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Abstract

Over the past forty years, economic growth in the United States has been unevenly

distributed: income percentiles corresponding to the lower half of the distribution

have stagnated while those at the top have sharply increased. At the same time, the

aggregate labor share has fallen and wealth inequality has risen. We study technical

change as a candidate cause of these trends. To this end, we develop a tractable

theory that links technology to the personal income and wealth distributions, and

not just the wage distribution as is commonly done in the existing literature. We

use this theory to study the distributional effects of automation, defined as technical

change that substitutes labor with capital. We isolate a new theoretical mechanism:

automation may increase inequality via increasing returns to wealth. The flip side of

this mechanism is that, relative to theories in which returns are unaffected, automation

is more likely to lead to stagnant wages and therefore stagnant incomes at the bottom

of the income distribution. We confront our model with the data and argue that

automation can account for part of the observed trends in the distribution of wages,

incomes and wealth as well as macroeconomic aggregates.
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Introduction

Over the past forty years, economic growth in many advanced economies has been unevenly

distributed. In the United States, while the aggregate economy has grown at roughly two

percent per year, income percentiles corresponding to the lower half of the distribution have

stagnated. At the same time, incomes at the 95th percentile have roughly doubled and top

1 percent incomes have roughly tripled.1

One potential driver of these trends that is often cited by pundits and policy makers alike

is technical change, and in particular the automation of tasks performed by labor. A large

literature in macro and labor economics has studied how technology and automation affect

the distribution of labor incomes.2 But not all income is labor income and capital income is

an important income source, particularly at the top of the distribution where incomes have

increased the most. Existing theories therefore paint an incomplete picture of technology’s

implications for overall income inequality.3 This shortcoming is particularly acute when it

comes to automation, that is, technical change that substitutes labor with capital, thereby

increasing the importance of capital in production. To understand how automation shapes

inequality, we therefore need to study how the additional capital income is distributed and

how it affects capital ownership – that is, wealth inequality.

The objective of our paper is to develop a theory that links technology to the personal

income and wealth distributions—and not just that of wages—and to use it to study the

distributional effects of automation. Our framework provides a complete and integrated

characterization of how technology and, more generally, changes in the economy’s produc-

tion and market structure affect the personal distribution of income, wages, and capital

ownership, as well as macroeconomic aggregates. As we explain in more detail below, we

achieve this by adopting a perpetual youth structure with imperfect dynasties as in Blan-

chard (1985). The theory has two key features relative to the neoclassical growth model.

First, the long-run supply of capital is less than perfectly elastic. Second, the theory gener-

ates a non-degenerate wealth distribution. It also features heterogeneity in skills and hence

an interesting joint distribution of capital and labor income.4

Our main argument is that technology affects not only relative wages but also asset

returns and this can have substantial distributional effects. This argument has two parts.

1See for example Census Bureau (2015) and Piketty, Saez and Zucman (2018).
2See for example Katz and Murphy (1992), Krusell et al. (2000) and Autor, Katz and Kearney (2006)
3Of course, many theories of technical change feature capital in production and therefore also feature

capital income. However, these theories then typically assume that this capital is owned by a representa-
tive household, which implies either a degenerate or an indeterminate wealth distribution (with symmetric
implications for the capital income distribution).

4Importantly, ours is a theory of the personal income distribution and not just of the factor income
distribution. The latter type of theory – for example “two class models” with capitalists and workers –
cannot speak to a number of empirical regularities in developed countries, for example that individuals at
the top of the labor income distribution typically also earn substantial capital incomes (and vice versa).
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First, automation directly contributes to income inequality by increasing returns to wealth

and the concentration of capital ownership. Second, relative to theories in which returns are

unaffected, automation is also more likely to lead to stagnant wages and therefore stagnant

incomes at the bottom of the income distribution (even in the long run). The key for

understanding both parts of the argument is that automation increases the demand for

capital relative to labor. Because the long-run supply of capital is upward-sloping, this

demand shift permanently increases returns to wealth. Intuitively, equilibrium requires a

higher return to wealth in order to incentivize individuals to accumulate and supply the

increased amount of capital demanded in production. The first part, that automation directly

increases wealth and income inequality, then follows because some individuals receive a higher

return on their assets and grow their fortunes more rapidly. The second part, that wages

are more likely to stagnate, follows because some of the productivity gains from automation

accrue to owners of capital in the form of a higher return to their wealth.

