The BU Shared Computing
Cluster for Economists

Johannes Schmieder
Empirical Micro Workshop — Fall 2020

Massachusetts Green
High Performance
Computing Center

e BU’s research computing
resources are housed at
the MGHPCC.

* Collaboration with
Harvard, MIT,
Northeastern, UMass and
BU.

* World-class computational

infrastructure T
|
* Powered by Green 5
energy! E &'T!;h7"',n:;:“

Super-Computing
Resources at BU

 World Class Resource at BU

* Itis free for you and easy to
gain access!!

* It can help you with your research
and make you happy!

evaluating the ATLAS experlmén‘Fa’c CERN to ev ‘

Petabytes of data ..

-t

=

S

Advantages of using the BU Shared
Computing Cluster (SCC)

e Access many processors simultaneously:
* You can complete your computer jobs faster.
* You can complete many jobs at once.

* Access from any computer (or phone?)
e Check on your jobs.
 Start them with new parameters.

e Super-computers don’t get restarted.
* Look cool — impress friends (and potential employers)!

Why and when to use
the SCC?

e Obviously, speed, but there are some caveats.

* Each individual core may not be much (or at all) faster than
your desktop or even laptop.

* Main advantage of SCC is memory and access to many
processing cores (CPUs).

* Memory:

e E.g. you work in Stata with a dataset that is 50 GB large...
Need that much RAM or use SAS ...

* CPUs

* Get access to (potentially multiple) computing nodes
with up 28 cores.

* GPUs

When do multiple CPUs help?

* [deally: 2 x N(CPU) = 2 x Speed
* But most software is written to run on a single core (thread).

* To use multiple cores in parallel requires some thoughtful
programming.

* For our purposes there are essentially 2 ways:

* Implicit parallelization
—> your software environment does the work for you.

* Explicit parallelization
- you tell your software environment exactly what and how to parallelize.

Example 1: Stata

e Stata MP provides implicit
(automatic) parallelization
of your code.

e E.g. matrix multiplication.

* Decent speed-up out of the
box, no work needed.

e Stata MP licenses restrict
number of cores.

e On SCC MP 8 core available.

e Can run multiple jobs in
parallel, ...

Possible performance region Theoretical
upper bound

Logistic
regression

S
J

Median
(estimation)

Median
(all commands)

Speed relative to speed of single core
\}
|

Lower bound (no improvement)

| | | |

1 2 4 8
Number of cores

Figure 1. Performance of Stata/MP. Speed on
multiple cores relative to speed on a single core.

Possible performance region Theoretical
upper bound

Logistic
regression

Example 1: Stata

S
J

* Maybe particularly useful
for working with large
datasets.

* Up to 1024 GB possible.

* Let jobs run for long time,

Median
(estimation)

Median
(all commands)

Speed relative to speed of single core
\}
|

* E.g. estimating model with
many many fixed effects
on hundreds of millions of 11 T T T
observations ... (AKM). Number of cores

Lower bound (no improvement)

Figure 1. Performance of Stata/MP. Speed on
multiple cores relative to speed on a single core.

Example 1: Stata — Explicit Parallelization

* User created tool: parallel

* Allows you to break out work into
individual pieces and run in parallel.

* This works by spawning stata child
processes that run their own version of
Stata. The parallel package automates this
process.

e Suppose you have a large dataset to clean.

* Parallel package makes it easy to run
cleaning code on separate slices of data in
parallel.

* Also works well for bootstrapping.

https://github.com/gvegayon/parallel

Stata: parallel package -- Bootstrapping

clear
sysuse auto
. timer list

timer clear 1: 12.50/ 1= 12.5040

set processors 1 2: 13.03/ 1= 13.0340

timer on 1 _ _ _ _ 3: 529/ 1= 5.2950
Fs, rep]§f(£1'7000) nodots: reg price c.weig##c.weigh foreign rep

mero Speedup around by around x2.4.
set processors 4 No benefit from MP alone
timer on 2]) . :

bs, reps(5000) nodots: reg price c.weig##c.weigh foreign rep

timer off 2

arallel initialize 4, f

imer on 3 _ _ _ _
arallel bs, reps(5000): reg price c.weig##c.weigh foreign rep
imer off 3

timer list

Example 2: Matlab — Global Optimization

* Suppose you want to estimate a
complicated dynamic model via
GMM.

