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Abstract

We consider the issue of forecast failure (or breakdown) and propose methods to

assess retrospectively whether a given forecasting model provides forecasts which show

evidence of changes with respect to some loss function. We adapt the classical structural

change tests to the forecast failure context. First, we recommend that all tests should

be carried with a fixed scheme to have best power. This ensures a maximum difference

between the fitted in and out-of-sample means of the losses and avoids contamination

issues under the rolling and recursive schemes. With a fixed scheme, Giacomini and

Rossi’s (2009) (GR) test is simply a Wald test for a one-time change in the mean of the

total (the in-sample plus out-of-sample) losses at a known break date, say , the value

that separates the in and out-of-sample periods. To alleviate this problem, we consider

a variety of tests: maximizing the GR test over values of  within a pre-specified

range; a Double sup-Wald (DSW) test which for each  performs a sup-Wald test

for a change in the mean of the out-of-sample losses and takes the maximum of such

tests over some range; we also propose to work directly with the total loss series to

define the Total Loss sup-Wald (TLSW) and Total Loss UDmax (TLUD) tests. Using

theoretical analyses and simulations, we show that with forecasting models potentially

involving lagged dependent variables, the only tests having a monotonic power function

for all data-generating processes considered are the DSW and TLUD tests, constructed

with a fixed forecasting window scheme. Some explanations are provided and empirical

applications illustrate the relevance of our findings in practice.

JEL Classification Number: C14, C22

Keywords: forecast breakdown, non-monotonic power, structural change, out-of-

sample forecast

∗We thank the Editor (Todd Clark), an associate editor and two referees for useful comments. Yamamoto
acknowledges financial support from the MEXT Fund for the Promotion of Joint International Research.

†Department of Economics, Boston University, 270 Bay State Rd., Boston, MA, 02215 (perron@bu.edu).
‡Department of Economics, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo, Japan, 186-8601

(yohei.yamamoto@econ.hit-u.ac.jp).



1 Introduction

We consider the issue of forecast failure (or breakdown) and propose methods to detect

changes in the forecasting performance over time. The aim is to assess retrospectively

whether a given forecasting model provides forecasts which show evidence of changes (im-

provements or deterioration) with respect to some loss function. Since the losses can change

because of changes in the variance of the shocks (e.g., good luck), detection of a forecast

failure does not necessarily mean that a forecast model should be abandoned. Care must

be exercised to assess the source of the changes. But if a model is shown to provide stable

forecasts, it can more safely be applied in real time. In practice, such forecasts are made at

the time of the last available data, using a fixed, recursive or rolling window. Hence, there

is a natural separation between the in and out-of-sample periods dictated by the last data

point. Such is not the case when trying to assess retrospectively whether a given model

provides stable forecasts. There is a need for a separation between the in and out-of-sample

periods at some date labelled , say. This date should be such that the model in the in-

sample period is stable, i.e., yielding stable forecasts. This can create problems since one

needs a truncation point  to assess forecast failures but the choice of this value is itself

predicated on some knowledge of stability. An example of such test is that of Giacomini and

Rossi (2009), GR hereafter. It is a global and retrospective test which compares the in and

out-of-sample averages of the sequence of forecast losses. See Casini (2017) for an extension

as well as Casini and Perron (2018) and Perron (2006) for a review of the relevant issues.

We adapt classical structural change tests to the forecast failure context. First, we

recommend that all tests should be carried with a fixed scheme to have best power, which

ensures the maximum difference between the fitted in and out-of-sample means of the losses;

contamination issues under the rolling and recursive schemes induce power losses. With

this fixed scheme, GR’s test is simply a Wald test for a one-time change in the mean of

the total (in-sample plus out-of-sample) losses at a known break date . To alleviate this

problem, which leads to power losses when the forecast breakdown is not at, one can follow

Inoue and Rossi (2012) and maximize the GR test over values of  within a pre-specified

range; i.e., a sup-Wald test for a single change at a date constrained to separate the in and

out-of-sample periods. The test is still not immune to non-monotonic power problems when

multiple changes occur. Hence, we propose a Double sup-Wald ( ) test which for each

performs a sup-Wald test for a change in the mean of the out-of-sample losses and takes the

maximum over the range  ∈ [01]:  = max∈[01] (), where () is
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the sup-Wald test for a change in the mean of the out-of-sample losses for a forecast horizon  ,


 (̂) for  = +        , defined by () = max()∈[++++(1−)][()−

 ( ())()]̂(), where  = −−+1, () is the restricted sum of squared

residuals (SSR),  ( ())() is the SSR with a change at  (), and ̂() is the

long-run variance estimate of the out-of-sample losses ( is a small trimming parameter set at

01 throughout). We also propose working directly with the total loss series  () to define

the Total Loss sup-Wald ( ) and UDmax tests (). Using simulations based

on the original design of GR, we show that with forecasting models with lagged dependent

variables, the only tests with monotonic power for all data-generating processes considered

are the  and  tests, constructed with a fixed forecasting window scheme.

The benefits of forecast breakdown tests over structural change tests applied to the

forecasting model are the following, among others. As stated in GR, they can detect breaks in

variance (with a squared error loss); they allow model misspecifications; breaks in coefficients

and in variance may offset; they allow for instability in the distribution of the regressors.

More interestingly, the two types of tests are complementary. Consider data generated with

the predictor changing from  to  at some date;  is not accessible and a regression of

+ on  is used. For a given variance of , when the variance of  is small the power

of the forecasting tests is small, while that of the structural change tests is large (and vice

versa), since  is part of the error term. This holds for more general tests with unknown

multiple breaks. It shows a complementarity between the power of the forecast breakdown

and structural change tests. See Supplement (a) for theoretical and simulation analyses.

The paper is structured as follows. Section 2 introduces the statistical framework and

some tests: 2.1 reviews the single break case at a known date; 2.2 discusses why using a fixed

scheme is preferable; 2.3 considers unknown break dates and proposes new tests. Some limit

distributions are stated in Section 3. Section 4 considers the size and power of the tests: 4.1

for the finite sample size of the proposed tests; 4.2 describes the setup to evaluate the power

functions; 4.3 contains theoretical results about the shapes of the loss functions. Section 4.4

presents a summary of the results and 4.5 expands on the reasons for non-monotonic power

functions. Section 5 provides empirical applications and Section 6 concluding remarks. A

supplement contains technical derivations, additional discussions and results.

2 The framework and the tests

We have data ( ) with  a scalar variable to be forecasted and  a -dimensional vector

of predictors for  = 1   . Consider a model forecasting + at period , a  -period ahead
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forecast obtained using the direct method is ̂+ = (̂;), where  is a known function

that defines the model, ̂ is the estimate of the parameter  ( × 1) obtained from an

in-sample window of size  ≥ ; e.g., for the linear model, (̂;) = ̂ and ̂ is the

OLS estimate from a regression of + on  using data from the in-sample window. The out-

of-sample forecast procedure divides the full sample into an in-sample window of size  and

an out-of-sample window of size  =  −− +1. The model is estimated in the in-sample
window and the out-of-sample window is used for forecast error evaluation. We consider three

popular forecast schemes: fixed window, with the in-sample consisting of observations 1 to;

rolling window, with the in-sample consisting of observations −+1 to ; recursive window,
with the in-sample consisting of observations 1 to . We denote the sequence of in-sample

losses by 
(̂), defined by the in-sample fitted values ̂ = (̂;), and the sequence of

out-of-sample losses by 
 (̂), defined by the forecast values ̂+ . With the popular squared

error loss function, 
+ (̂) = (+ − (̂;))

2 and 
+(̂) = (+ − ̂+ )

2. We also

define the in-sample loss sequence: () = (
+1(̂)  


(̂)), the out-of-sample loss

sequence: () = (
+(̂)  


 (̂)) and the total loss series as the stacked vector

of both, i.e., () = (
+1(̂)  


(̂), 


+(̂)  


 (̂)), a ( − 2 + 1) vector.

A time-indexed total loss series is denoted by {+}−2+1=1 . Note that we use a “direct

forecast” method when   1. Supplement (g) shows that the main theoretical results also

apply when using an indirect forecast method.

The goal is to assess whether there are instabilities in forecast accuracy; e.g., a deterio-

ration usually referred to as a “forecast breakdown”. This can occur because of a genuine

change in the stability of the forecasting regression, via the conditional mean, or from changes

in the variance of the errors. It can also occur if the forecasting model is misspecified in which

case an over-fitting problem is possible, so that the out-of-sample losses are inflated relative

to the in-sample losses irrespective of whether a change in the stability of the forecasts is

present or not. We shall be concerned about the former case. If one wants to guard about

potential changes related to over-fitting, one can simply adjust the out-of-sample losses by

subtracting a correction factor (see GR for the exact expressions for a linear model and a

quadratic loss function). The null hypothesis considered is 0 : [(
∗)] = 0, for all

 =  +1   − +1 for some ∗ =  lim→∞ ̂, which implicitly assumes that the proba-

bility limit of ̂ is the same for all  under the null hypothesis. The alternative hypothesis

is 1 : [(
∗)] 6= [+1(

∗)] for at least one  =  +1   −  . Hence, we are concerned

with testing the stability of the forecast performance in population as opposed to in finite

samples using the terminology of Clark and McCracken (2013).
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2.1 The case with a single break occurring at a known date

We consider first a single break in forecast accuracy at a known date , say, so that the

alternative is  [(
∗)] = 1 for  ≤ , 2 for   . The obvious thing is then to apply

a test for a change in the mean of the total loss series at date , fixed for any given  but

increasing with  so that lim→∞  = , say, when performing an asymptotic analysis.

This is achieved by setting  =  and assessing whether the averages of the in and out-of-

sample losses are different. This is the test proposed by GR. Define the surprise loss as the

out-of-sample loss minus the mean of the in-sample losses, i.e., +(̂) ≡ 
+(̂) −

̄(̂) where ̄
(̂) ≡ ( − )−1

P

=+1 

(̂), with the out-of-sample losses adjusted

for over-fitting if desired. The test they propose is  = (
−12P−

= +(̂))Ω̂
12,

where  =  −−  +1 is the size of the out-of-sample window and Ω̂ is an estimate of the

long-run variance of the loss sequence (see GR for the exact form suggested). It is easy to

verify that the square of this test is equivalent to an F-test for a change in mean occurring

at date  when applied to the total loss series (). This simple observation leads to

the following comments. First, it is really inconsequential if we work with the original loss

functions (in-sample plus out-of-sample) with a given value of  that assumes a pre-sample

with no change or with the “surprise loss functions” for which the average of the in-sample

losses is subtracted from the out-of-sample losses. Hence, below, we shall also consider tests

constructed via the original (not-demeaned) out-of sample losses, again assuming the model

to be stable prior to date  (the demarcation between the in and out-of-sample). Second,

the test of GR is problematic since the true break date is unknown in practice even if only

one is present. This makes the test sensitive to the choice of . As will be shown via

simulations, it can have non-monotonic power (decreasing as the mean-change of the losses

increases) for a range of choices for . Hence, we also consider tests that allow  to vary

within some pre-specified range, whether with the surprise or original losses.

2.2 The choice of the forecasting scheme

Before considering tests that do not assume a known break date, we discuss the merits and

drawbacks of the fixed, rolling or recursive forecasting schemes. To get better forecasts it

is, in general, better to adopt a recursive or rolling forecasting scheme in the presence of

instabilities, or a combination of both; see, e.g., Clark andMcCracken (2009). The parameter

estimates then adapt to the data-generating process to fit the data better and provide more

accurate forecasts. A fixed forecasting scheme fails to provide such adjustments. A rolling one
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provides adjustments but at the expense of increased variability due to a smaller in-sample

window. However, when trying to detect retrospectively whether a change has occurred the

opposite ranking applies. The best scheme to adopt is a fixed one. Suppose that the break

date is known and  is set accordingly. A fixed scheme ensures the maximum difference

between the fitted in and out-of-sample means of the losses. With a recursive scheme, the

in-sample fitted mean of the loss series is pushed towards the fitted mean of the out-of-sample

losses inducing a loss of power. With a rolling window scheme, the same occurs but in a more

pronounced way since the in-sample fitted mean can eventually reach the post-break mean

if the window is small. Hence, when testing for changes in forecast accuracy, it is preferable

to use a fixed window scheme. This will remain true with one or multiple breaks occurring

at unknown dates. We provide explanations with some theory and simulations later.

2.3 The case with unknown break dates

A simple method to alleviate the dependence of the  test on  is to take the supremum

over a range of , say [01], a version denoted by  = max∈[01] ||. This test
is tailored to the alternative hypothesis with  unknown. The limit distribution and critical

values of  are in Inoue and Rossi (2012) for typical values of 0 and 1. Alternatively,

one could use 2 = max∈[01]
2
, which is equivalent to a sup-Wald test for a change

in mean and use the critical values in Andrews (1993). This modification will, however, not

be immune from power problems when multiple changes occur. To see why, consider the

case with two breaks. Then for any choice of  in the range [01] at least one segment

will be contaminated due to biased parameter estimates and the average loss will be reduced

thereby decreasing the power of the test. As we shall see, this problem can be especially

severe when the range [01] is large. To avoid it, one can perform a sup-Wald test for a

change in the mean of the out-of-sample losses for each value of  and take the maximum of

such tests over a range  ∈ [01], labelled as the Double sup-Wald ( ) test, defined

by  = max∈[01] 0(), where () is the sup-Wald test for a change in the

mean of the out-of-sample loss series 
 (̂) for  = +     , defined by

() = max
()∈[++++(1−)]

[() − (())()]̂() (1)

where () is the restricted , (())() is the  with a change at time

(), and ̂() is the long-run variance estimate of the demeaned out-of-sample loss series

with the mean changing at date (), obtained using the method of Andrews (1991). The

parameter  is a small trimming value set at 01. Too small a value leads to size distortions
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and large ones to power problems. The results are not sensitive to minor variations, e.g.,

 = 005 or 015; see Supplement (c). The limit distribution of the  test is stated in

Section 3. To construct it: 1) Start with an out-of-sample method with an in-sample length

0 small but large enough to estimate the model. Let  ≡  − −  + 1. 2) Compute

the out-of-sample loss series {
+}−=. 3) Consider a regression with only a constant:


+ =  + + . Apply a sup-Wald test for the constancy of , with a HAC variance

estimate if there is evidence of serial correlation in the losses. Store the value as ().

4) Update  to  + 1 and repeat Steps 2-3 up to  = 1. The range of , 1 −0, is

some fraction of , denoted by ̄. 5) Take the maximum of the sequence of {()}1
=0

.

The reason why the  test improves upon the  test is because it produces

three segments instead of only two, which is beneficial with more than one break. Two are

defined by  and the other by the date at which the Wald test is maximized in the range

[++++(1−)]. Hence, three segments can be inserted within the total sample,
which guarantees that the two segments with the largest difference can be separated by a

break, thereby increasing power. With a single break the mean of at least one segment is

contaminated by the values of the means in the other segments, reducing power. The idea

is akin to that of Qu (2007) who showed that when searching whether any part of a sample

is stationary all one needs is a search with two breaks or three segments. To go further, one

can also consider a test similar to the UDmax test for multiple changes of Bai and Perron

(1998). However, the size distortions were rather high and we shall not consider it further.