We deviate from a textbook neoclassical growth model in two simple ways. We let

individuals differ in their skills so that technology affects relative wages. And we adopt

a perpetual youth structure with imperfect dynasties, meaning that new cohorts are born

with their labor income but inherit no assets. The perpetual youth structure gives us two

features that are crucial to understand how automation affects inequality and macroeconomic

aggregates. First, we obtain well-defined steady-state distributions for wealth and income.

Second, unlike models that admit a representative household, our model generates a long-

run supply of capital that is less than perfectly elastic. This second feature determines

the equilibrium impact of automation on returns to wealth (prices) and the amount of

capital used in production (quantities). Our model is deliberately simple and abstracts from

labor income risk, a more realistic life-cycle and bequests, as well as return heterogeneity—

important elements in quantitative theories of the wealth distribution.5 In exchange, we

obtain analytical solutions for steady state aggregates and distributions of wages, incomes

and wealth. Furthermore, the economy aggregates, and solving for its transitional dynamics

is as easy as in the neoclassical growth model.

We obtain two main analytical results that illuminate how automation affects inequality

in our theory. First, the steady-state return to wealth exceeds the discount rate by a premium

p × σ × αnet. Here p is the death rate, σ is the inverse of the intertemporal elasticity

of substitution, and αnet is the net capital share—an object that rises with automation.

Because this premium determines the equilibrium gap between the return to wealth and the

discount rate it also determines the speed at which individuals accumulate wealth during

their lives.6 Second, we show that conditional on wages, individuals’ total incomes follow

5See for example Krusell and Smith (1998); Castañeda, Dı́az-Giménez and Ŕıos-Rull (2003); Straub
(2019); Hubmer, Krusell and Smith (2016).

6The imperfect dynasties assumption ensures that, in steady state, individuals accumulate wealth during
their lives even though the aggregate capital stock is constant.
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an exact Pareto distribution in steady state. The scale of this distribution—a measure of

its location—is determined by wages. The inverse of its tail parameter—a measure of its

thickness—is given by the ratio of the individual accumulation rate and the death rate p.

Our formula for the return premium implies that, in equilibrium, the inverse tail parameter

exactly equals the net capital share αnet.

Intuitively, automation affects income inequality via two channels. First, it affects wages,

thereby shifting the scales of the conditional income distributions. Second, it increases the

net capital share and returns to wealth, thereby resulting in a thicker top tail of these distri-

butions. This second channel, that top tail inequality equals the net capital share, illustrates

in a transparent fashion the new mechanism emphasized above that automation contributes

to income inequality by permanently increasing returns to wealth and the concentration of

capital ownership. It is important to note that this new channel differs from the common

argument that a rise in the capital share leads to higher inequality because capital income

is more unequally distribution than labor income (Meade, 1964; Piketty, 2014). In fact, we

show that such compositional effects are small both relative to the data and to the changes in

capital ownership generated by our model. The new channel also operates for other changes

in the economy’s market structure that reduce the labor share, such as rising markups, but

is absent for changes that leave it unaffected, such as skill-biased technical change affecting

only relative wages.

As just discussed, automation also affects inequality through wages. Our theory features

the standard mechanism from a large existing literature that automation affects the relative

wages of different skill types. Its more interesting predictions instead concern wage levels.

In our theory, automation generates productivity gains but some of these productivity gains

accrue to capital owners in the form of a higher return to their wealth. The higher cost

of capital permanently limits the expansion of investment and output in response to this

technological improvement. As a result, automation can lead to stagnant or falling real wages

even in the long run, especially of workers whose skills are more susceptible to automation.

This is in contrast to models that admit a representative household.7 In those models,

the supply of capital is perfectly elastic, and automation leads to a substantial increase in

capital accumulation and higher average wages in the long run (Acemoglu and Restrepo,

2018b; Caselli and Manning, 2018).

Although our model is intentionally stylized, and some of the assumptions used are

stark, we find the mechanisms underlying our results to be quite general. The two key

ingredients behind our results are an upward-sloping long-run supply of capital—so that

technology persistently affects asset returns—and a nexus between returns to wealth and

7To be clear, our notion of “models that admit a representative household” allows for skill and wage
heterogeneity. In particular, it includes models that make the common assumption that there are different
skill types but these are all members of the same representative household, and models where Gorman
aggregation theorems hold (see Theorem 5.2 in Acemoglu, 2009)
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inequality. An upward-sloping capital supply seems to us a more natural and less extreme

starting point than the perfectly-elastic capital supply of the neoclassical growth model and

its relatives. It is also a feature of overlapping generations (OLG) models, models with a

life-cycle component, and models with labor income risk and precautionary savings (as in