* Optimization problem:
min (m(§) —m)'W(m(§) —m)

* |f objective function is convex this is
easy.

 Just use minimizerée.g. fmincon) and
you should be good.

e But what if this function is non-
convex?
» With large parameter vector ¢ this

becomes a very complicated problem : g, S
(curse of dimensionality). e

Example 2: Matlab — Global Optimization

e Optimization problem:
min (m(§) —m)'W(m(§) —m)

* If non-convex need to search
through parameter space in some
way.

e E.g. pick 1000 random starting
vectors and run local minimizer on

them.
* Best overall point might be close to
global optimum.

* This lends itself well to 1
parallelization. R

Example 2: Matlab — Global Optimization

parfor j = 1:noSearchlinits
X0 = searchlnits(:,));
options = optimset('Display’, 'iter','Algorithm’,'interior-point');
try
[paramHats(,j), sse(j), exitFlag(j),outputf(j)] = ...
fmincon(@objFun,x0,[],[1,[1,[],Ib_res,ub_res,[],options)
catch
warning('Problem in fmincon’);
disp('Initial Values: ");
disp(x0);
exitFlag(j) = -1;
end
end

Example 3: Python

e Similarly to Stata and Matlab, there are many ways to parallelize code.

* Implicit: Underlying numerical libraries parallelize some operations. E.g. MKL,
OpenBlas, ...

* Unless you work with very large matrices this is neat, but also probably not
dramatically helpful.
* More promising is explicit parallelization as in Matlab.

* E.g. Global Maximization with PyGMO
* PyGMO is a neat global optimization library.

* Developed by the European Space Agency to find interplanetary spacecraft
trajectories.

Example 3: Python - PyGMO

* Global Maximization with PyGMO
* Easy to set up maximization problem that is distributed over many cores.

 |dea that each core is an island that runs an optimization algorithm over
potentially many initial starting values.

 Each round the candidates from each island are moved between islands.

e This way different algorithms can work together to find the best solution:
* Gradient based algorithms (Newtonian,...),
* Genetic algorithms,
* Particle swarmes,
e Simulated Annealing, ...

Some optimization can go a long way

* Before throwing lots of cores at a
problem it’s worthwhile spending
some time optimizing your code.

* Vectorization:
» Explicit loops (foriin (1,2,3) ...) are
very slow in interpreted languages
like Matlab and Python.

* Much faster to use operations on
vectors since those are heavily
optimized in underlying C code.

| =0;
tic
fort=0:.01:100
i=1+1;
y(i) = sin(t);
end
toc
Elapsed time is 0.003418 seconds.

tic

X = sin(0:.01:100);

toc

Elapsed time is 0.001414 seconds.

Compiling Code for Speed

* Interpreted languages usually come with a big speed penalty .

* One way to avoid this is to program in a compiled language like C or Fortran.
 Downside: you have to learn C or Fortran.

* Programming in C or Fortran is a bit harder. E.g. need to know about pointers,
memory allocation, ...

* You lose the ease of use / debugging of a Matlab or Python environment
* Various options:

* Matlab = Mex functions

e Stata - Mata

 Julia > NKOTB

e Python 2 Numba

Compiling Python: Numba

"' Numba — Just in Time Compilation'''

import numpy as np @njit
from numba import njit, prange def fun_numba(A):
s =0
A = np.random. rand(10xx7) for i in range(A.shape[0]):
s += A[i]
‘"' Simple Python Implementation '’ return s
def fun_python(A):
s =0

"' Numba - parallel w/ prange '''

for i {hAﬂqqge(A.shape[G]): @njit(parallel=True)
> ¥= All def fun_numba_prange(A):
return s s = 0
for i in prange(A.shapel0]):
Speed Comparison: ts += Ali]
« Python only —- Elapsed Time: 1.909 return-s

 Numba plain -- Elapsed Time: 0.012
« Numba Prange —— Elapsed Time: 0.003

Compiling Python: Numba

* Numba can dramatically speed up your code.

* Real world example:
 Structural life-cycle model of labor supply
* Numba runs about 25 times faster than pure Python or Matlab code.

* Numba gets close to the performance of writing directly in C or
Fortran but with all the benefits of doing so in a Python environment.