An alternative is to work directly with the total loss series () instead of only using the

out-of-sample losses. This can yield higher power given that more information is used. We

consider two tests following this approach: the Total Loss sup-Wald test ( ) and the

Total Loss UDmax test (). More precisely,  = max∈[01] (), where

() is the sup-Wald test applied for a mean-change in the total loss series ():

() = max
()∈[+(−2+1)+(1−)(−2+1)]

[() − (())()]̂()

where () is the restricted SSR, (())() is the SSR assuming a one-time

change at time () and ̂() is the long-run variance estimate of the total loss series

using demeaned total loss series with the mean changing at date ();  is some small

trimming parameter set at 01. Also, () = max∈[01] 

(), where


() = max

=1
max

{ 

()}=1∈Λ

[() − ({ 
 ()}=1)()]̂()

with Λ = {( 1 ()   
 ()) :

¯̄
 
 ()−  −1

 ()
¯̄
≥ +(−2+1),  0 () = 1  

 () ≤
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 + (1 − )( − 2 + 1)} and ̂() the long-run variance estimate of the total loss series

using the demeaned total loss series with the mean changing at dates  1 ()  

 (). We

set  = 5. To summarize the construction of the TL tests: 1) start with a value of the

in-sample length; e.g., 0 = b015c; 2) compute the total loss series {+}−2+1=1 ; 3) for

the regression with only a constant, + = + + , apply the sup-Wald or UDmax test for

the constancy of  with a HAC variance estimate if there is evidence of serial correlation in

the losses. Store the value as () or 

(). 4) Update  to  + 1 and repeat Steps

2-3. Take a choice of 1  0, say 1 = b085c, and continue up to  = 1. The choice

of 0 and 1 does not affect the asymptotic critical values (Theorem 2 below). 5) Take the

maximum of the sequence of {()}1
=0

or {
()}1

=0
.

3 Asymptotic distributions of the proposed tests

This section discusses the asymptotic distributions of the proposed test statistics under

the null hypothesis. We let “
→” denote convergence in probability and “⇒” denote weak

convergence in distribution. We first require the following assumption. Throughout, we

assume that  , , and  go to infinity at the same rate unless otherwise stated.

Assumption 1 Under no change in forecast accuracy: i) ̂
→ ∗ for all  ∈ [01],

with 0 and 1 the smallest and largest values of the in-sample lengths; ii) For + ≡
{+(

∗)}−2+1=1 ,  [+ ] =  for all  and −1[
Pb(−2+1)c

=1 (+ − )]2
→ Ω, as

 →∞ , for  ∈ [0 1] with  fixed, Ω a non-random matrix and −12
Pb(−2+1)c

=1 (+ −
)⇒ Ω12 (), with  () a standard Wiener process defined on  ∈ [0 1].

These high level assumptions characterize the properties of the loss series under the

null hypothesis. It is informative to see what they imply for the linear forecasting model

+ = 0 + + . Then Assumption 1 basically requires that  is stable over time under

the null hypothesis of no change in forecast accuracy and the loss sequence satisfies a stan-

dard functional limit theorem with long-run variance Ω. Another important feature is that

the loss series do not depend on  when evaluated at the limit value ∗. The relevance of

this assumption is examined using the same example of a correctly specified linear model.

Suppose we compute loss series using two distinct in-sample lengths 1 and 2. The coeffi-

cient estimates are denoted by ̂
1
and ̂

2
, say, and the forecasting errors are + −0̂1 and

+−0̂2, respectively. Under the null hypothesis, these series are asymptotically equivalent
since, roughly speaking, both estimators converge to a unique limit value ∗ for all. In gen-

eral, under the null hypothesis of no change in forecast accuracy, in large samples, and under
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a quadratic loss function, the losses are proportional to 2 so that, if  has constant uncon-

ditional variance 2, Assumption 1 is satisfied if 
−12Pb(−2+1)c

=1 (2+ − 2)⇒ Ω12 (),

where Ω =  lim→∞ −1[
P−2+1

=1 (2+ − 2)]
2 is the long-run variance of the centered

values of the squared errors. This allows considerable forms of dependence in the higher

moments of , in particular the second moment so that conditional heteroskedasticity or

serial correlation in the squared errors is allowed, in which case Ω is different from 2 and

the test statistics need to be scaled by an estimate of the long-run variance of 2 . Hence,

the conditions are quite general when the model is stable. Under Assumption 1, ()

and () have the same null limiting distribution as the sup-Wald test for a change in

mean (Andrews, 1993) and the max test of Bai and Perron (1998), respectively. We next

present the asymptotic distribution of the  test, whose proof is in Supplement (b).

Theorem 1 Under Assumption 1, the limit distribution of DSW is given by

 ⇒ sup
∈[0̄]

sup
∈[+(1−)1−(1−)]

[(− ) (1) + (1− ) ()− (1− ) ()]
2

(1− )(1− )(− )


as   → ∞ at the same rate, where  () is a standard Wiener process defined on

 ∈ [0 1],  is the trimming parameter and ̄ = lim→∞(1−0)0, with 0 = −0−+1.

The critical values of the  test were tabulated using 5,000 replications with 5,000

steps to approximate the Wiener process as partial sums of  (0 1) random variables.

We report results for a grid of values for ̄ in the range [020 080] and we set  = 01

(used throughout in the simulations and applications). The results are presented in Table 1

(see Supplement (c) for  = 005 and 015). We next consider the limit distribution of the

 and  tests. Exploiting the fact that the loss series {+(
∗)}−2+1=1 does not

asymptotically depend on  under the null hypothesis, we obtain the following theorem.

Theorem 2 Under Assumption 1 and the null hypothesis: a) the limit distribution of 

is the same as the sup-Wald test for a change in mean (Andrews, 1993) for any 0 and 1

(1 ≤ 0 ≤ 1 ≤  ); b) the limit distribution of  is the same as the UDmax test of

Bai and Perron (1998) for any 0 and 1 (1 ≤ 0 ≤ 1 ≤  ).

Under Assumption 1, Theorem 2 follows trivially since {+ (
∗)}−2+1=1 does not depend

on under the null hypothesis and the tests computed with different’s are asymptotically

perfectly correlated. This implies no effect of taking the maximum of the statistics over 

on the limiting distribution. Note also that, unlike for the  test, the choices of 0 and

1 do not affect the limiting distribution of the  and  tests.
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4 Analysis of the size and power of the tests

We present simulation and theoretical results to address the following issues: 1) the finite

sample size of the tests proposed (Section 4.1); 2) the power function of the tests: Section

4.2 describes the experimental design, Section 4.3 provides theoretical results useful to un-

derstand the main features of the power functions and Section 4.4 provides a summary of the

main results. Section 4.5 expands on the causes of various non-monotonic power functions.

4.1 Finite sample size of the proposed tests

We first examine the size of the  and  tests using the asymptotic distribution

of Theorem 2. The DGP specifies  ∼ (0 1) of lengths  = 150 300. We consider

the squared error loss for the static model: + = + + , and the dynamic model: + =

 +  + + , with  = 1 both estimated by OLS and tests with or without a HAC

correction for serial correlation in the losses. The HAC variance estimate is constructed

using Andrew’s (1991) data dependent method with an AR1 approximation and the Bartlett

kernel. For all cases, we consider a fixed, rolling and recursive forecasting scheme. The exact

sizes of the tests are presented in Table 2 for  = 300 and ̄ = 025 05 and 075 (for

 = 150, see Supplement (d)). The number of replications is 1,000. We label the test

without the HAC variance estimate by “non-robust” and with it by “robust”. We also set

 = 01, 0 = b015c and 1 = b085c; any reasonable variations of these choices do
not change the results qualitatively. The exact size is, in general, close to the nominal

size. Some distortions are present with the robust version, which decrease as  increases.

The results for the size of the  tests are in Table 3, with the same specifications as

above (for  = 150, see Supplement (e)). For ̄ = 025 and 05, the test shows little size

distortions, if any, for all cases. Some liberal size distortions are present when ̄ is as large

as 075 (caused by parameter uncertainty from unreported simulations). With larger sample

sizes, the distortions somewhat decrease but remain substantial for ̄ = 075. Hence, we

recommend using ̄ = 025 or ̄ = 05.

4.2 The experimental design for the power analysis

In order to ensure that our simulation design is not biased in favor of the tests we propose,

we adopt the same design as in GR. Note, however, that we do not set  to be equal to the

date of the first break. GR mention that this corresponds to the worst case scenario from a

forecasting point of view. But what is more relevant in the context of assessing the presence
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of forecast instabilities is the fact that it corresponds to the best case possible for the power

of the tests. Hence, such a choice can distort the power properties of the tests which are

relevant in practice, given that the date of the break is unknown. There are five different

DGPs involving single or multiple changes in level or in variance. They are:

DGP1: (single variance shift):  = ,  ∼ (0 2 ), with 2 = 1 + (  2);

DGP2: (multiple variance shifts):  =  ∼ (0 2 ), 
2
 = 1 + ( * Λ0);

DGP3: (single mean shift):  = (  2) +  with  ∼ (0 1);

DGP4: (multiple mean shifts):  = −+ if  ∈ Λ0, + otherwise,  ∼ (0 1);

DGP5: (mean shifts at unequal intervals):  = ( ≤ 4) − 3(4   ≤ 2) +p
(  2) + ,  ∼ (0 1).

We set  = 150 and with multiple breaks as in DGPs 2 and 4, these occur every 50

periods, i.e. Λ0 ∈ {(1 50) (101 150)}. The following tests are considered with the squared
error loss function: the  test of GR with  = 40 (1) and  = 100 (2); the

supremum of the  tests, labelled  over 02 ≤  ≤ 08 (1) and 03 ≤
 ≤ 07 (2), the Double sup-Wald test  with ̄ = 025 (1) and ̄ = 050

(2) with 0 = 02 for both cases; the sup-Wald test for a single break and the

UDmax test for multiple breaks (up to 5) applied to the total loss series, denoted 

and , with 015 ≤  ≤ 085 . Two forecasting models are used: a static model:
+ =  + + , and the dynamic one: + =  +  + + , with  = 1, both estimated

by OLS, and for each, two versions with or without a HAC correction for serial correlation

in the losses. In the dynamic model an irrelevant lagged dependent variable is included

(i.e.,  = 0), which is completely inconsequential. We could extend the DGPs to include

genuine dynamics with  6= 0. The qualitative features would remain the same. The non-
monotonicities reported would simply be more severe (e.g., Section 4.5). The static model

with no HAC correction is labelled “static, non-robust” and with a HAC correction “static,

robust”. The dynamic model with no HAC correction is labelled “dynamic, non-robust”

and the one with a HAC correction “dynamic, robust”. We consider forecasting schemes

using a fixed, rolling or recursive window. The number of replications is 1,000. The results

are presented in Tables 4-1 to 4-5. The foremost criterion adopted to compare the tests is

whether the power function is monotonically increasing as the magnitude of the change(s)

in forecast accuracy increases. We view this as an essential feature for any reasonable test.

For tests with monotonically increasing power, we compare the relative power functions. We

start with some theoretical results about the limit value of the expected loss function that

will help understand the sources of the power differences across various forecasting schemes.
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4.3 Theoretical results about the limit of the loss function

We consider the limit of the loss sequence for a single coefficient or variance break. Our results

pertain to the loss sequence in large samples, which are used for all tests. The surprise losses

are used for the  and  tests but since these simply differ by subtracting the average

of the in-sample losses, the dynamics of both sequences are similar. Hence, we consider only

the expected values of  lim→∞  = ∗(), defined on the unit interval  ∈ [0 1] where
 = lim( ). The squared loss function is applied. For simplicity, and without substantive

loss of generality, we consider the single break model:

+ =  + +  for  = 1   −   (2)

where  = 1 for  ≤ [0] and  = 2 for   [0]. Again for simplicity, the predictor  is

a scalar that satisfies (2 ) = 2 and (−) = . Also,  ∼ (0 2 ), with 2 = 21

for  ≤ [0] and 2 = 22 for   [0]. The in-sample length is  = [] chosen so that

 ≤ 0. We consider the following two cases: a coefficient change, i.e., 1 = 0 and 2 = ∆

with 21 = 22 = 2; a variance change, i.e., 21 = 2 and 22 = 2 +∆2 with 1 = 2 = .

Suppose we use the static regression model of + on  to produce  -period ahead forecasts

at time . For the out-of-sample procedure, we use the estimate of  obtained from the in-

sample information, labelled as ̂[1]. We consider the three window schemes and estimate

the coefficient using OLS for the sample period [1− ] with the fixed scheme, [−+1 − ]
with the rolling scheme, and [1 −  ] with the recursive scheme. Hence, ̂[1] with the same

 can be different depending on the window scheme. When the static regression is used,

 [∗()] = [lim→∞(+ − ̂[1])
2] = 2 + 2( − ∗[0])

2, where ∗[0] =  lim→∞ ̂[1].

We also denote the limit true value of  and 2 , defined on the interval  ∈ [0 1], by 

and 2. Next, we consider a dynamic regression, i.e., + =  +  + + . Including

 as a predictor while the true model is (2) is inconsequential in a stable environment

since the dynamic model nests the DGP. Things are quite different when instabilities are

present. For the dynamic model, with ∗[0] =  lim→∞ ̂[1], and ∗[0] =  lim→∞ ̂[1],

 [∗()] = (1 + ∗2[0])
∗2
 + 2[(1 − ∗[0]) − ∗[0]]

2 (see Supplement (f)). Figures S.1-

S.2 present [∗()] for the variance change case using the static and dynamic regressions,

respectively. The limit of the loss sequence always has a stepwise change, whose magnitude

depends on ∆2 . Hence, all tests should have power monotonically increasing in ∆2 .

Since the expressions for the case of a coefficient change are quite complex and yields

little insights per se, we only present numerical values in the text for [∗()]. We set

2 = 1,  = 01 and 0 = 05 and a small (∆∆2 = 1) and large break (∆∆2 = 5)
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to investigate how the size of the break affects the shape of the loss sequence. Figures 1-

2 present [∗()] for the coefficient change case for the static and dynamic regressions,

respectively. The upper (lower) panels report the case of a small (large) break. When the

static model is used (Figure 1), we see a stepwise change in the loss sequence when the fixed

scheme is used. However, the same change in coefficient translates into a spiked shape with

the rolling scheme and a triangular shape with the recursive scheme. This explains why the

fixed scheme is to be preferred and why using the rolling or recursive scheme induces a loss

of power. Note, however, that the break magnitude only changes the height of the change

in the loss sequence, not the shapes of the loss sequences. Hence, increasing the magnitude

of the break size should still increase power under all schemes. Things are different when

considering the dynamic model. We still have the same general shapes for the loss sequences.

However, the spikes and the triangular shape for the rolling and the recursive schemes become

more narrow and closer to an outlier as the break becomes larger. This explains why, when

using a dynamic model, the use of a rolling or recursive scheme leads to a non-monotonic

power function, i.e., the power decreases as the break magnitude increases. We shall use the

insights provided by these results to explain the power differences across the tests and the

forecasting schemes. We show in Supplement (g) that the main theoretical results continue

to hold using an indirect forecast method. The results are also similar with multiple breaks,

in which case the shapes essentially repeat themselves for each break date; see Figures S.5

and S.6 in Supplement (h), which present a “typical” realization of the loss sequences for

DGPs 3-5 under the three forecasting schemes for the tests 2, 2 and  .

4.4 Summary of the main power results

The main findings of interest can be illustrated by the results for DGPs 4-5 for a dynamic

forecasting model with a correction for serial correlation in the loss sequence. Only three

tests have a monotonically increasing power function: the two versions of  and the

 tests using a fixed forecasting window. All the other tests have a power function

that eventually decreases to zero as the magnitude of changes increases in at least one and

most often many cases. One exception is the  test with a rolling window, whose power

appears high because of large size-distortions. The distortions are reduced as  increases as

in 2 and 2 and the power is then decreasing to 0 as the magnitude of the change

increases. Cases with tests having a power function that eventually reaches zero as the

magnitude of the change(s) increases can also be found when dealing with other DGPs with

shifts in the conditional mean (i.e., not DGPs 1-2, which only affects the variance) and other
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forecasting methods. The  tests can have zero or trivial power even in the “static,

non-robust” case; see DGP4 (fixed and rolling), and DGP5 (recursive).