Aiyagari-Bewley-Huggett models). A return-inequality nexus emerges naturally in models

where the stochastic accumulation of wealth over time generates a skewed distribution of

wealth. This includes models with stochastic bequest motives (Benhabib and Bisin, 2007),

models with stochastic returns or discount rates (Krusell and Smith, 1998; Benhabib, Bisin

and Zhu, 2011), or models with explosive growth and some stabilizing force, like the birth

and death process with imperfect dynasties in our model (Wold and Whittle, 1957; Steindl,

1965; Jones, 2015).8 Also the argument of Piketty (2014, 2015) that top wealth inequality

depends on “r− g” highlights precisely this return-inequality nexus. Summarizing, we view

our model as the core of a more elaborate framework that alters some or all of the specific

assumptions we made, but retains the two key features described above.

After presenting the model and our main analytical results, we turn to a numerical

evaluation of our model. Our objective here is not to conduct a quantitative exercise designed

to judge the match of the model to the data. Instead, we view this exercise as a first step in

exploring the range of implications of this class of models for aggregates and distributions

under plausible parameterizations. In our numerical exercise, we study how the automation

of routine jobs contributed to overall income inequality. To do so, we infer changes in

automation by percentile of the wage distribution by computing its exposure to routine

jobs, which the literature singles out as jobs that can be easily automated using computer

software or other equipment (see Autor, Levy and Murnane, 2003; Autor, Katz and Kearney,

2006). The implicit assumption behind this particular application of our theory is that the

automation of routine jobs since 1980 explains the declining share of labor in national income

observed during this period.

In line with the literature on wage polarization, we find that the automation of routine

jobs explains about sixty percent of the observed changes in relative wages. More novel, we

also find that the automation of routine jobs is able to generate a pattern of uneven growth

reminiscent of that observed in the US over the last forty years. Two features combine to

produce this pattern. First, our model generates a decline in real wages at the bottom and

middle of the income distribution, which accounts for part of the income stagnation observed

8See Benhabib and Bisin (2018) for a review of models capable of generating skewed wealth distributions.
Among the models surveyed, only models where the tail of the wealth distribution is induced by the tail of
the distribution of labor earnings (“models with skewed earnings”) lack a return inequality nexus. These
include models with finite lives and no inheritances, and the simple versions of Aiyagari-Bewley-Huggett
models (Stachurski and Toda, 2018). Furthermore, in Aiyagari-Bewley-Huggett models, automation may
also affect incentives to engage in precautionary savings (by decreasing the importance of labor income
relative to capital income, or by increasing the risk of unemployment as in Rachel, 2019), with implications
for the rate at which individuals accumulate wealth.
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at these percentiles. Second, our model generates a rising concentration of capital income

at the top of the distribution, which accounts for the sharp rise of incomes at the top. Of

course, we do not match the observed changes in income because we only focus on the role

of automation—one of many technological and secular changes affecting the US economy.

We also use our numerical exercise to contrast the predictions of our theory to those of

a representative-household model which, for example, predicts that automation results in

substantially larger expansions in investment and average wages.

We conclude the paper by contrasting some of the predictions from our model with the

data and concurrent trends. First, we discuss how to square our theory with the fact that

risk-free interest rates are on a secular decline. Second, we discuss how markups—another

factor reducing the share of labor in national income—fits into our story. Third, we use

our framework to explore whether concurrent changes in capital taxation, demographics,

and the falling price of investment goods—all of which contributed to the rising importance

of capital in the economy—also increased inequality. Fourth, we discuss trends in capital

accumulation and investment. Fifth, we discuss the historical and contemporary evidence

linking the share of capital in national income to inequality and explain why one cannot

make sense of this evidence by appealing to a compositional effect alone. Finally, we discuss

whether our framework can account for the fast rise in inequality observed in the data and

the importance of capital income in this trend.

