

(0.02) (0.06)

log Dist. to CBD −0.84
∗∗∗ −0.02

(0.10) (0.11)

log Model Income (workplace) −0.35
∗∗∗

(0.13)

Sub-district FE (count) X (55)

Adjusted R2 0.54 0.63 0.33 0.74

Observations 1,844 1,844 1,844 1,844

Panel B. Colombo
log Model Income (residential) 1.29

∗∗∗
1.38

∗∗∗

(0.06) (0.19)

log Residential Density 1.23
∗∗∗

0.20
∗∗∗

(0.07) (0.07)

log Dist. to CBD −2.04
∗∗∗ −0.57

∗∗

(0.22) (0.27)

log Model Income (workplace) −0.72
∗∗∗

(0.12)

Sub-district FE (count) X (41)

Adjusted R2 0.77 0.67 0.7 0.92

Observations 1,193 1,193 1,193 1,193

Notes. Robustness of Table 3 controlling for residential density, distance to CBD, and the model workplace income.

Table G.9: Robustness: Average Residential Income and Census Income Proxy

Census Residential Income Proxy

(1) Daily

Flows

(2) Excluding

Neighboring

Towers

(3) No Area

Adjustment

Panel A. Dhaka
log Model Income (residential) 1.08

∗∗∗
0.37

∗∗∗
0.93

∗∗∗
0.82

∗∗∗ −1.52
∗∗∗ −0.82

∗∗∗

(0.08) (0.12) (0.06) (0.17) (0.11) (0.13)

Geographic Controls X X X

Sub-district FE (count) X (55) X (55) X (55)

Adjusted R2 0.47 0.7 0.56 0.74 0.42 0.74

Observations 1,821 1,821 1,866 1,866 1,866 1,866

Panel B. Colombo
log Model Income (residential) 1.69

∗∗∗
0.68

∗∗∗
1.48

∗∗∗
1.00

∗∗∗ −1.52
∗∗∗ −0.62

∗∗∗

(0.08) (0.14) (0.08) (0.33) (0.31) (0.16)

Geographic Controls X X X

Sub-district FE (count) X (41) X (41) X (41)

Adjusted R2 0.82 0.91 0.82 0.91 0.08 0.91

Observations 1,188 1,188 1,197 1,197 1,197 1,197

Notes. Robustness for panel (A) in Tables G.8. Odd and even columns correspond to the speci�cations in columns 1 and 4 in Tables G.8. The

�rst two columns use daily commuting �ows instead of home-work commuting �ows (see Section 1 for de�nitions). The next two columns

de�ne workplace income at the survey-area level excluding commuters whose origin towers are within 180 seconds of the destination cell

tower, when we aggregate up from cell tower level. The last two columns use destination �xed e�ects not adjusted for Voronoi cell tower

area.