To compare the power of the tests, we focus on  = 05, a value with power not close

to one or zero. We disregard the  test with the rolling window given the large size-

distortions. For a single break (DGPs 1 and 3) the  and  tests have equally the

highest power. However, with multiple breaks (DGPs 2, 4 and 5), the  and 

tests outweigh the  tests in all cases. In summary, the test with highest power is the

 (for DGP1 the  and  tests have nearly the same power). The 

test has a monotonically increasing power and also highest power for small values of the

alternative. Hence, we recommend using the  test followed by the  , both with a

fixed forecasting scheme. The loss in power when using the  test instead of the 

test may, however, be DGP-specific since the changes involved, i.e., recurrent regimes, are

those most prone to cause power problems for the  tests. With non-recurrent regimes,

the power of the  tests would be closer to that of .

4.5 Explanations for the power properties

DGPs 1-2 are cases with single and multiple variance changes (Tables 4-1 and 4-2). For such

type of instability the forecast model is unaffected by the choice of  or the forecasting

scheme. The forecast model is still consistently estimated because the conditional mean of

the variable to be forecasted is unchanged. All tests have nontrivial power in all cases. The

substantial difference between 1 and 2 is caused solely by the choice of , showing its

importance.  resolves this problem by maximizing the test statistics over all permissible

 and achieves a reasonably high power in all cases. All tests proposed ( , 

and ) have, overall, high power. Under DGP1,  has a slightly lower power than

 and , while under DGP2,  and  have a higher power than  ,

because the latter accounts for a single break. Also, under DGP2, the power of these tests

does not reach one because of the nature of the breaks; i.e., two breaks with the first and

last regimes being the same, which is the most difficult case to detect with a single break

test (e.g., Bai and Perron, 2006). The problem is alleviated allowing for multiple changes so

that the  and  tests are the most powerful in this setting. These observations

are consistent with the theoretical results reported in Section 4.3.

We now turn to models with mean breaks so that the conditional mean of the variable

to be forecasted changes, i.e., DGPs 3-5 (results reported in Tables 4-3 to 4-5). The power

functions exhibit non-monotonicity or a significant power loss because of three potential
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sources. The first is the “robust effect” indicated with an “R” in the last row of a case with

non-monotonic power. The second is the “window effect” indicated with a “W”. The third

cause is the “dynamic effect”, indicated with a “D”. The simulation results pertaining to

the window and dynamic effects follow from the theoretical ones in Section 4.3. The “robust

effect” is due to a failure to properly account for serial correlations in the loss sequence. As

is well known, when neglected breaks are present in the losses when constructing the HAC

variance estimate, they inflate the sample autocovariances and the value of the bandwidth,

thereby increasing HAC variance estimates and reducing power. This is a standard problem

that has been discussed at length (e.g., Vogelsang , 1999, Crainiceanu and Vogelsang, 2007,

Deng and Perron, 2008, Kim and Perron, 2009, Perron and Yamamoto, 2016, Martins and

Perron, 2016, Chang and Perron, 2018). The “window effect” refers to the change in the loss

sequence induced by using some window that separates the in and out-of-sample data and

causes a loss in power. This applies, e.g., when breaks occur in the in-sample partition so

that the model is not consistently estimated. The “dynamic effect” is the most pronounced

and caused by in-sample contaminations when using a dynamic model. It is well known that

if a dynamic model is estimated in the presence of mean breaks the coefficient estimate for

the lagged dependent variable is biased toward one as the break magnitude becomes larger

(Perron, 1989, 1990, 2019). This results in forecast errors being roughly the first-differences

of those from a static model. Hence, the mean breaks become outliers in the loss sequence

and the tests have no power. Note that the “dynamic effect” will not occur with the fixed

scheme if  is sufficiently small and there is a chance that the model can be consistently

estimated in a stable in-sample window. See the theoretical results in Section 4.3.

We now explain some power functions reported in Tables 4-3 to 4-5. First, as shown in

panel (a), with the static model and the fixed scheme, all non-robust tests have a monotonic

power. However, the “robust effect” applies to tests constructed with a HAC variance

estimate in panel (b), which is pronounced for 1 and 2 and also applies to 1,

2 and  when multiple breaks are present. With the fixed scheme, the “robust

effect” applies to 1 under DGPs 3 and 5, and to 1, 2, 1, 2 and 

under DGP4. With either the rolling or recursive scheme, it applies to 2 and 1

under DGP3, to 1, 2, 1, 2, 1 and 2 under DGP4 and to 1,

2 and 2 under DGP5. The results suggest not using  and  with a HAC

variance estimate under any forecasting scheme nor  with multiple breaks. Note

that even in panel (a) the power of 1 and 2 is sometimes very low. 1 has non-

monotonic power with the rolling scheme under DGP3, with both the fixed and the rolling
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schemes under DGP4 and with the recursive scheme under DGP5, while 2 does so with

the recursive scheme under DGP5. This is because they are affected by the “window effect”

when a break occurs in the in-sample window. With a fixed scheme, the “window effect”

applies to 2 under DGP4. With the rolling scheme, it applies to 2 under DGPs 3-4

and with the recursive scheme to 1 under DGP5. Also,  may lose power with the

rolling or recursive scheme because the loss sequence takes a triangular shape (Figure 1).

This applies to 1 and 2 under DGP4. For  , the “window effect” can be

exacerbated by the “robust effect” (labelled “, ” in panel (b)); cf. 1 with the

rolling scheme under DGP3 and 1 and 2 with the rolling and recursive schemes

under DGP4. The source of the “window effect” can be explained by the results in Figure

1. With the fixed scheme, the loss sequence takes a step-wise pattern for all three DGPs

and tests. With the rolling or recursive scheme, it shows an abrupt increase followed by a

gradual decline. For DGP-3, the increase occurs when the in-sample window covers a stable

period and the initial date of the out-of-sample period coincides with the true break date.

After, the window increasingly contains post-break data, which gradually causes a bias in

the estimated forecast model and thus a decline of the loss sequence. More importantly,

the shape is robust with either the static or dynamic model, except when the first break is

included in the in-sample window (e.g., 2 under DGP5 with the dynamic model).

The non-monotonic power functions are more pronounced with a dynamic model. Panel

(c) of Tables 4-3 to 4-5 (DGPs 3-5) report power functions with non-robust standard errors.

With the rolling or recursive schemes, this “dynamic effect” applies to almost all tests, even

when the fixed scheme is used if the in-sample window is large and includes the break date;

e.g., for 2 under DGPs 3-4 and for 1 2 and 2 under DGP5. This suggests

not to use any tests with a rolling or recursive scheme when the forecast model has lagged

dependent variables. The results for the dynamic model with the robust tests are presented in

panel (d) of Tables 4-3 to 4-5, which highlight all tests with a non-monotonic power function.

The results are consistent with the limit of the power losses in Figure 2, which showed that

coefficient breaks are transformed into spikes in the loss sequence, getting narrower as the

magnitude of the change increases when using the rolling or recursive scheme.

5 Empirical applications

We now provide applications to illustrate the ability of the proposed and existing tests

to detect changes in forecast accuracy; one related to the equity premium and the other to

forecasting inflation. The results show the relevance of the theoretical and simulation results.
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5.1 Equity premium forecasts

The equity premium of the S&P 500 returns is constructed as the difference between the

stock yield and the risk free rate, following Jagannathan et al. (2000). For the stock yield,

we use the dividend price ratio plus the expected future growth rate of dividends. We use

the historical average of the annual growth rates of dividends since 1928:01 to proxy for the

latter. For the risk free rate, we use the 10-years treasury constant maturity rate. The data

were obtained from Robert Shiller’s web site (http://www.econ.yale.edu/~shiller/data.htm).

Figure 3 plots the resulting equity premium from 1980:1 to 2017:12. Jagannathan et al.

(2000) and Lettau et al. (2008) noted that it was in an unprecedented low level in the 1990s

and the early 2000s. The plot shows a sharp increase around 2007 because of the financial

crisis. Afterwards, the equity premium stayed high likely because of the zero interest rate

monetary policy. Lettau and Nieuwerburgh (2008) and Xu and Perron (2018) documented

the presence of level shifts and structural breaks in excess return prediction regressions.

We use a static, regressing + on  and a dynamic model, regressing + on  and 

(both with a constant) to produce  -period ahead forecasts. We use the dividend price ratio

as the predictor , as is commonly done; e.g., Campbell and Shiller (1988) and Fama and

French (1988). We consider forecast horizons  = 1 3, 6 and 12, and apply the following

tests with the quadratic loss function: the  tests (1 and 2 for ̄ = 025 and

05), the  and  tests. The truncation  = 01 and the maximum number of

breaks is 5 for the  test. We also apply the  tests with  = 331 and 347, which

correspond to the outsets of the global financial crisis (2007:7) and the month prior to the

initiation of the zero interest rate monetary policy (2008:11). We consider the  tests

for 02 ≤  ≤ 08 (1) and for 03 ≤  ≤ 07 (2). The results are presented
in Table 5. We first test for the presence of serial correlation in the loss sequence using the

LM test of Godfrey (1978) whose results are presented in the columns labelled “1” for

 = 331 and “2” for  = 347. They strongly indicate the presence of serial correlation

in the loss sequences. Hence, the tests account for serial correlations using a HAC variance

estimate. With the static model, there is evidence for a forecast breakdown with any of

the proposed tests and the p-values when using the fixed scheme are an order of magnitude

smaller compared to using the rolling or recursive scheme. Some -based tests also reject

in all cases when the rolling window scheme is used but not with the fixed or recursive one.

This is likely due to high power induced by large size distortions as documented above.

The -based tests also show less rejections when long horizons are considered under the

fixed and recursive schemes. With the dynamic model, we obtain a much clearer contrast.
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The  tests now show very few rejections and the tests proposed strongly reject the null

hypothesis for all horizons with the fixed window. As expected from the theoretical results,

the  test fails to reject with the rolling or recursive scheme, while the  and

 tests still show rejections, although much weaker in terms of p-values.

5.2 Inflation forecasts using the Phillips curve

Forecasting inflation using the Phillips Curve was advanced by, e.g., Stock andWatson (1999)

and Atkeson and Ohanian (2001), among many others. We use the model:

+ = 0 + 1() + 2() + 

where  is a measure of inflation,  is the unemployment gap (the unemployment rate

minus and a measure of the NAIRU). The order of the lag polynomial 1() was set to

 = 1 or  = 3. Since the results are similar, we only report the case with  = 3.

For the order of 2() we report results for both  = 1 and 3, labelled ‘Dynamic 1’ and

‘Dynamic 3’, respectively. We consider two window sizes for the  tests: 1) 1 with

 = 241, as in GR, so that the period before 1979 is within the in-sample and the high-

inflation period of Volker’s Fed Chairmanship is in the out-of-sample; 2) 2 with  = 301

(1984:1), in which case the out-of-sample window covers the Great Moderation. Orphanides

and van Norden (2005) find that Phillips curve-based forecasts outperform an autoregressive

benchmark prior to 1983 but without improvement for the period after 1984, while Dotsey

et al. (2018) find that while the Phillips curve forecasts improve when the economy is weak,

the improvement vanishes in the post-1984 period. In either case, the presumption is that a

change in forecasting performance occurred. We consider the forecast horizons  = 1 3 6 and

12 months. We use the monthly real-time CPI (consumer price index) and unemployment

gap data for the period 1959:1 to 2018:7. The data were obtained from the Federal Reserve

Bank of Philadelphia Real-Time Data Set in which the CPI is available only after 1998:11

and the unemployment rate after 1965:11. The earlier data were obtained from the Swanson,

van Dijk and Callan dataset (http://econweb.rutgers.edu/nswanson/realtime.htm). Since

the data from two sources are very similar in the overlapping period, this merging should

not affect the results. Also, as in GR we assume that a time-invariant NAIRU is embodied

in the intercept. We construct the annual rate of inflation as  = (1200) ln(−1), where

 is the CPI at month , whose graph is in Figure 4.

The results are presented in Table 6 for the same tests as in Section 5.1. The LM tests

for serial correlation in the loss function (Table 6; last two columns) indicate the presence
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of serial correlation, so the tests are constructed with a HAC correction. For “Dynamic

1”, all proposed tests show strong rejections at any horizon when the fixed window scheme

is used. With the rolling or recursive scheme, the  tests fail to reject in most cases,

consistent with our theoretical results about the non-monotonic power with a rolling or

recursive scheme. The results suggest multiple breaks since the value of  is much

larger than  , although both tests reject the null hypothesis at the 1% significance

level. More interestingly, all the -based tests, except for the 1 with the fixed and

the rolling schemes, have no power. The results are qualitatively the same for “Dynamic 3”.

Again, all the -based tests have no power, except for 1 with the fixed and the rolling

schemes. In summary, the -based tests find no or very weak evidence of a change in

forecast accuracy in the high inflation period of the Volker’s Chairmanship period. They are

also not able to detect a change due to the Great Moderation that occurred in the mid-1980s.

In contrast, the proposed   and  tests clearly show evidence of changes

in forecast accuracy when the fixed scheme is used.

6 Conclusion

We considered the issue of forecast failure (or breakdown) and proposed methods to de-

tect changes in the forecasting performance over time. The aim is to assess retrospectively

whether a given forecasting model provides forecasts which show evidence of changes (im-

provements or deterioration) with respect to some loss function. We adapted the classical

structural change tests to the forecast failure context. First, we recommend that all tests

should be carried with a fixed scheme to have best power. We considered a variety of tests:

the GR test (a t-test for a change at some pre-specified date ); maximizing the  test

over all values of  within a pre-specified range; a Double sup-Wald test which for each 

performs a sup-Wald test for a change in the mean of the out-of-sample losses and takes the

maximum of such tests over some range; we also proposed to work directly with the total

loss series to define the  and the  tests. The only tests having a monotonic

power function for all data-generating processes are the  and  tests, constructed

with a fixed forecasting window scheme. The power of the  test is usually higher than

that of the  test, hence it is recommended for practical applications.
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Table 1: Critical values of the  test ( = 01)

̄ 10% 5% 25% 1%

020 10609 12217 13779 15620

025 10928 12782 14018 16310

030 11264 13065 15087 17688

035 11648 13529 15247 17660

040 11761 13770 15537 17777

045 12134 14027 15768 17968

050 12469 14279 16031 17961

055 12932 14565 16184 18455

060 13103 14850 16512 18562

065 13367 15003 16654 19027

070 13596 15181 16622 19103

075 13769 15418 17075 19130

080 14108 15870 17736 19968

Table 2: Size of the  and  tests ( = 300)
a) static, non-robust c) dynamic, non-robust

10% 5% 1% 10% 5% 1%
SW fixed 0.112 0.061 0.020 SW fixed 0.109 0.057 0.013

rolling 0.117 0.063 0.019 rolling 0.120 0.057 0.013
recursive 0.096 0.058 0.016 recursive 0.092 0.047 0.011

UD fixed 0.125 0.067 0.019 UD fixed 0.125 0.067 0.013
rolling 0.127 0.070 0.019 rolling 0.127 0.071 0.013

recursive 0.107 0.061 0.018 recursive 0.105 0.055 0.010

b) static, robust d) dynamic, robust
10% 5% 1% 10% 5% 1%

SW fixed 0.146 0.076 0.021 SW fixed 0.142 0.072 0.019
rolling 0.144 0.060 0.012 rolling 0.146 0.072 0.022

recursive 0.096 0.058 0.016 recursive 0.099 0.063 0.013
UD fixed 0.167 0.085 0.021 UD fixed 0.188 0.101 0.023

rolling 0.148 0.079 0.011 rolling 0.186 0.102 0.014
recursive 0.107 0.061 0.018 recursive 0.112 0.081 0.016
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Table 3: Size of the  test ( = 300)
a) static, non-robust