We view our paper as making contributions to two branches of literature. The first is the

literature on routine jobs and automation. Like most theoretical papers in this literature,

we use a task-based framework to model automation (Zeira, 1998; Acemoglu and Autor,

2011; Acemoglu and Restrepo, 2018b). Most of the papers in this literature focus on wage

inequality (Autor, Levy and Murnane, 2003; Autor, Katz and Kearney, 2006; Acemoglu and

Autor, 2011; Hémous and Olsen, 2018), or study the effect of automation on aggregates and

wages using a representative household framework (Acemoglu and Restrepo, 2018b; Caselli

and Manning, 2018). One exception is Sachs and Kotlikoff (2012), who study the possibility

of immiserizing growth in an OLG model. We contribute to this literature by moving beyond

representative-household models and exploring the implications of automation for inequality

of total incomes across individuals. By doing so, we show that automation might contribute

to rising incomes at the top and stagnant or declining wages at the bottom of the income

distribution.

Second, we contribute to the literature exploring the determinants of income inequality.

Several papers explore this question quantitatively in general equilibrium models, includ-

ing Castañeda, Dı́az-Giménez and Ŕıos-Rull (2003); Kaymak and Poschke (2016); Hubmer,

Krusell and Smith (2016); Straub (2019). Relative to these papers, our contribution is

conceptual and lies in emphasizing how technical change might contribute to inequality by

permanently increasing returns to wealth. In contrast, most of these papers explore the
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effect of technology through wages. The mechanism generating a Pareto tail in our model

is a common feature of random growth processes (see Gabaix, 2009, for a review). In fact,

the birth-death process in our model is a simple and tractable example of a random growth

process, and the idea that it leads to a Pareto distribution has been used before by many

authors. Our main contribution to this literature is in providing an analytical characteri-

zation of income distributions in perpetual youth models, taking into account the effect of

technology in general equilibrium. Methodologically, our model is close in spirit to models of

the Gorman class (see Chatterjee, 1994; Caselli and Ventura, 2000). In these theories as well

as ours, policy functions are linear, and aggregates do not depend on the wealth distribu-

tion (“macro matters for inequality, but inequality does not matter for macro”).9 Unlike in

these models, our imperfect dynasties assumption ensures that we have a determinate wealth

distribution in steady state and that our model does not admit a representative household.

Section 1 lays out our theory of uneven growth. In Section 2 we take this model to the

data with a simple calibration of changes in automation across the wage distribution, and

in Section 3 we confront its predictions with observed trends in key macroeconomic and

distributional variables. Section 4 concludes.

1 A Model of Uneven Growth

The model is cast in continuous time. For expositional clarity, in the main text we outline

the model in stationary form. Appendix B provides the exposition of the full model along

the transition path.

1.1 Economic Environment

Households. The economy is populated by individuals with different skills indexed by z,

and we denote by `z the share of skill z. Individuals are born, age over time, die at Poisson

rate p, and are then replaced by an offspring with the same skills.

Individuals with a given skill z maximize the expected discounted stream of utility over

9The linear policy functions in our theory deliver unrealistic consumption and saving behavior, for example
marginal propensities to consume (MPCs) that are independent of household balance sheets. A large recent
literature instead argues that models incorporating empirically realistic heterogeneity often deliver strikingly
different aggregate implications than do representative agent models, precisely because aggregates depend
on distribution. We view linear policy functions and other abstractions with unrealistic implications as costs
worth paying in return for our theory’s analytical tractability.
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their lifetime subject to a flow budget constraint and the natural debt limit:

max
{cz(s),az(s)}s≥0

ˆ ∞
0

e−(%+p)s cz(s)
1−σ

1− σ
ds (1)

s.t. ȧz(s) = wz + raz(s)− cz(s), and az(s) ≥ −wz/r

where s is their age, az(s) denotes their asset holdings and cz(s) their consumption at age s,

r is the interest rate and wz their wage income. Also, % is the pure rate of time preference,

so that the effective discount rate is given by ρ := %+ p.

Our key assumption is that dynasties are imperfect; that is, not all wealth owned by

individuals who die is passed to their offspring. In the main text, we operationalize this

assumption in the simplest possible way by having newborns start their life with zero assets,

az(0) = 0 and individuals consume all of their wealth upon death. This is a crude way

of capturing the life cycle: people start their lives with little financial assets, accumulate

assets over time, and towards the end of their lives, de-accumulate assets to finance their

consumption. This is also the case in our model, but here individuals are born with zero

financial assets and consume their remaining wealth instantaneously before death. Appendix

B shows that this assumption can be derived from individual optimization in combination

with an alternative assumption that we term “one day left to live”: at rate p individuals

learn that they will die T time units from then on so that they optimally spend down their

remaining wealth; we then consider the limiting case T → 0. The Appendix shows that also

with this “one day left to live” assumption, saving and consumption decisions while alive

solve (1).10

The assumption that dynasties are imperfect allows us to deviate in a tractable way

from representative-household models, and it also ensures that the distribution of wealth is

determinate. In contrast, when p = 0 or dynasties are perfect, the model admits a repre-

sentative household and the wealth distribution is indeterminate (see Caselli and Ventura,

2000). Appendix D discusses other mechanisms that generate imperfect dynasties, including

population growth (wealth dissipates as cohorts become larger), annuities (as in Blanchard,

1985), estate taxation, differences in altruism (as in Benhabib and Bisin, 2007), and re-

tirement periods during which individuals consume some of their wealth (as in Castañeda,

Dı́az-Giménez and Ŕıos-Rull, 2003).