Pure Matlab/ Matlab/
Steps Runs Matlab Python Numba Pure Numba

1 100 0.938 0.950 0.037 0.99 25.39
6 10 8.988 6.022 0.748 1.49 12.01
12 10 312.820 41.768 11.219 7.49 27.88

How to get Access

* Graduate students cannot have their own account.
* You can be added to a faculty account, or to the department account.

e Use for joint work or research assistance with a faculty
member.
* Use the for your own work.

* To get access:
Send e-mail to the RCS Liaison with your full name, your login name
(Kerberos), and the e-mail address that you want to use.
Currently is the RCS Liaison.

SCC organization

&>

Login nodes

Qs

i

l Around 900 nodes with
~12,000 CPUs and ~200

Compute nodes GPUs

Remote Access

* There are several ways (SFTP, SSH, ...).
* Easiest way is browser based version:

- Amazing! Can access SCC from anywhere (phone, ipad, laptop,...) without
extra software!

* You can open interactive versions of most software environments
right there in your browser!

* You can also upload and download filed, access a terminal, start
scripts, ...

https://scc-ondemand.bu.edu/

SCC Queue system

* The SCC uses a centralized job management system to allocate
computing resources called “qsub”.

* You submit a job to gsub specifying the resources you need and the
script to execute.

* E.g. “need 16 cores, 96 GB of RAM, and want to run structuralEst.m using
matlab”

* This is done using the “gsub” command and by writing a bash script
that provides some additional settings.

* This adds your job to the queue and once the resources are available
your job starts automatically.

ypical workflow might be:

* Develop your script (do file, matlab, python, ...) either on your local
machine or in an interactive session.

e E.g.:start_structural model.m

* Write a bash script that calls the matlab script.
* E.g.: run_batch

e Submit the bash script to the SCC Queuing system “qsub”.
e E.g.: qsub -pe omp 16 ./run_batch
* Note “-pe omp 16” means that you are requesting 28 computing cores.

* This will submit the job request to gsub where it now lines up in the queue.
As soon as a node with 16 cores is available the job will start running.

* You can configure the “run_batch” file so that you receive an email when the job
starts and finishes.

Example Set-up for SCC Job Submission

Command to submit script to gsub:
gsub -pe omp 28 ./run_batch

File: run_batch

#l/bin/bash -1

#$ -pe omp 28

set default value for n; override with qsub -v at runtime
#$ -M johannes.schmieder @gmail.com

#$ -m beas

#% -N StructEst Test

Load the newest version of matlab on SCC
module load matlab

Additional qsub options here . . .

matlab -nodisplay -r "runBatchJob($NSLOTS); exit"

File: runBatchJob -- Matlab file to start main program
function runBatchJob(n, nslots)
% redirects /.matlab PCT temp files to TMPDIR on the compute
% node to avoid inter-node (compute node <--> login node) I/0O
myCluster = parcluster('local') % cores on compute node to be
"local"
if getenv('ENVIRONMENT") % true if this is a batch job

myCluster.JobStoragelLocation = getenv('TMPDIR') % points to
TMPDIR

end

% Create a parallel pool with the number of CPU cores requested
on the cluster
parpool(myCluster, nslots)

% Run main matlab code
estimate_structural_model

% Shut down parallel pool
delete(gcp('nocreate’));
end

Example Set-up for SCC Job Submission

* See the queue:
e gstat

* See the jobs submitted under your username:
* gstat -u <username>

* Delete a job:
e qdel jobNumber.

Resource Limits

* Cores: most nodes have 8, 16 or 28 cores. You should write your code
targeting these numbers and being mindful of what you need.

* Requesting 17 cores makes no sense since you are effectively blocking a 28
core machine.

* Requesting 16 cores if you only run StataMP (8-core) also makes no sense.

 Wall clock time limit:

* On the shared computing nodes jobs will automatically terminate after 12
hours.

* You can request longer run times, but there are fewer nodes that offer that.
* Write your code so that not everything is lost if it does not finish by then.

A little Linux goes a long way ...

* The cluster runs on Linux.
* Worthwhile to work through a little tutorial.

e Learn some basic commandline commands:
° |s
* Cp
* Mv

Conclusion

* There is some learning curve but a huge payoff.

* The research computing service team offers great support and
documentation:

* By reading online you can learn a lot.

* RCS also offers classes for scientific computing taught be experts (Matlab,
Python, R, GPU programming, Linux, ...)

e Ultimately you learn by doing and experimenting.

http://www.bu.edu/tech/support/research/
http://www.bu.edu/tech/support/research/system-usage/running-jobs/