10% 5% 1%
mu_bar m0 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T

0.25 fixed 0.075 0.080 0.071 0.043 0.050 0.036 0.018 0.019 0.017
rolling 0.083 0.067 0.049 0.046 0.038 0.021 0.020 0.019 0.007

recursive 0.075 0.082 0.085 0.039 0.047 0.045 0.015 0.017 0.014
0.5 fixed 0.104 0.097 0.093 0.064 0.056 0.058 0.019 0.023 0.025

rolling 0.116 0.102 0.078 0.067 0.061 0.048 0.023 0.021 0.018
recursive 0.103 0.098 0.095 0.061 0.058 0.057 0.022 0.024 0.022

0.75 fixed 0.169 0.167 0.142 0.117 0.114 0.088 0.047 0.045 0.040
rolling 0.164 0.155 0.124 0.122 0.114 0.087 0.051 0.047 0.034

recursive 0.172 0.173 0.147 0.113 0.108 0.087 0.050 0.047 0.042

b) static, robust
10% 5% 1%

mu_bar m0 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T
0.25 fixed 0.090 0.088 0.079 0.055 0.059 0.049 0.018 0.021 0.015

rolling 0.096 0.081 0.054 0.054 0.042 0.022 0.020 0.018 0.009
recursive 0.092 0.090 0.081 0.047 0.049 0.044 0.016 0.016 0.014

0.5 fixed 0.121 0.110 0.112 0.078 0.071 0.071 0.033 0.032 0.029
rolling 0.135 0.114 0.096 0.089 0.075 0.054 0.035 0.028 0.025

recursive 0.126 0.117 0.111 0.078 0.068 0.072 0.035 0.030 0.027
0.75 fixed 0.213 0.210 0.173 0.157 0.150 0.121 0.080 0.073 0.059

rolling 0.210 0.195 0.154 0.167 0.152 0.101 0.082 0.073 0.062
recursive 0.210 0.205 0.174 0.158 0.151 0.120 0.082 0.074 0.062

c) dynamic, non-robust
10% 5% 1%

mu_bar m0 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T
0.25 fixed 0.087 0.090 0.088 0.052 0.059 0.053 0.018 0.027 0.022

rolling 0.091 0.069 0.054 0.047 0.036 0.022 0.018 0.018 0.007
recursive 0.086 0.086 0.089 0.044 0.047 0.042 0.017 0.021 0.018

0.5 fixed 0.107 0.103 0.110 0.065 0.063 0.069 0.028 0.030 0.027
rolling 0.116 0.111 0.081 0.071 0.065 0.049 0.029 0.024 0.019

recursive 0.108 0.106 0.105 0.070 0.067 0.068 0.029 0.031 0.026
0.75 fixed 0.175 0.175 0.155 0.115 0.113 0.103 0.047 0.046 0.050

rolling 0.178 0.169 0.127 0.126 0.119 0.089 0.054 0.052 0.036
recursive 0.177 0.175 0.151 0.128 0.125 0.102 0.050 0.050 0.049

d) dynamic, robust
10% 5% 1%

mu_bar m0 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T
0.25 fixed 0.105 0.093 0.081 0.058 0.060 0.051 0.019 0.024 0.018

rolling 0.103 0.077 0.054 0.052 0.039 0.022 0.019 0.020 0.008
recursive 0.104 0.095 0.091 0.051 0.050 0.046 0.017 0.021 0.020

0.5 fixed 0.127 0.119 0.119 0.081 0.076 0.077 0.032 0.033 0.034
rolling 0.138 0.126 0.094 0.089 0.075 0.050 0.037 0.031 0.026

recursive 0.128 0.128 0.115 0.087 0.078 0.074 0.036 0.033 0.035
0.75 fixed 0.221 0.215 0.180 0.152 0.145 0.125 0.080 0.073 0.070

rolling 0.222 0.204 0.154 0.171 0.160 0.099 0.083 0.075 0.062
recursive 0.219 0.211 0.178 0.164 0.160 0.122 0.088 0.082 0.068
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Table 4-1: Power comparison under DGP1 (5% level)
a) static, non-robust c) dynamic, non-robust

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD

0.0 0.091 0.063 0.127 0.089 0.047 0.071 0.062 0.064 0.0 0.128 0.059 0.177 0.117 0.074 0.090 0.093 0.114
0.5 0.982 0.766 0.997 0.997 0.598 0.480 0.988 0.985 0.5 0.987 0.813 0.999 0.999 0.623 0.495 0.992 0.992
1.0 1.000 0.908 1.000 1.000 0.892 0.821 1.000 1.000 1.0 1.000 0.943 0.999 0.999 0.900 0.824 1.000 1.000
2.5 1.000 0.963 1.000 1.000 0.974 0.942 1.000 1.000 2.5 1.000 0.971 1.000 1.000 0.972 0.954 1.000 1.000
5.0 1.000 0.975 1.000 1.000 0.986 0.971 1.000 1.000 5.0 1.000 0.988 1.000 1.000 0.989 0.975 1.000 1.000
7.5 1.000 0.974 1.000 1.000 0.988 0.975 1.000 1.000 7.5 1.000 0.976 1.000 1.000 0.993 0.976 1.000 1.000

10.0 1.000 0.976 1.000 1.000 0.988 0.973 1.000 1.000 10.0 1.000 0.976 1.000 1.000 0.986 0.973 1.000 1.000

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD

0.0 0.238 0.058 0.364 0.105 0.052 0.069 0.064 0.072 0.0 0.511 0.047 0.734 0.240 0.064 0.080 0.082 0.096
0.5 0.991 0.598 0.988 0.993 0.637 0.512 0.991 0.991 0.5 0.999 0.666 0.997 0.996 0.634 0.534 0.994 0.997
1.0 1.000 0.764 1.000 1.000 0.907 0.836 1.000 1.000 1.0 1.000 0.811 0.999 0.999 0.905 0.842 1.000 1.000
2.5 1.000 0.845 1.000 1.000 0.979 0.953 1.000 1.000 2.5 1.000 0.887 1.000 1.000 0.968 0.943 1.000 1.000
5.0 1.000 0.878 1.000 1.000 0.990 0.977 1.000 1.000 5.0 1.000 0.914 0.999 1.000 0.976 0.964 1.000 1.000
7.5 1.000 0.870 1.000 1.000 0.991 0.977 1.000 1.000 7.5 1.000 0.904 1.000 1.000 0.974 0.962 1.000 1.000

10.0 1.000 0.896 1.000 1.000 0.989 0.974 1.000 1.000 10.0 1.000 0.923 1.000 1.000 0.967 0.951 1.000 1.000

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD

0.0 0.072 0.060 0.074 0.058 0.055 0.075 0.051 0.057 0.0 0.102 0.056 0.090 0.073 0.068 0.087 0.055 0.063
0.5 0.998 0.763 0.994 0.995 0.608 0.491 0.986 0.986 0.5 0.998 0.820 0.996 0.999 0.596 0.492 0.988 0.986
1.0 1.000 0.910 1.000 1.000 0.898 0.824 1.000 0.999 1.0 1.000 0.942 0.999 0.999 0.896 0.833 0.999 0.999
2.5 1.000 0.965 1.000 1.000 0.974 0.944 1.000 1.000 2.5 1.000 0.970 1.000 1.000 0.967 0.943 1.000 1.000
5.0 1.000 0.975 1.000 1.000 0.986 0.974 1.000 1.000 5.0 1.000 0.986 1.000 1.000 0.983 0.972 1.000 1.000
7.5 1.000 0.971 1.000 1.000 0.988 0.976 1.000 1.000 7.5 1.000 0.975 1.000 1.000 0.981 0.973 1.000 1.000

10.0 1.000 0.978 1.000 1.000 0.988 0.969 1.000 1.000 10.0 1.000 0.974 1.000 1.000 0.982 0.968 1.000 1.000

b) static, robust d) dynamic, robust

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD

0.0 0.090 0.061 0.111 0.096 0.083 0.109 0.069 0.081 0.0 0.129 0.049 0.138 0.096 0.085 0.119 0.088 0.111
0.5 0.965 0.758 0.992 0.997 0.602 0.527 0.986 0.987 0.5 0.987 0.762 0.998 0.999 0.581 0.492 0.989 0.991
1.0 1.000 0.894 1.000 1.000 0.884 0.805 1.000 1.000 1.0 1.000 0.905 1.000 1.000 0.871 0.785 1.000 1.000
2.5 1.000 0.944 1.000 1.000 0.963 0.942 1.000 1.000 2.5 1.000 0.954 1.000 1.000 0.955 0.926 1.000 1.000
5.0 1.000 0.965 1.000 1.000 0.977 0.956 1.000 1.000 5.0 1.000 0.967 1.000 1.000 0.982 0.948 1.000 1.000
7.5 1.000 0.949 1.000 1.000 0.980 0.954 1.000 1.000 7.5 1.000 0.976 1.000 1.000 0.968 0.945 1.000 1.000

10.0 1.000 0.968 1.000 1.000 0.981 0.968 1.000 1.000 10.0 1.000 0.978 1.000 1.000 0.974 0.958 1.000 1.000

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD

0.0 0.261 0.054 0.367 0.129 0.077 0.103 0.072 0.088 0.0 0.528 0.052 0.754 0.229 0.075 0.108 0.089 0.109
0.5 0.975 0.583 0.971 0.976 0.624 0.555 0.988 0.989 0.5 0.998 0.630 0.992 0.990 0.604 0.528 0.991 0.993
1.0 1.000 0.735 0.997 1.000 0.884 0.816 1.000 1.000 1.0 1.000 0.776 0.998 0.998 0.855 0.794 0.999 0.999
2.5 1.000 0.805 0.998 0.999 0.965 0.945 1.000 1.000 2.5 1.000 0.839 1.000 1.000 0.941 0.908 1.000 1.000
5.0 1.000 0.841 0.999 0.999 0.980 0.962 1.000 1.000 5.0 1.000 0.871 1.000 1.000 0.948 0.920 1.000 1.000
7.5 1.000 0.832 1.000 1.000 0.982 0.958 1.000 1.000 7.5 1.000 0.886 1.000 1.000 0.937 0.917 1.000 1.000

10.0 1.000 0.860 1.000 1.000 0.982 0.966 1.000 1.000 10.0 1.000 0.898 1.000 1.000 0.930 0.916 1.000 1.000

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD

0.0 0.085 0.060 0.069 0.064 0.079 0.115 0.061 0.071 0.0 0.103 0.047 0.063 0.049 0.085 0.119 0.066 0.080
0.5 0.994 0.752 0.980 0.989 0.614 0.529 0.986 0.985 0.5 0.999 0.763 0.993 0.997 0.571 0.501 0.986 0.986
1.0 1.000 0.889 1.000 1.000 0.880 0.804 0.999 0.999 1.0 1.000 0.906 1.000 1.000 0.861 0.796 0.999 0.999
2.5 1.000 0.945 1.000 1.000 0.965 0.942 1.000 1.000 2.5 1.000 0.960 1.000 1.000 0.952 0.923 1.000 1.000
5.0 1.000 0.965 1.000 1.000 0.980 0.959 1.000 1.000 5.0 1.000 0.970 1.000 1.000 0.964 0.952 1.000 1.000
7.5 1.000 0.946 1.000 1.000 0.979 0.956 1.000 1.000 7.5 1.000 0.975 1.000 1.000 0.949 0.942 1.000 1.000

10.0 1.000 0.970 1.000 1.000 0.982 0.968 1.000 1.000 10.0 1.000 0.979 1.000 1.000 0.959 0.937 1.000 1.000
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Table 4-2: Power comparison under DGP2 (5% level)
a) static, non-robust c) dynamic, non-robust

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD

0.0 0.091 0.063 0.127 0.089 0.047 0.071 0.062 0.064 0.0 0.128 0.059 0.177 0.117 0.074 0.090 0.093 0.114
0.5 0.135 0.375 0.229 0.263 0.780 0.675 0.512 0.626 0.5 0.120 0.413 0.233 0.281 0.788 0.696 0.567 0.670
1.0 0.220 0.478 0.355 0.403 0.951 0.914 0.697 0.870 1.0 0.179 0.545 0.356 0.415 0.954 0.916 0.749 0.890
2.5 0.286 0.590 0.519 0.567 0.988 0.974 0.771 0.961 2.5 0.210 0.642 0.512 0.570 0.988 0.971 0.823 0.970
5.0 0.311 0.622 0.557 0.629 0.993 0.982 0.791 0.966 5.0 0.254 0.669 0.569 0.639 0.994 0.984 0.830 0.972
7.5 0.324 0.623 0.572 0.647 0.993 0.982 0.838 0.983 7.5 0.254 0.705 0.564 0.629 0.994 0.983 0.869 0.991

10.0 0.301 0.677 0.549 0.628 0.990 0.988 0.818 0.986 10.0 0.247 0.701 0.583 0.662 0.990 0.987 0.864 0.991

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD

0.0 0.238 0.058 0.364 0.105 0.052 0.069 0.064 0.072 0.0 0.511 0.047 0.734 0.240 0.064 0.080 0.082 0.096
0.5 0.157 0.649 0.413 0.409 0.778 0.684 0.516 0.637 0.5 0.317 0.692 0.590 0.460 0.784 0.694 0.572 0.680
1.0 0.112 0.833 0.548 0.580 0.952 0.905 0.691 0.887 1.0 0.298 0.847 0.689 0.646 0.943 0.905 0.751 0.906
2.5 0.083 0.886 0.638 0.686 0.988 0.976 0.781 0.968 2.5 0.319 0.921 0.783 0.762 0.988 0.976 0.832 0.975
5.0 0.096 0.916 0.696 0.743 0.995 0.987 0.799 0.968 5.0 0.304 0.941 0.814 0.791 0.994 0.986 0.861 0.977
7.5 0.091 0.907 0.696 0.740 0.998 0.988 0.841 0.985 7.5 0.341 0.946 0.835 0.827 0.994 0.983 0.899 0.993

10.0 0.099 0.929 0.720 0.768 0.994 0.987 0.832 0.988 10.0 0.331 0.952 0.830 0.816 0.992 0.987 0.887 0.993

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD

0.0 0.072 0.060 0.074 0.058 0.055 0.075 0.051 0.057 0.0 0.102 0.056 0.090 0.073 0.068 0.087 0.055 0.063
0.5 0.063 0.383 0.146 0.193 0.786 0.675 0.480 0.602 0.5 0.062 0.422 0.166 0.201 0.796 0.679 0.499 0.629
1.0 0.085 0.483 0.218 0.261 0.958 0.915 0.663 0.869 1.0 0.066 0.552 0.265 0.307 0.955 0.916 0.675 0.872
2.5 0.110 0.574 0.321 0.359 0.989 0.976 0.739 0.961 2.5 0.068 0.644 0.370 0.415 0.987 0.975 0.752 0.962
5.0 0.095 0.617 0.358 0.393 0.994 0.989 0.770 0.965 5.0 0.070 0.673 0.376 0.443 0.995 0.984 0.788 0.968
7.5 0.117 0.620 0.356 0.419 0.998 0.987 0.814 0.982 7.5 0.077 0.705 0.409 0.451 0.996 0.985 0.830 0.988

10.0 0.093 0.664 0.342 0.394 0.991 0.987 0.796 0.985 10.0 0.073 0.716 0.406 0.447 0.991 0.984 0.814 0.986

b) static, robust d) dynamic, robust

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD

0.0 0.090 0.061 0.111 0.096 0.083 0.109 0.069 0.081 0.0 0.129 0.049 0.138 0.096 0.085 0.119 0.088 0.111
0.5 0.133 0.376 0.238 0.278 0.790 0.703 0.488 0.669 0.5 0.098 0.385 0.218 0.255 0.788 0.695 0.541 0.705
1.0 0.192 0.468 0.313 0.376 0.940 0.881 0.639 0.888 1.0 0.153 0.499 0.343 0.383 0.929 0.880 0.681 0.901
2.5 0.233 0.574 0.426 0.493 0.983 0.961 0.688 0.961 2.5 0.206 0.580 0.448 0.503 0.976 0.954 0.722 0.966
5.0 0.256 0.590 0.451 0.526 0.991 0.975 0.701 0.961 5.0 0.242 0.656 0.508 0.577 0.989 0.967 0.737 0.966
7.5 0.288 0.606 0.479 0.566 0.990 0.970 0.753 0.978 7.5 0.234 0.640 0.500 0.562 0.987 0.972 0.796 0.985