Technology. Our description of the production process emphasizes the role of tasks as the

fundamental unit of production. It also emphasizes that different tasks are completed by

10As we show in Appendix B, the possibility of death has the standard effect of increasing the effective
discount rate as in (1), but end-of-life consumption does not alter saving decisions in any other way. Intu-
itively, under the “one day left to live” assumption, individuals enjoy an infinite end-of-life consumption flow
over an infinitesimal time interval T → 0. Because utility is strictly concave, the value of such end-of-life
consumption converges to zero as T → 0.
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workers of different skills, and that over time, some of the tasks supplied by workers of a

given skill might become automated.

Each skill type z works in a different sector that produces output Yz. The economy

produces a final good Y using these sectoral outputs according to a Cobb-Douglas production

function

Y = A
∏
z

Y γz
z with

∑
z

γz = 1.

Here, γz denotes the importance of the sectoral output produced by skill type z in production.

The productivity shifter A captures the role of factor-neutral technological improvements.

The production of sectoral output Yz involves the completion of a unit continuum of tasks

u with a Cobb-Douglas aggregator:

lnYz =

ˆ 1

0

lnYz(u)du.

These tasks can be produced using capital and skill-z labor as follows:

Yz(u) =

{
ψz`z(u) + kz(u) if u ∈ [0, αz]

ψz`z(u) if u ∈ (αz, 1]

The threshold αz summarizes the possibilities for the automation of tasks performed by

workers of skill z. Tasks u ∈ [0, αz] are technologically automated and can be produced by

capital kz(u) or labor `z(u) at a unit cost of R and wz/ψz, respectively. The remaining tasks

are not technologically automated and must be produced by labor.

Total capital used in production is given by K, and its rental rate is given by R. Capital

depreciates at a rate δ ≥ 0 and can be reallocated across tasks at no cost. We normalize

total employment in the economy to 1, so that `z denotes the available supply of labor of

skill z, with a wage given by wz.

An increase in αz captures the development of automation technologies that expand the

range of tasks in which capital is now able to substitute workers of type z. For example,

workers engaged in white-collar office work devote their time to tasks such as accounting,

keeping and locating records, and customer support. Workers engaged in blue-collar work

devote their time to tasks such as welding, painting, assembling, machining, and supervision.

Over time, technological improvements have allowed the automation of some of these tasks,

while others, like customer support or supervision, remain the domain of workers.

In the rest of the paper, we view A, γz, and αz as describing the state of technology, and

explore the implications of exogenous shifts in αz for aggregates and inequality.
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Equilibrium. Throughout, we assume competitive input and final good markets and define

a steady state equilibrium of the economy as follows.

Definition 1 The steady state equilibrium is given by aggregate output and capital, factor

prices, a set of factor allocations, and consumption and saving policy functions such that:

• capital and labor, {kz(u), `z(u)}z,u, are allocated in a cost minimizing way to produce

output Y given factor prices {wz}z, R = r + δ.

• policy functions az(s), cz(s) maximize individual utility given az(0) = 0, wz and r.

• labor markets clear: ˆ 1

0

`z(u)du = `z for all z.

• the aggregate capital supplied by individuals and used by firms equals K:

K =
∑
z

ˆ αz

0

kz(u)du =
∑
z

`z

ˆ ∞
0

az(s)pe
−psds.

1.2 Macroeconomic Aggregates

To characterize the steady state equilibrium, we first study individuals’ savings and con-

sumption decisions. Optimal asset accumulation by individuals determines the aggregate

supply of capital in the economy. We then consider the firms’ problem of choosing the cost-

minimizing mix of factor inputs, which determines the equilibrium demand for capital. We

are able to derive a closed-form solution for both the supply of and demand for capital, and

for the interest rate that equilibrates the capital market.