10.0 0.278 0.620 0.497 0.572 0.986 0.977 0.723 0.979 10.0 0.232 0.644 0.504 0.572 0.983 0.972 0.765 0.982

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD

0.0 0.261 0.054 0.367 0.129 0.077 0.103 0.072 0.088 0.0 0.528 0.052 0.754 0.229 0.075 0.108 0.089 0.109
0.5 0.122 0.638 0.374 0.378 0.794 0.706 0.498 0.677 0.5 0.307 0.672 0.598 0.433 0.782 0.683 0.540 0.711
1.0 0.100 0.790 0.484 0.522 0.939 0.889 0.639 0.897 1.0 0.285 0.820 0.639 0.559 0.915 0.874 0.685 0.908
2.5 0.101 0.863 0.600 0.633 0.983 0.961 0.688 0.963 2.5 0.283 0.892 0.710 0.672 0.967 0.943 0.740 0.974
5.0 0.081 0.897 0.630 0.671 0.992 0.978 0.707 0.966 5.0 0.284 0.910 0.776 0.738 0.978 0.956 0.770 0.974
7.5 0.101 0.891 0.654 0.697 0.991 0.980 0.751 0.980 7.5 0.324 0.927 0.770 0.743 0.977 0.961 0.815 0.989

10.0 0.076 0.910 0.654 0.704 0.990 0.977 0.729 0.984 10.0 0.354 0.924 0.791 0.750 0.977 0.961 0.786 0.989

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD

0.0 0.085 0.060 0.069 0.064 0.079 0.115 0.061 0.071 0.0 0.103 0.047 0.063 0.049 0.085 0.119 0.066 0.080
0.5 0.065 0.376 0.159 0.182 0.798 0.705 0.458 0.650 0.5 0.047 0.383 0.160 0.182 0.786 0.692 0.485 0.673
1.0 0.072 0.471 0.186 0.239 0.944 0.895 0.609 0.880 1.0 0.060 0.501 0.253 0.292 0.940 0.885 0.615 0.885
2.5 0.073 0.573 0.261 0.321 0.984 0.962 0.658 0.958 2.5 0.070 0.592 0.301 0.357 0.978 0.961 0.675 0.963
5.0 0.082 0.590 0.295 0.355 0.993 0.979 0.662 0.959 5.0 0.067 0.662 0.350 0.416 0.989 0.973 0.696 0.967
7.5 0.091 0.602 0.313 0.377 0.992 0.975 0.718 0.979 7.5 0.065 0.637 0.346 0.392 0.988 0.978 0.739 0.982

10.0 0.088 0.618 0.321 0.367 0.987 0.979 0.693 0.980 10.0 0.064 0.640 0.362 0.406 0.985 0.975 0.712 0.983
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Table 4-3: Power comparison under DGP3 (5% level)
a) static, non-robust c) dynamic, non-robust

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD

0.0 0.091 0.063 0.127 0.089 0.047 0.071 0.062 0.064 0.0 0.128 0.059 0.177 0.117 0.074 0.090 0.093 0.114
0.5 0.189 0.073 0.264 0.219 0.059 0.073 0.229 0.245 0.5 0.286 0.084 0.348 0.293 0.087 0.093 0.333 0.358
1.0 0.681 0.218 0.839 0.828 0.303 0.247 0.868 0.863 1.0 0.693 0.154 0.834 0.834 0.382 0.338 0.879 0.880
2.5 1.000 0.963 1.000 1.000 1.000 1.000 1.000 1.000 2.5 1.000 0.149 1.000 1.000 1.000 0.999 1.000 1.000
5.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5.0 1.000 0.022 1.000 1.000 1.000 1.000 1.000 1.000
7.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 7.5 1.000 0.023 1.000 1.000 1.000 1.000 1.000 1.000

10.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 10.0 1.000 0.011 1.000 1.000 1.000 1.000 1.000 1.000

- - - - - - - - - D - - - - - -

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD
0.0 0.238 0.058 0.364 0.105 0.052 0.069 0.064 0.072 0.0 0.511 0.047 0.734 0.240 0.064 0.080 0.082 0.096
0.5 0.323 0.053 0.478 0.168 0.048 0.097 0.082 0.107 0.5 0.601 0.066 0.800 0.364 0.056 0.104 0.106 0.139
1.0 0.580 0.055 0.724 0.481 0.038 0.216 0.132 0.284 1.0 0.771 0.064 0.901 0.590 0.038 0.172 0.121 0.247
2.5 0.998 0.099 1.000 0.999 0.649 0.961 1.000 1.000 2.5 0.985 0.040 1.000 0.988 0.126 0.738 0.602 0.916
5.0 1.000 0.179 1.000 1.000 1.000 1.000 1.000 1.000 5.0 0.999 0.051 1.000 1.000 0.178 0.986 0.679 0.993
7.5 1.000 0.240 1.000 1.000 1.000 1.000 1.000 1.000 7.5 1.000 0.040 1.000 1.000 0.046 0.999 0.174 0.934

10.0 1.000 0.246 1.000 1.000 1.000 1.000 1.000 1.000 10.0 1.000 0.012 1.000 1.000 0.010 0.995 0.012 0.587

- W - - - - - - - D - - D D D D

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD
0.0 0.072 0.060 0.074 0.058 0.055 0.075 0.051 0.057 0.0 0.102 0.056 0.090 0.073 0.068 0.087 0.055 0.063
0.5 0.117 0.058 0.085 0.081 0.042 0.076 0.072 0.084 0.5 0.179 0.067 0.133 0.114 0.051 0.089 0.079 0.095
1.0 0.392 0.081 0.335 0.336 0.023 0.116 0.229 0.288 1.0 0.370 0.070 0.312 0.285 0.015 0.108 0.170 0.237
2.5 1.000 0.548 1.000 1.000 0.995 0.993 1.000 1.000 2.5 0.919 0.054 0.920 0.928 0.136 0.571 0.836 0.940
5.0 1.000 0.987 1.000 1.000 1.000 1.000 1.000 1.000 5.0 0.991 0.045 0.993 0.995 0.107 0.981 0.856 0.995
7.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 7.5 0.994 0.044 0.997 0.996 0.039 0.999 0.300 0.944

10.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 10.0 0.999 0.017 0.995 0.999 0.012 0.996 0.017 0.609
- - - - - - - - D D D D D D D D

b) static, robust d) dynamic, robust
bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD
0.0 0.090 0.061 0.111 0.096 0.083 0.109 0.069 0.081 0.0 0.129 0.049 0.138 0.096 0.085 0.119 0.088 0.111
0.5 0.209 0.067 0.268 0.236 0.079 0.106 0.250 0.269 0.5 0.276 0.072 0.320 0.294 0.086 0.107 0.304 0.336
1.0 0.672 0.237 0.835 0.845 0.325 0.288 0.866 0.866 1.0 0.681 0.173 0.834 0.837 0.355 0.315 0.880 0.881
2.5 1.000 0.944 1.000 1.000 1.000 1.000 1.000 1.000 2.5 1.000 0.214 1.000 1.000 1.000 1.000 1.000 1.000
5.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5.0 0.988 0.025 1.000 1.000 1.000 1.000 1.000 1.000

7.5 0.944 1.000 1.000 1.000 1.000 1.000 1.000 1.000 7.5 0.878 0.020 1.000 1.000 1.000 1.000 1.000 1.000
10.0 0.860 1.000 1.000 1.000 1.000 1.000 1.000 1.000 10.0 0.944 0.005 1.000 1.000 1.000 1.000 1.000 1.000

R - - - - - - - R R,D - - - - - -

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD
0.0 0.261 0.054 0.367 0.129 0.077 0.103 0.072 0.088 0.0 0.528 0.052 0.754 0.229 0.075 0.108 0.089 0.109
0.5 0.330 0.048 0.425 0.180 0.071 0.133 0.102 0.135 0.5 0.615 0.049 0.796 0.344 0.072 0.131 0.117 0.158
1.0 0.604 0.054 0.708 0.465 0.049 0.277 0.135 0.312 1.0 0.772 0.058 0.904 0.595 0.050 0.230 0.123 0.271
2.5 0.999 0.069 1.000 1.000 0.300 0.965 0.970 1.000 2.5 0.984 0.040 0.999 0.979 0.094 0.779 0.489 0.897

5.0 1.000 0.012 1.000 1.000 0.047 1.000 1.000 1.000 5.0 1.000 0.044 1.000 1.000 0.007 0.965 0.243 0.853
7.5 1.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 7.5 1.000 0.030 1.000 1.000 0.000 0.992 0.020 0.461

10.0 1.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 10.0 1.000 0.004 1.000 0.999 0.000 0.991 0.000 0.119
- R,W - - R,W - - - - R,D - R,D R,D R,D R,D R,D

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD
0.0 0.085 0.060 0.069 0.064 0.079 0.115 0.061 0.071 0.0 0.103 0.047 0.063 0.049 0.085 0.119 0.066 0.080
0.5 0.122 0.048 0.095 0.090 0.056 0.122 0.085 0.107 0.5 0.186 0.052 0.130 0.128 0.063 0.116 0.095 0.118
1.0 0.426 0.074 0.326 0.336 0.034 0.157 0.224 0.303 1.0 0.399 0.078 0.326 0.329 0.023 0.161 0.188 0.277
2.5 1.000 0.490 1.000 1.000 0.948 0.984 1.000 1.000 2.5 0.923 0.057 0.896 0.909 0.134 0.670 0.793 0.938
5.0 1.000 0.899 1.000 1.000 1.000 1.000 1.000 1.000 5.0 0.971 0.043 0.866 0.911 0.005 0.953 0.427 0.885
7.5 1.000 0.915 1.000 1.000 1.000 1.000 1.000 1.000 7.5 0.905 0.036 0.534 0.636 0.000 0.989 0.041 0.476

10.0 1.000 0.875 1.000 1.000 1.000 1.000 1.000 1.000 10.0 0.793 0.011 0.224 0.309 0.000 0.988 0.002 0.120
- R,W - - - - - - R,D R,D R,D R,D R,D R,D R,D R,D
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Table 4-4: Power comparison under DGP4 (5% level)
a) static, non-robust c) dynamic, non-robust

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD

0.0 0.091 0.063 0.127 0.089 0.047 0.071 0.062 0.064 0.0 0.128 0.059 0.177 0.117 0.074 0.090 0.093 0.114
0.5 0.502 0.075 0.510 0.453 0.418 0.397 0.241 0.639 0.5 0.562 0.054 0.560 0.482 0.459 0.421 0.336 0.680
1.0 0.989 0.071 0.989 0.989 0.999 0.999 0.993 1.000 1.0 0.990 0.047 0.989 0.987 0.993 0.993 0.988 1.000
2.5 1.000 0.103 1.000 1.000 1.000 1.000 1.000 1.000 2.5 1.000 0.035 1.000 1.000 1.000 1.000 1.000 1.000
5.0 1.000 0.103 1.000 1.000 1.000 1.000 1.000 1.000 5.0 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
7.5 1.000 0.132 1.000 1.000 1.000 1.000 1.000 1.000 7.5 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

10.0 1.000 0.155 1.000 1.000 1.000 1.000 1.000 1.000 10.0 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

- W - - - - - - - D - - - - - -

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD
0.0 0.238 0.058 0.364 0.105 0.052 0.069 0.064 0.072 0.0 0.511 0.047 0.734 0.240 0.064 0.080 0.082 0.096
0.5 0.821 0.044 0.898 0.723 0.084 0.115 0.099 0.229 0.5 0.915 0.046 0.958 0.787 0.064 0.089 0.091 0.216
1.0 0.997 0.031 1.000 0.999 0.024 0.048 0.731 0.937 1.0 0.999 0.041 1.000 0.996 0.017 0.060 0.285 0.606
2.5 1.000 0.025 1.000 1.000 0.000 0.009 1.000 1.000 2.5 1.000 0.038 1.000 1.000 0.004 0.032 0.224 0.851
5.0 1.000 0.045 1.000 1.000 0.000 0.061 1.000 1.000 5.0 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.239
7.5 1.000 0.084 1.000 1.000 0.000 0.187 1.000 1.000 7.5 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.021

10.0 1.000 0.158 1.000 1.000 0.000 0.359 1.000 1.000 10.0 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000

- W - - W W - - - D - - D D D D

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD
0.0 0.072 0.060 0.074 0.058 0.055 0.075 0.051 0.057 0.0 0.102 0.056 0.090 0.073 0.068 0.087 0.055 0.063
0.5 0.256 0.082 0.204 0.163 0.159 0.218 0.062 0.193 0.5 0.248 0.052 0.171 0.141 0.117 0.157 0.066 0.162
1.0 0.791 0.160 0.722 0.698 0.274 0.316 0.709 0.921 1.0 0.569 0.059 0.453 0.400 0.070 0.137 0.227 0.542
2.5 1.000 0.706 1.000 1.000 0.998 0.997 1.000 1.000 2.5 0.930 0.047 0.849 0.844 0.024 0.063 0.150 0.804
5.0 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 5.0 0.943 0.000 0.631 0.673 0.000 0.000 0.000 0.267
7.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 7.5 0.851 0.000 0.470 0.526 0.000 0.000 0.000 0.014

10.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 10.0 0.725 0.000 0.460 0.493 0.000 0.000 0.000 0.000

- - - - - - - - D D D D D D D D

b) static, robust d) dynamic, robust
bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD
0.0 0.090 0.061 0.111 0.096 0.083 0.109 0.069 0.081 0.0 0.129 0.049 0.138 0.096 0.085 0.119 0.088 0.111
0.5 0.476 0.067 0.438 0.394 0.439 0.445 0.193 0.672 0.5 0.526 0.063 0.481 0.434 0.453 0.456 0.222 0.705
1.0 0.987 0.081 0.955 0.967 0.999 0.999 0.663 1.000 1.0 0.984 0.047 0.945 0.963 0.995 0.995 0.762 1.000
2.5 0.376 0.096 0.282 0.288 1.000 1.000 0.721 1.000 2.5 0.376 0.018 0.723 0.827 1.000 1.000 0.977 1.000

5.0 0.000 0.112 0.441 0.171 1.000 1.000 0.762 1.000 5.0 0.017 0.000 0.172 0.237 1.000 1.000 0.664 1.000

7.5 0.000 0.131 0.562 0.199 1.000 1.000 0.784 1.000 7.5 0.001 0.000 0.105 0.131 1.000 1.000 0.142 1.000
10.0 0.000 0.166 0.645 0.295 1.000 1.000 0.781 1.000 10.0 0.000 0.000 0.109 0.136 1.000 1.000 0.050 1.000

R R,W R R - - R - R R,D R R - - R -

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD
0.0 0.261 0.054 0.367 0.129 0.077 0.103 0.072 0.088 0.0 0.528 0.052 0.754 0.229 0.075 0.108 0.089 0.109
0.5 0.822 0.041 0.850 0.675 0.088 0.131 0.100 0.269 0.5 0.893 0.045 0.957 0.763 0.070 0.117 0.098 0.255
1.0 1.000 0.033 1.000 0.999 0.017 0.059 0.585 0.904 1.0 0.999 0.050 1.000 0.994 0.022 0.081 0.256 0.598

2.5 1.000 0.031 1.000 1.000 0.000 0.013 1.000 1.000 2.5 1.000 0.024 1.000 1.000 0.004 0.035 0.043 0.441

5.0 1.000 0.066 1.000 1.000 0.000 0.010 1.000 1.000 5.0 1.000 0.000 1.000 0.994 0.000 0.001 0.000 0.032
7.5 1.000 0.095 1.000 1.000 0.000 0.018 1.000 1.000 7.5 0.996 0.000 0.991 0.900 0.000 0.000 0.000 0.000

10.0 1.000 0.150 1.000 1.000 0.000 0.014 1.000 1.000 10.0 0.967 0.000 0.958 0.779 0.000 0.000 0.000 0.000
- R,W - - R,W R,W - - - R,D R,D R,D R,D R,D R,D R,D

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD
0.0 0.085 0.060 0.069 0.064 0.079 0.115 0.061 0.071 0.0 0.103 0.047 0.063 0.049 0.085 0.119 0.066 0.080
0.5 0.218 0.060 0.155 0.139 0.179 0.250 0.081 0.240 0.5 0.257 0.058 0.178 0.163 0.137 0.206 0.090 0.221
1.0 0.727 0.141 0.593 0.602 0.275 0.353 0.604 0.930 1.0 0.542 0.056 0.367 0.358 0.087 0.175 0.224 0.591
2.5 0.736 0.652 0.934 0.949 0.958 0.949 0.999 1.000 2.5 0.827 0.025 0.563 0.603 0.020 0.057 0.043 0.575
5.0 0.001 0.992 0.977 0.974 0.990 0.999 1.000 1.000 5.0 0.914 0.000 0.426 0.528 0.000 0.001 0.000 0.026
7.5 0.000 1.000 0.997 0.997 0.995 1.000 1.000 1.000 7.5 0.793 0.000 0.385 0.444 0.000 0.000 0.000 0.000

10.0 0.000 1.000 0.990 0.996 0.991 0.999 1.000 1.000 10.0 0.690 0.000 0.396 0.433 0.000 0.000 0.000 0.000
R,W - R,W R,W R,W R,W - - R,D R,D R,D R,D R,D R,D R,D R,D
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Table 4-5: Power comparison under DGP5 (5% level)
a) static, non-robust c) dynamic, non-robust

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD

0.0 0.091 0.063 0.127 0.089 0.047 0.071 0.062 0.064 0.0 0.128 0.059 0.177 0.117 0.074 0.090 0.093 0.114
0.5 0.598 0.528 0.956 0.606 0.997 0.996 0.968 0.997 0.5 0.512 0.145 0.948 0.180 0.993 0.989 0.955 0.996
1.0 0.960 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0 0.408 0.198 1.000 0.201 1.000 1.000 1.000 1.000
2.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.5 0.000 0.085 1.000 0.012 1.000 1.000 1.000 1.000
5.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5.0 0.000 0.000 1.000 0.000 1.000 1.000 1.000 1.000
7.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 7.5 0.000 0.000 1.000 0.000 1.000 1.000 1.000 1.000

10.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 10.0 0.000 0.000 1.000 0.000 1.000 1.000 1.000 1.000
- - - - - - - - D D - D - - - -

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD
0.0 0.238 0.058 0.364 0.105 0.052 0.069 0.064 0.072 0.0 0.511 0.047 0.734 0.240 0.064 0.080 0.082 0.096
0.5 0.893 0.303 0.995 0.601 0.835 0.791 0.632 0.820 0.5 0.883 0.101 0.997 0.483 0.462 0.431 0.202 0.412
1.0 0.996 0.957 1.000 0.993 1.000 1.000 1.000 1.000 1.0 0.686 0.149 1.000 0.248 0.786 0.759 0.349 0.762
2.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.5 0.008 0.063 1.000 0.009 0.556 0.529 0.008 0.062
5.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5.0 0.000 0.000 1.000 0.000 0.308 0.237 0.000 0.000
7.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 7.5 0.000 0.000 1.000 0.000 0.265 0.196 0.000 0.000

10.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 10.0 0.000 0.000 1.000 0.000 0.228 0.167 0.000 0.000

- - - - - - - - D D - D D D D D

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD
0.0 0.072 0.060 0.074 0.058 0.055 0.075 0.051 0.057 0.0 0.102 0.056 0.090 0.073 0.068 0.087 0.055 0.063
0.5 0.031 0.592 0.603 0.618 0.944 0.927 0.646 0.940 0.5 0.068 0.155 0.221 0.145 0.548 0.529 0.161 0.450
1.0 0.007 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0 0.023 0.212 0.339 0.181 0.781 0.776 0.173 0.640
2.5 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.5 0.000 0.086 0.032 0.013 0.772 0.732 0.000 0.020
5.0 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5.0 0.000 0.000 0.000 0.000 0.627 0.507 0.000 0.000
7.5 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 7.5 0.000 0.000 0.000 0.000 0.526 0.444 0.000 0.000

10.0 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 10.0 0.000 0.000 0.016 0.000 0.477 0.366 0.000 0.000
W - - - - - - - D D D D D D D D

b) static, robust d) dynamic, robust
bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD
0.0 0.090 0.061 0.111 0.096 0.083 0.109 0.069 0.081 0.0 0.129 0.049 0.138 0.096 0.095 0.110 0.095 0.130
0.5 0.458 0.452 0.776 0.519 0.997 0.996 0.831 0.997 0.5 0.411 0.152 0.612 0.170 0.995 1.000 0.745 1.000
1.0 0.073 0.992 0.997 0.998 1.000 1.000 1.000 1.000 1.0 0.228 0.167 0.246 0.156 1.000 1.000 0.980 1.000
2.5 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.5 0.000 0.090 0.015 0.014 1.000 1.000 0.620 1.000
5.0 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5.0 0.000 0.000 0.001 0.000 1.000 1.000 0.145 1.000

7.5 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 7.5 0.000 0.000 0.000 0.000 1.000 1.000 0.165 1.000
10.0 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 10.0 0.000 0.000 0.001 0.000 1.000 1.000 0.115 1.000

R - - - - - - - R,D R,D R R,D - - R -

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD
0.0 0.261 0.054 0.367 0.129 0.077 0.103 0.072 0.088 0.0 0.528 0.052 0.754 0.229 0.110 0.110 0.095 0.135
0.5 0.848 0.240 0.999 0.528 0.836 0.804 0.607 0.815 0.5 0.835 0.095 0.998 0.470 0.430 0.405 0.210 0.425
1.0 0.968 0.899 1.000 0.899 1.000 1.000 1.000 1.000 1.0 0.603 0.126 1.000 0.253 0.595 0.615 0.315 0.560
2.5 1.000 0.998 1.000 0.998 1.000 1.000 1.000 1.000 2.5 0.005 0.066 1.000 0.010 0.260 0.315 0.000 0.005

5.0 1.000 0.713 1.000 0.993 1.000 1.000 1.000 1.000 5.0 0.000 0.000 0.964 0.000 0.075 0.105 0.000 0.000
7.5 1.000 0.712 1.000 0.974 1.000 1.000 1.000 1.000 7.5 0.000 0.000 0.963 0.000 0.030 0.060 0.000 0.000

10.0 1.000 0.996 1.000 0.993 1.000 1.000 1.000 1.000 10.0 0.000 0.000 0.990 0.000 0.030 0.070 0.000 0.000
- R - R - - - - R,D R,D R,D R,D R,D R,D R,D R,D

bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD bA GR1 GR2 SGR1 SGR2 DSW1 DSW2 TLSW TLUD
0.0 0.085 0.060 0.069 0.064 0.079 0.115 0.061 0.071 0.0 0.103 0.047 0.063 0.049 0.105 0.100 0.065 0.100
0.5 0.017 0.534 0.563 0.580 0.953 0.939 0.633 0.938 0.5 0.052 0.165 0.179 0.145 0.555 0.510 0.150 0.445
1.0 0.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.0 0.013 0.187 0.159 0.149 0.650 0.665 0.115 0.410
2.5 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.5 0.000 0.095 0.012 0.013 0.535 0.490 0.000 0.000
5.0 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5.0 0.000 0.000 0.000 0.000 0.230 0.125 0.000 0.000
7.5 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 7.5 0.000 0.000 0.000 0.000 0.125 0.075 0.000 0.000

10.0 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 10.0 0.000 0.000 0.000 0.000 0.100 0.080 0.000 0.000
W,R - - - - - - - R,D R,D R,D R,D R,D R,D R,D R,D
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Figure 1. Shapes of [∗()] for a coefficient break in a static regression
a) small break (∆ = 1):
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Figure 2. Shapes of [∗()] for a coefficient break in a dynamic regression
a) small break (∆ = 1):
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b) large break (∆ = 5):
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Figure 3. Equity premium for the S&P 500
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Table 5. Tests for changes in forecast performance: equity premium forecasts
Static

tau DSW1 DSW2 TLSW TLUD GR1 GR2 SGR1 SGR2 LM1 LM2

fixed 1 214.89 *** 214.89 *** 266.23 *** 534.37 *** 2.29 ** 2.55 ** 2.81 ** 2.33 * 432.37 *** 432.78 ***

3 212.85 *** 212.85 *** 270.02 *** 551.42 *** 2.10 ** 2.17 ** 2.38 2.21 435.27 *** 408.26 ***

6 196.44 *** 196.44 *** 291.79 *** 622.41 *** 1.98 ** 1.88 * 2.20 2.20 436.88 *** 408.91 ***

12 223.76 *** 223.76 *** 282.76 *** 522.12 *** 1.96 ** 1.67 * 2.08 2.08 434.40 *** 416.75 ***

rolling 1 15.09 ** 44.78 *** 168.45 *** 168.45 *** 2.78 *** 3.19 *** 6.28 *** 6.28 *** 416.82 *** 422.25 ***

3 15.73 ** 52.28 *** 151.58 *** 151.58 *** 2.53 ** 3.10 *** 6.00 *** 6.00 *** 421.08 *** 423.34 ***

6 18.36 *** 55.21 *** 185.80 *** 185.80 *** 2.35 ** 2.67 *** 8.02 *** 6.87 *** 423.03 *** 424.54 ***

12 16.35 *** 72.05 *** 186.13 ** 186.13 *** 2.39 *** 2.01 ** 7.75 *** 6.54 *** 418.71 *** 419.76 ***

recursive 1 179.75 *** 179.75 *** 190.88 *** 190.88 *** 2.57 ** 2.93 *** 3.31 *** 2.61 ** 419.00 *** 422.98 ***

3 239.51 *** 239.51 *** 234.21 *** 234.21 *** 2.35 ** 2.83 *** 3.15 ** 2.41 * 423.03 *** 423.95 ***

6 322.67 *** 322.67 *** 319.95 *** 319.95 *** 2.20 ** 2.47 ** 2.60 * 2.30 * 424.89 *** 425.10 ***

12 205.12 *** 205.12 *** 208.90 *** 208.90 *** 2.29 ** 1.91 * 2.62 * 2.43 * 419.54 *** 419.95 ***

Dynamic

tau DSW1 DSW2 TLSW TLUD GR1 GR2 SGR1 SGR2 LM1 LM2

fixed 1 23.94 *** 23.94 *** 164.48 *** 164.48 *** 1.57 2.94 *** 11.95 *** 11.95 *** 72.71 *** 51.37 ***

3 90.60 *** 90.60 *** 126.27 *** 191.85 *** 1.09 0.79 3.95 *** 3.95 *** 329.85 *** 241.43 ***

6 198.75 *** 198.75 *** 307.34 *** 395.40 *** 2.27 ** 0.88 2.29 2.27 * 376.24 *** 369.13 ***

12 223.18 *** 223.18 *** 298.22 *** 619.16 *** 2.11 ** 1.43 2.29 2.23 423.79 *** 413.79 ***

rolling 1 4.42 4.80 166.02 *** 166.02 *** 0.35 0.93 5.14 *** 3.03 ** 68.68 *** 51.17 ***

3 3.14 3.47 43.14 *** 102.92 *** 0.53 1.63 3.43 *** 1.22 304.46 *** 237.76 ***

6 2.42 2.42 27.63 *** 54.11 *** 1.13 0.57 8.12 *** 2.90 ** 346.24 *** 312.03 ***

12 2.34 2.81 17.96 *** 34.56 *** 1.50 0.19 7.50 *** 4.33 *** 386.88 *** 378.56 ***

recursive 1 4.52 4.52 162.42 *** 162.42 *** 2.89 *** 3.72 *** 13.84 *** 11.91 *** 67.25 *** 51.16 ***

3 2.62 2.85 51.26 *** 97.82 *** 0.63 3.98 *** 6.68 *** 5.00 *** 313.95 *** 238.64 ***

6 3.78 3.78 33.78 *** 51.63 *** 0.51 1.32 2.88 ** 1.92 357.41 *** 313.73 ***

12 4.67 4.67 27.42 *** 35.34 *** 1.28 0.13 1.43 1.29 391.78 *** 384.18 ***
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Figure 4. U.S. real-time inflation rate
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Table 6. Tests for change in forecasting performance: inflation forecasts
Dynamic 1

tau DSW1 DSW2 TLSW TLUD GR1 GR2 SGR1 SGR2 LM1 LM2

fixed 1 84.69 *** 84.69 *** 25.65 *** 97.96 *** 0.29 0.08 4.48 *** 1.09 262.17 *** 377.83 ***

3 86.86 *** 86.86 *** 18.10 *** 100.57 *** 0.91 0.45 4.32 *** 1.68 215.57 *** 324.12 ***

6 34.00 *** 34.00 *** 13.93 *** 90.18 *** 0.99 0.34 4.38 *** 1.44 206.69 *** 304.09 ***

12 66.44 *** 66.44 *** 15.53 *** 90.46 *** 0.93 0.39 4.53 *** 1.43 173.27 *** 270.93 ***

rolling 1 11.51 * 11.51 20.68 *** 97.59 *** 0.88 0.30 5.47 *** 0.89 251.68 *** 365.56 ***

3 7.64 7.64 15.95 *** 73.09 *** 1.21 0.39 7.13 *** 1.34 214.88 *** 320.59 ***

6 10.22 10.22 16.68 *** 73.20 *** 1.27 0.35 8.06 *** 1.44 211.15 *** 322.59 ***

12 10.66 10.66 16.30 *** 74.73 *** 1.63 0.47 10.02 *** 1.91 210.89 *** 322.20 ***

recursive 1 15.47 ** 15.49 ** 20.58 *** 99.77 *** 0.54 0.18 2.22 1.02 267.17 *** 380.19 ***

3 9.10 9.10 12.26 ** 73.10 *** 1.06 0.49 2.52 * 1.50 230.30 *** 330.83 ***

6 7.06 7.06 13.64 *** 73.30 *** 1.02 0.44 2.42 * 1.35 211.93 *** 308.10 ***

12 6.93 6.93 15.00 *** 74.90 *** 1.06 0.41 2.86 ** 1.30 192.71 *** 286.08 ***

Dynamic 3

tau DSW1 DSW2 TLSW TLUD GR1 GR2 SGR1 SGR2 LM1 LM2

fixed 1 65.94 *** 65.94 *** 20.08 *** 102.20 *** 0.77 0.34 4.40 *** 1.50 244.07 *** 359.219 ***

3 32.88 *** 32.88 *** 13.26 *** 88.70 *** 1.18 0.52 4.26 *** 1.52 206.98 *** 309.692 ***

6 28.18 *** 28.18 *** 14.07 *** 88.94 *** 1.02 0.35 4.37 *** 1.56 212.29 *** 310.011 ***

12 70.15 *** 70.15 *** 15.58 *** 90.15 *** 1.07 0.35 4.57 *** 1.39 191.00 *** 291.011 ***

rolling 1 10.06 11.39 20.71 *** 95.36 *** 1.03 0.35 5.51 *** 1.14 242.31 *** 365.424 ***

3 8.76 8.76 15.81 *** 73.32 *** 1.45 0.44 7.21 *** 1.49 213.46 *** 319.281 ***

6 9.36 9.36 16.46 *** 73.23 *** 1.29 0.40 7.54 *** 1.42 216.42 *** 327.907 ***

12 11.56 * 11.56 17.52 *** 75.18 *** 1.77 * 0.47 10.97 *** 2.00 204.48 *** 317.704 ***

recursive 1 12.85 ** 13.41 * 18.78 *** 89.55 *** 0.90 0.41 2.57 * 1.32 256.18 *** 371.771 ***

3 7.12 7.12 11.88 ** 73.34 *** 1.28 0.63 2.36 1.47 218.54 *** 310.208 ***

6 9.24 9.24 14.05 *** 73.31 *** 1.16 0.55 2.64 * 1.54 213.83 *** 312.891 ***

12 8.09 8.09 16.14 *** 75.28 *** 1.20 0.42 3.01 ** 1.33 198.17 *** 295.058 ***
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“Testing for Changes in Forecasting Performance”

by Pierre Perron and Yohei Yamamoto

Supplementary Material

a) Comments about the complementarity of forecast breakdown and structural
change tests

We here expand on a comment made in the introduction about the complementarity
of forecast breakdown and structural change tests. Since forecast breakdowns are often
associated with changes in the parameters of the forecasting models, one may question the
value-added of forecast breakdown tests over simply using a structural change test directly
on the forecasting model. We expand upon an interesting case alluded to in the introduction,
whereby it is shown that structural change and forecast breakdown tests complement each
other; when one test has poor power for some parameter configurations, the other has high
power. We consider data generated such that the relevant predictor changes from some 
to some  at date  = , i.e.,

+ =

⎧⎨⎩ +  + + for  = 1  

+  + + for  =  + 1   − 
 (A.1)

However,  is not accessible to the researcher, hence one uses the following misspecified
model over the entire sample

+ = +  + + for  = 1   −  . (A.2)

We first theoretically illustrate how the forecast breakdown and structural change tests
behave under this setting. For simplicity, let ,  and  be independent scalar random
variables with () = () =  and () = 0. We also let  () = 2,  () = 2
and  () = 2. For the forecasting tests, assume that the fixed window scheme is applied
(shown to be the preferred one in this paper) with an in-sample length smaller than or equal
to  so that the coefficient  is consistently estimated. It is easy to show that the expected
value of the limit of the quadratic forecasting loss changes from 2 to 2 + 2

2 + 2
2

before and after  = . Hence, the magnitude of the change is

2
2 + 2

2 (A.3)

For the structural change tests, we consider the Wald statistic (divided by  ) assuming, for
simplicity, the break date to be known:

−1 = [( − ) ][ ]

The restricted (∼) and unrestricted residuals (ˆ) are then, respectively,

e+ =

⎧⎨⎩ + − (e − )− (e− ) for  = 1  

+ +  − e − (e− ) for  =  + 1   − 


̂+ =

⎧⎨⎩ + − (̂(1) − )− (̂(1) − ) for  = 1  

+ +  − ̂(2) − (̂(2) − ) for  =  + 1   − 


1



After some algebra, one can show that e →  when () = () (otherwise, e →
 + [() + (1− )()]). Also ̂(1) ̂(2)

→  e → , ̂(1)
→  and ̂(2)

→ 0, where

 = lim→∞  , so that the limit of (−) is (1−)22 and that of 

is 2 + (1− )2
2. Hence, the limit of the scaled Wald statistic is

(1− )2
2[2 + (1− )2

2] (A.4)

Comparing (A.3) and (A.4) yields the following insight. When the variance of the unavailable
predictor 2 increases, the change in the forecast loss increases and the change in forecast
performance is easier to detect. However, a large variance would not help to detect a change
in  associated with the predictor  via a structural change test because an increase in 2
lowers the value of test statistic. And vice-versa, when 2 is small, the change in the loss
function is reduced while the value of the Wald test for a change is increased.
To quantify the implications of this insight, we implement a simple Monte Carlo simu-

lation. We set  =  = 1 and generate  ∼  (0 1) for  = 1   . The variables
are generated by  ∼ (0 1) and  ∼ (0 2), which are independent of each
other. Let  = 150  = 75 and  = 1, for the sake of illustration (the results remain
qualitatively the same with other parameter values). For the forecasting tests, we consider
the  test with  = 40, the  test with [02 ] ≤  ≤ [08 ], the  test with
0 = [02 ] and ̄ = 05, as well as the  and  tests described in the text. We
only consider the fixed window scheme for reason discussed in the text. For the structural
break tests, we consider the full-sample regression model (A.2) and test for variations in both
( ). Specifically, we use the sup test of Andrews (1993) and the max test of Bai
and Perron (1998). The maximum number of breaks for the max tests is five and the
truncation parameter  = 01 is used. The number of replications is 1,000. Table S.1 shows
the rejection frequencies when we vary  from 00 to 100. It illustrates a clear complemen-
tarity between the power of the forecasting and structural change tests. When  is small,
the rejection frequencies of the forecasting tests are small for all tests considered. However,
the rejection frequencies of the structural change tests are large because the denominator
in (A.4) is small, which leads a large value of test statistic. The simulation results show that
this feature continues to hold with more general tests with an unknown break date or with
multiple breaks.

Table S.1: Rejection frequencies

 sw GR SGR DSW TLSW TLUD SupF UD max
0.0 0.123 0.253 0.137 0.611 0.677 0.995 0.996
0.5 0.252 0.424 0.189 0.507 0.595 0.995 0.995
1.0 0.564 0.832 0.340 0.509 0.592 0.959 0.960
2.5 0.999 1.000 0.885 0.996 0.997 0.483 0.496
5.0 1.000 1.000 0.966 1.000 1.000 0.141 0.171
7.5 1.000 1.000 0.983 1.000 1.000 0.095 0.125

10.0 1.000 1.000 0.979 1.000 1.000 0.073 0.091
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b) Proof of Theorem 1

For the proof, we denote () by  for simplicity. The Wald test for a constant mean

versus one break at time  =  = 0 +  + b0c for the series
©

+

ª−
=

is

() =
() − ()()

̂()


where (), ()() and ̂() are defined after (1). First, for a given , the
restricted SSR is:

() =
P−

= 2
+ −

1

 −  −+ 1

³P−
= 

+

´2
=

P−
= 2

+ −
0

 −  −+ 1

³

−12
0

P−
= 

+

´2


and the unrestricted SSR assuming a break at  =  is given by

()() =
P−

= 2
+ −

0

 −  −+ 1

³

−12
0

P−
= 

+

´2
+
P−

=−+1 
2
 −

0

 − 

³

−12
0

P−
=−+1 


+

´2


Hence,

() − ()() = − 0

 −  −+ 1

³

−12
0

P−
= 

+

´2
+

0

 −  −+ 1

³

−12
0

P−
= 

+

´2
+

0

 − 

³

−12
0

P−
=−+1 


+

´2


Let  = lim→∞(−0)0. Then, using  = 0 +0 +  − 1 and  = 0 +  + b0c,
we have

0

 −  −+ 1
=

0

0 − (−0)
→ 1

1− 


0

 −  −+ 1
=

0

b0c− (−0) + 1
→ 1

− 


0

 − 
=

0

0 − b0c− 1 →
1

1− 


Because 
+−1 =  for  = + 1   −  + 1 and using Assumption 1


−12
0

P−
= 

+ = 
−12
0

P−2+1
=−+1 +

= 
−12
0

P−2+1
=0− + − 

−12
0

P−
=0− +

⇒ Ω12 [ (1)− ()] 
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−12
0

P−
= 

+ = 
−12
0

P−2+1
=−+1 +

= 
−12
0

P−2+1
=0− + − 

−12
0

P−
=0− +

⇒ Ω12 [ ()− ()] 


−12
0

P−
=−+1 


+ = 

−12
0

P−2+1
=−2+2 +

= 
−12
0

P−2+1
=0− + − 

−12
0

P−2+1
=0− +

⇒ Ω12 [ (1)− ()] 

Combining the above results yields

() − ()()

⇒ Ω[− [ (1)− ()]
2

1− 
+
[ ()− ()]

2

− 
+
[ (1)− ()]

2

1− 
]

and, under the null hypothesis, we have ̂()
→ Ω. Note that  = lim→∞(−0)0 ≤

lim→∞(1 −0)0 = ̄, so that  ∈ [0 ̄]. We also have for a trimming parameter ,
 ∈ [+  + +  + (1− )]

 −0 − 

0
∈
∙
(−0) + 

0

(−0) + (1− )

0

¸


 −0 − 

0
∈
∙
(−0) + (0 +0 −)

0

(−0) + (1− )(0 +0 −)

0

¸


Taking the limit implies  ∈ [+ (1− ) 1− (1− )], and the result follows.

4



c) Table S.2: Additional critical values of the  test

 = 005

̄ 10% 5% 25% 1%

020 11796 13738 15306 17729

025 12237 14085 15788 18148

030 12582 14384 16253 18356

035 12936 14662 16484 18631

040 13498 15356 17265 19328

045 13752 15561 17276 19364

050 14007 15808 17431 19385

055 14359 15985 17795 20052

060 14403 16166 17984 20247

065 14887 16589 18245 20343

070 15245 16873 18412 20772

075 15261 16890 18695 20837

080 15750 17412 19337 21097

 = 015

̄ 10% 5% 25% 1%

020 9627 11368 13037 15432

025 10210 12048 13866 16249

030 10374 12100 14004 16448

035 10631 12248 14068 16729

040 11205 12946 14788 17317

045 11293 13104 14952 17478

050 11539 13338 15088 17540

055 11929 13534 15237 17760

060 12202 13887 15536 17626

065 12342 14243 15631 17812

070 12773 14434 16005 17998

075 12801 14509 16130 18159

080 13067 15008 17060 19548
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d) Table S.3: Additional simulation results for the size of the  and 
tests for  = 150

a) static, non-robust c) dynamic, non-robust
10% 5% 1% 10% 5% 1%

SW fixed 0.113 0.062 0.013 SW fixed 0.166 0.093 0.031
rolling 0.118 0.064 0.015 rolling 0.146 0.083 0.023

recursive 0.096 0.051 0.01 recursive 0.097 0.055 0.015
UD fixed 0.125 0.064 0.013 UD fixed 0.201 0.114 0.036

rolling 0.126 0.072 0.016 rolling 0.177 0.096 0.027
recursive 0.101 0.057 0.010 recursive 0.117 0.063 0.016

b) static, robust d) dynamic, robust
10% 5% 1% 10% 5% 1%

SW fixed 0.125 0.069 0.018 SW fixed 0.154 0.088 0.025
rolling 0.132 0.072 0.022 rolling 0.146 0.089 0.028

recursive 0.107 0.061 0.013 recursive 0.108 0.066 0.017
UD fixed 0.150 0.081 0.020 UD fixed 0.200 0.111 0.026

rolling 0.159 0.088 0.025 rolling 0.194 0.109 0.035
recursive 0.129 0.071 0.016 recursive 0.149 0.080 0.018
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e) Table S.4: Additional simulation results for the size of the  test for
 = 150

a) static, non-robust
10% 5% 1%

mu_bar m0 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T
0.25 fixed 0.097 0.086 0.093 0.065 0.048 0.050 0.033 0.025 0.020

rolling 0.101 0.075 0.051 0.072 0.049 0.034 0.032 0.018 0.012
recursive 0.089 0.084 0.077 0.063 0.052 0.048 0.031 0.022 0.023

0.5 fixed 0.114 0.121 0.117 0.075 0.071 0.071 0.028 0.026 0.028
rolling 0.118 0.114 0.101 0.081 0.074 0.065 0.031 0.025 0.021

recursive 0.113 0.117 0.115 0.078 0.076 0.071 0.029 0.025 0.026
0.75 fixed 0.174 0.165 0.160 0.116 0.112 0.105 0.055 0.049 0.046

rolling 0.174 0.160 0.151 0.125 0.112 0.104 0.056 0.052 0.049
recursive 0.164 0.152 0.147 0.123 0.119 0.110 0.052 0.049 0.046

b) static, robust
10% 5% 1%

mu_bar m0 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T
0.25 fixed 0.131 0.122 0.122 0.092 0.083 0.082 0.044 0.035 0.027

rolling 0.128 0.090 0.059 0.092 0.056 0.037 0.045 0.031 0.017
recursive 0.124 0.112 0.106 0.089 0.076 0.072 0.044 0.032 0.030

0.5 fixed 0.161 0.160 0.151 0.112 0.107 0.100 0.050 0.041 0.043
rolling 0.170 0.155 0.131 0.109 0.100 0.083 0.055 0.043 0.036

recursive 0.167 0.156 0.151 0.111 0.103 0.095 0.053 0.044 0.038
0.75 fixed 0.278 0.254 0.244 0.218 0.193 0.186 0.108 0.096 0.091

rolling 0.269 0.244 0.222 0.217 0.191 0.177 0.117 0.106 0.100
recursive 0.270 0.247 0.236 0.218 0.191 0.178 0.109 0.101 0.094

c) dynamic, non-robust
10% 5% 1%

mu_bar m0 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T
0.25 fixed 0.109 0.099 0.127 0.078 0.071 0.092 0.036 0.032 0.037

rolling 0.108 0.078 0.065 0.072 0.052 0.041 0.035 0.024 0.015
recursive 0.103 0.097 0.103 0.070 0.062 0.071 0.034 0.026 0.031

0.5 fixed 0.124 0.137 0.137 0.086 0.086 0.089 0.033 0.033 0.034
rolling 0.124 0.115 0.106 0.088 0.078 0.071 0.038 0.033 0.027

recursive 0.121 0.128 0.133 0.090 0.090 0.093 0.033 0.031 0.034
0.75 fixed 0.189 0.183 0.190 0.132 0.131 0.133 0.061 0.058 0.055

rolling 0.193 0.177 0.165 0.136 0.128 0.122 0.073 0.064 0.058
recursive 0.192 0.177 0.176 0.131 0.129 0.129 0.061 0.060 0.058

d) dynamic, robust
10% 5% 1%

mu_bar m0 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T 0.3T 0.2T 0.1T
0.25 fixed 0.135 0.124 0.134 0.095 0.081 0.093 0.044 0.037 0.039

rolling 0.126 0.098 0.072 0.085 0.057 0.042 0.047 0.027 0.016
recursive 0.132 0.123 0.127 0.088 0.075 0.083 0.043 0.035 0.035

0.5 fixed 0.167 0.169 0.161 0.119 0.115 0.117 0.053 0.049 0.047
rolling 0.168 0.154 0.135 0.116 0.103 0.084 0.062 0.051 0.043

recursive 0.176 0.173 0.171 0.119 0.114 0.113 0.055 0.051 0.049
0.75 fixed 0.286 0.261 0.253 0.226 0.203 0.194 0.119 0.108 0.102

rolling 0.280 0.256 0.234 0.225 0.202 0.184 0.129 0.115 0.106
recursive 0.282 0.257 0.251 0.234 0.209 0.203 0.119 0.110 0.106
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f) Theoretical results about the limit of the loss function under the various
DGPs with a single change

We consider the asymptotic behavior of the loss sequence when there is a single coefficient
or variance break. Our results pertain to the loss sequence in large samples. These are
directly used when constructing the  ,  and  tests. The surprise losses are
used when constructing the  and  tests. However, since the surprise losses series
subtract the average of the in-sample losses, the dynamics of both sequences are similar.
Hence, we consider only the loss sequence, namely the expected values of  lim→∞  =
∗(), defined on the unit interval  ∈ [0 1] where  = lim→∞( ). The squared loss
function is applied. For simplicity, and without substantive loss of generality, we consider a
single break model generated by:

+ =  + +  for  = 1   −   (A.5)

where  = 1 for  ≤ [0] and  = 2 for   [0]. Again for simplicity, the predictor
 is a scalar that satisfies (

2
 ) = 2 and (−) = . We also assume that  is a

white noise with mean 0 and variance 2 , where 
2
 = 21 for  ≤ [0] and 2 = 22 for

  [0]. Let the in-sample length be  = [] with  chosen so that  ≤ 0. In the
following, we consider the following two cases: a coefficient change, i.e., 1 = 0 and 2 = ∆

with 21 = 22 = 2; a variance change, i.e., 21 = 2 and 22 = 2 +∆2 with 1 = 2 = .
Suppose we use the static regression model of + on  to produce a  -period ahead forecast
at time . For the out-of-sample procedure, we use the estimate of the coefficient  obtained

from the in-sample information given in  ∈ [1  ], labelled as ̂[1]. We consider the three
window schemes and estimate the coefficient using OLS for the sample period [1− ] with
the fixed scheme, [−+ 1 −  ] with the rolling scheme, and [1 −  ] with the recursive

scheme. Hence, ̂[1] with the same  can be different depending on the window scheme.

When the static regression is used, the expected value of ∗() is such that

 [∗()] = 
h
 lim
→∞

(+ − ̂[1])
2
i
= 2 + 2( − ∗[0])

2 (A.6)

where we denote ∗[0] =  lim→∞ ̂[1]. We also denote the true value of  and 2 by 
and 2. Next, we consider a dynamic regression, i.e., the regression of + on  and .
Including  as a predictor while the true model is (A.5) is inconsequential under the null
hypothesis, because the true value for  is zero. Things are quite different when instabilities
are present. When the dynamic model is used, with ∗[0] =  lim→∞ ̂[1], the expected

value of ∗() is:

 [∗()] = 
h
 lim
→∞

(+ − ̂[1] − ̂[1])
2
i


= (1 + ∗2[0])
∗2
 + 2[(1− ∗[0]) − ∗[0]]

2 (A.7)

The case of a coefficient change. Consider the case of coefficient change, i.e., 1 6= 2
with 21 = 22 = 2. For the static model, we obtain the following results for the limit of the
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coefficient estimates. With the fixed scheme, ∗[0] = 1, for 0 ≤  ≤ 1. With the rolling
scheme,

∗[0] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for 0 ≤  ≤ 0

0−+


1 +
−0


2 for 0   ≤ 0 +  ,

2 for 0 +    ≤ 1
With the recursive scheme,

∗[0] =

⎧⎨⎩ 1 for 0 ≤  ≤ 0

0

1 +

−0


2 for 0   ≤ 1
Note that the coefficient estimate is biased when the rolling and the recursive schemes are
used. When the dynamic model is used, the results are more complex, so we focus on the
case with 1 = 0 and 2 = ∆, without loss of generality With the fixed scheme,⎡⎣̂[1]

̂[1]

⎤⎦ =
⎡⎣ −1P−

=1 2 −1P−
=1 

−1P−
=1  −1P−

=1 2

⎤⎦−1 ⎡⎣−1P−
=1 +

−1P−
=1 +

⎤⎦ 
Using−1P−

=1 2
→ 2 −1P−

=1 
→ 0 −1P−

=1 2
→ 2 

−1P−
=1 +

→ 0

and −1P−
=1 +

→ 0,⎡⎣∗[0]
∗[0]

⎤⎦ =
⎡⎣2 0

0 2

⎤⎦−1 ⎡⎣0
0

⎤⎦ =
⎡⎣0
0

⎤⎦ for 0 ≤  ≤ 1

For the rolling scheme, let  = ( − 0). After some algebra, we obtain:

⎡⎣∗[0]
∗[0]

⎤⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣0
0

⎤⎦ for 0 ≤  ≤ 0⎡⎣ 2(1−)∆2


2
2+2(1−)∆2




2∆

2
2+2(1−)∆2



⎤⎦ for 0   ≤ 0 + ⎡⎣ 0
∆

⎤⎦ for 0 +    ≤ 1

For the recursive scheme, let  = ( − 0). After some algebra, we obtain:

⎡⎣∗[0]
∗[0]

⎤⎦ =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎣0
0

⎤⎦ for 0 ≤  ≤ 0⎡⎣ 2(1−)∆2


2
2+2(1−)∆2




2∆

2
2+2(1−)∆2



⎤⎦ for 0   ≤ 1
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As in (A.6), when the static model is used,  [∗()] = 2+2Γ(), where Γ() = (−∗[0])2.
Therefore, i) with the fixed scheme,

Γ() =

⎧⎨⎩ 0 for 0   ≤ 0

∆2
 for 0   ≤ 1

ii) With the rolling scheme,

Γ() =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for 0 ≤  ≤ 0¡
0−+


1 +

−0


2 − 2
¢2
=

(0−+)2
2

∆2
 for 0   ≤ 0 + 

0 for 0 +    ≤ 1

iii) With the recursive scheme,

Γ() =

⎧⎨⎩ 0 for 0 ≤  ≤ 0¡
0

1 +

−0


2 − 2
¢2
=

20
2
∆2

 for 0   ≤ 1

When the dynamic model is used, we have: i) with the fixed scheme,

 [∗()] =

⎧⎨⎩ 2 for 0 ≤  ≤ 0

2 + 2∆
2
 for 0   ≤ 1

ii) With the rolling scheme,

 [∗()] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 for 0 ≤  ≤ 0

( ∆   ) for 0   ≤ 0 + 

2 for 0 +    ≤ 1

where ( ∆  ) ≡ ( ∆  )[
2


2 + 2(1− )∆2
]
2, with

( ∆   )

= 4
6 + [22(1− ) + (2 − )

2]2
4∆2



+[2(1− ) + 2(2 − )(1− ) + (1− )](1− )4
2∆4



+(1− )
22(1− )26∆

4


and iii) with the recursive scheme,

 [∗()] =

⎧⎨⎩ 2 for 0 ≤  ≤ 0

( ∆  ) for 0   ≤ 1
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where ( ∆   ) ≡ ( ∆  )[
2


2 + 2(1− )∆2
]
2 with

( ∆   )

= 4
6 + [22(1− ) + (2 − )

2]2
4∆2



+[2(1− ) + 2(2 − )(1− ) + (1− )](1− )4
2∆4



+(1−  )
22(1− )26∆

4


The case of a variance change. We now consider the case of variance change, i.e., 21 = 2

and 22 = 2+∆2 with 1 = 2 = . It is relatively easy to derive the limit of the coefficient
estimate and of the loss sequence. Under any window schemes, we can show that: i) when
the static model is used ∗[0] = , for 0 ≤  ≤ 1, and when the dynamic model is used,⎡⎣∗[0]

∗[0]

⎤⎦ =
⎡⎣0


⎤⎦ for 0 ≤  ≤ 1

Therefore, under any window schemes, when the static model is used, (A.6) yields

 [∗()] = 2 + 2( − ∗[0])
2

= 2

=

⎧⎨⎩ 2 for 0 ≤  ≤ 0

2 +∆2 for 0   ≤ 1

and when the dynamic model is used,

 [∗()] = (1 + ∗2[0])
2
 + 2[(1− ∗[0]) − ∗[0]]

2

= 2

=

⎧⎨⎩ 2 for 0 ≤  ≤ 0

2 +∆2 for 0   ≤ 1

Numerical illustration. We compute the numerical values of [∗()] for 0 ≤  ≤ 1.
We set 2 = 1,  = 01 and 0 = 05 and a small break (∆∆2 = 1) and a large break
(∆∆2 = 5) to investigate how the magnitude of the break affects the shape of the loss
sequence. Figures 1 and 2 present [∗()] for the coefficient change case for the static
and dynamic regressions, respectively. The upper (lower) panels report the case of a small
(large) break. When the static model is used (Figure 1), we see a stepwise change in the loss
sequences when the fixed scheme is used. However, the same change in coefficient translates
into a spiked shape with the rolling scheme and a triangular shape with the recursive scheme.
This explains why the fixed scheme is to be preferred and why using the rolling or recursive
scheme induces a loss of power. Note, however, that the break magnitude only changes
the height of the change in the loss sequence, not the shapes of the loss sequences. Hence,
increasing the magnitude of the break size should still increase power under all schemes.
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Things are different when considering the dynamic model, We still have the same general
shapes for the loss sequences. However, the spikes and the triangular shape for the rolling
and the recursive schemes become more narrow and closer to an outlier as the break becomes
larger. This explains why, when using a dynamic model, the use of a rolling or recursive
scheme leads to a non-monotonic power function, i.e., the power decreases as the break
magnitude increases.
Figures S.1 and S.2 present [∗()] for the variance change case when the static and

dynamic regressions are used, respectively. Here, the results are simple. The limit of the
loss sequence always yields a stepwise change, whose magnitude depends on the change
in variance. Hence, all tests should have similar power functions that are monotonically
increasing in the magnitude of the variance break.

12



Figure S.1. Shapes of [∗()] for a variance break in a static regression
a) Small break (∆2 = 1):
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b) Large break (∆2 = 5):
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Figure S.2. Shapes of [∗()] for a variance break in a dynamic regression
a) Small break (∆2 = 1):
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b) Large break (∆2 = 5):
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g) Theoretical results for the iterated forecast method

We assess the properties of the loss sequence when the iterated forecasting method is
used. We consider the case of a coefficient change with no extra predictors , i.e., an
unconditional forecast, to avoid the potential complication of forecasting . The data are
generated by

 =  +  for  = 1  

where

 =

⎧⎨⎩ 0 for  ≤ [0]
∆ for   [0]

and  is a white noise with mean 0 and variance 
2. Suppose we use an AR1 model, in

which the true value of  is zero for simplicity and without loss of generality, so that the
regression is:

+1 =  +  + 

After we obtain the OLS coefficient estimate ̂[1] and ̂[1], the iterative method constructs

a −period ahead forecast as follows
̂+ = ̂[1] + ̂[1]+−1

= ̂[1](1 + ̂[1]) + ̂2[1]+−2
...

= ̂[1]̂[1] + ̂
[1]

where ̂[1] ≡
P

=0 ̂


[1]
. Because  is asymptotically small, the expected value of ∗()

becomes

 [∗()] = 
h
 lim
→∞

(̂+ − ̂[1]̂[1] + ̂
[1])

2
i
 (A.8)

= (1 + ∗2[0])
∗2
 + [(1− ∗[0]) − ∗[0]̂

∗
[0]]

2

where ∗[0] =  lim→∞ ̂[1], 
∗
[0] =  lim→∞ ̂[1] and ̂

∗
[0] =  lim→∞

P

=0 
∗
[0]
. Note

that we now have an expression for  [∗()] influenced by  , which did not appear in the
direct forecast counterparts; see (A.7). Hence, it is interesting to assess the effects of  . The
limit of the coefficient estimate is the same as that for the dynamic regression model with
 = 1 for all  since  is fixed and, hence, small in large samples. With the fixed scheme,⎡⎣̂[1]

̂[1]

⎤⎦ =
⎡⎣−1P−1

=1 2 −1P−1
=1 

−1P−1
=1  −1P−1

=1 1

⎤⎦−1 ⎡⎣−1P−1
=1 +

−1P−1
=1 +

⎤⎦ 
We have −1P−1

=1 2
→ 2, −1P−1

=1 
→ 0, −1P−1

=1 1
→ 1, −1P−1

=1 +1
→ 0

and −1P−1
=1 +1

→ 0 so that⎡⎣∗[0]
∗[0]

⎤⎦ =
⎡⎣2 0

0 2

⎤⎦−1 ⎡⎣0
0

⎤⎦ =
⎡⎣0
0

⎤⎦ for 0 ≤  ≤ 1
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With the rolling scheme, we let  = ( − 0) and obtain

⎡⎣∗[0]
∗[0]

⎤⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣0
0

⎤⎦ for 0 ≤  ≤ 0⎡⎣ (1−)∆2


2+(1−)∆2


2∆

2+(1−)∆2


⎤⎦ for 0   ≤ 0 + ⎡⎣ 0
∆

⎤⎦ for 0 +    ≤ 1

With the recursive scheme, we let  = ( − 0) and obtain

⎡⎣∗[0]
∗[0]

⎤⎦ =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎣0
0

⎤⎦ for 0 ≤  ≤ 0⎡⎣ (1−)∆2


2+(1−)∆2


2∆

2+(1−)∆2


⎤⎦ for 0   ≤ 1

We can then obtain  [∗()] by plugging ∗[0] and 
∗
[0] into (A.8). With the fixed scheme,

 [∗()] =

⎧⎨⎩ 2 for 0 ≤  ≤ 0

2 +∆2
 for 0   ≤ 1

With the rolling scheme,

 [∗()] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 for 0 ≤  ≤ 0

( ∆) for 0   ≤ 0 + 

2 for 0 +    ≤ 1

where ( ∆) ≡ (1 + ∗2[0])
2 + [(1 − ∗[0])∆ − ∗[0]̂

∗
[0]]

2 with ∗[0] = [(1 −
)∆2

][
2+(1−)∆2

] and 
∗
[0] = [

2∆][
2+(1−)∆2

]. With the recursive scheme,

 [∗()] =

⎧⎨⎩ 2 for 0 ≤  ≤ 0

( ∆) for 0   ≤ 1

where ( ∆) ≡ (1 + ∗2[0])
2 + [(1 − ∗[0])∆ − ∗[0]̂

∗
[0]]

2 with ∗[0] = [(1 −
)∆2

][
2 + (1 − )∆2

] and ∗[0] = [2∆][
2 + (1 − )∆2

]. Since the expressions
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above are not quite intuitive, we compute the numerical values of [∗()] for 0 ≤  ≤ 1.
In particular, we set the parameter values 2 = 1,  = 01 and 0 = 05. We consider the
forecasting horizons  = 3 and  = 12. For each value of  , we consider a small break
(∆ = 1) and a large break (∆ = 5) to investigate how the magnitude of the break affects
the shape of the loss sequence. Figures S.3 presents [∗()] for the coefficient change case
when  = 3. The upper panel reports the case of a small break and the lower panel that of a
large break. The pattern of the loss sequence is very similar to what was obtained using the
direct forecasting (dynamic regression) in that the change in the coefficient translates into
a spike when the rolling or the recursive schemes are used. For the direct forecast method,
 does not appear in the results as it is assumed small relative to  . Figure S.4 presents
[∗()] for the coefficient change case when  = 12 and the results are very similar to those
of  = 3, except that the effect of increasing the break magnitude on the shapes of [∗()]
for the rolling and the recursive schemes is somewhat weaker when  is larger. Otherwise,
all qualitative results reported in the text for the “direct forecast method” continue to hold
if one uses the “indirect forecast method”.
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Figure S.3. Shapes of [∗()]: Coefficient break with iterated forecasts ( = 3)
a) Small break (∆ = 1)
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b) Large break (∆ = 5)
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Figure S.4. Shapes of [∗()]: Coefficient break with iterated forecasts ( = 12)
a) Small break (∆ = 1)
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b) Large break (∆ = 5)
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h) A “typical” realization of the loss sequences

Figures S.5 and S.6 present a “typical” realization of the loss sequences for DGPs 3-5
under the three forecasting schemes for the tests 2, 2 and  (the results
using 1, 1 and  are, respectively, almost equivalent and, hence, omitted).
Because the loss sequence is generated for every , we present the one for which the test
statistic is maximized, say ∗, whose value is indicated in parenthesis above each path.

Figure S.5: A realization of loss sequences: static model
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 DSW2

DGP3 fixed (30) rolling (75) recursive (30)

DGP4 fixed (50) rolling (50) recursive (50)

DGP5 fixed (41) rolling (57) recursive (55)
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 TLSW

DGP3 fixed (37) rolling (90) recursive (73)

DGP4 fixed (43) rolling (75) recursive (56)

DGP5 fixed (72) rolling (87) recursive (79)
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Figure S.6: A realization of loss sequences: dynamic model
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 DSW2

DGP3 fixed (30) rolling (75) recursive (75)

DGP4 fixed (51) rolling (46) recursive (48)

DGP5 fixed (37) rolling (69) recursive (36)
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 TLSW

DGP3 fixed (33) rolling (76) recursive (76)

DGP4 fixed (51) rolling (48) recursive (49)

DGP5 fixed (35) rolling (38) recursive (38)
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