Lemma 1 (Households policy functions) Suppose that r > (r − ρ)/σ. The solution to

the individual problem is given by policy functions that are linear in total wealth, az(s)+wz/r:

ȧz(s) =
r − ρ
σ

(
az(s) +

wz
r

)
, cz(s) =

(
r − r − ρ

σ

)(
az(s) +

wz
r

)
(2)

with az(0) = 0.

Proof. Lemma A3 in Appendix B derives individual policy functions outside of the steady

state. Lemma 1 is a special case of that more general formulation.

The lemma shows that individuals consume a constant share of their effective wealth.

As individuals age, their effective wealth grows at a rate equal to (r − ρ)/σ. This rate

is identical for all individuals, irrespective of their skill and age. This makes the model
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particularly tractable. But it also means that the model abstracts from realistic features,

like differences in the propensity to consume and save out of total wealth.

We now turn to the production side of the economy. To simplify the exposition, we make

the following assumption for the rest of the paper:

Assumption 1 (Full adoption of available automation technologies)

wz
ψz

> R for all z.

Assumption 1 ensures that in all tasks for which automation technologies are available,

the cost of producing them with labor, wz/ψz, exceeds the cost of producing them with

capital, R. As a result, all automation technologies will be adopted. Assumption 1 involves

endogenous factor prices, so it needs to be verified in equilibrium. Lemma A1 in Appendix

A shows that a sufficient condition for this assumption is that A is high, ensuring a high

level of wages.

The following lemma characterizes output and factor prices as functions of the stock of

capital and technology.

Lemma 2 (Equilibrium output and factor prices) Suppose Assumption 1 is satisfied.

Then equilibrium output is

Y = AK
∑
z γzαz

∏
z

(ψz`z)
γz(1−αz) , (3)

where A is a constant that depends on parameters {A,αz, γz}. Factor prices are given by

wz =(1− αz)
γz
`z
Y, R =α

Y

K
, (4)

where α is the average degree of automation in the economy: α :=
∑

z αzγz.

Proof. See Appendix A.

Lemma 2 shows that aggregate output is given by a Cobb-Douglas production function.

Factor shares are linked to the range of tasks performed by each factor, and the importance

of these tasks in final output (the γz’s). Automation changes the importance of labor in

production. As tasks that were the domain of skill z get automated, this skill becomes less

important in output (1− αz declines) and capital gains importance (α rises).11

11Our model abstracts from firms and industries, and so the decline of the labor share following improve-
ments in automation manifests at the aggregate level. In practice, larger and growing firms might be more
likely to deploy automation technologies, or firms already operating more automated production processes
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Automation not only changes the distribution of income between capital and workers

with certain skills, but also increases productivity by allowing the substitution of expensive

labor for cheaper capital in more tasks. The contribution of increase in the αz’s to changes

in total factor productivity is given by

d ln TFPα =
∑
z

γz ln

(
wz
ψzR

)
dαz > 0, (5)

where ln
(

wz
ψzR

)
> 0 denotes the percent reduction in costs obtained when a task performed

by skill type z is automated.12 This formula states that the contribution of automation to

TFP is a (weighted) sum of the cost-saving associated with automation at the micro-level.

Lemma 1 showed how the return to wealth determines the rate at which individuals

accumulate wealth and supply capital, and Lemma 2 characterized how technology shapes

the demand for capital. We now characterize the equilibrium of the return to wealth and

aggregates. We denote variables in the equilibrium steady state with an asterisk.

Proposition 1 (Steady state characterization) The steady state is unique. The return

to wealth, r∗, is given by the solution to the equation

1− ρ/r∗

pσ + ρ− r∗
=

α

1− α
1

r∗ + δ
. (6)

In turn, r∗ determines the steady state level of the capital-output ratio (K/Y )∗, output (Y ∗),

and wages (w∗z) as the unique solution to equations (3) and (4).

In steady state, the return to wealth and the net share of capital income, α∗net, satisfy:

r∗ = ρ+ pσα∗net. (7)

Proof. See Appendix A for the full proof.

Equation 6 shows how technology and demographics determine the equilibrium return to

wealth in steady state. We can think of the return to wealth as determined by the supply

of capital and the demand for capital. To elaborate this argument it is convenient to think

in terms of units of capital relative to the total wage bill, so that we are working with the

demand and supply of capital relative to labor.

may expand at the expense of others as automation technologies improve. These dynamics are consistent
with the evidence in Autor et al. (2017); Kehrig and Vincent (2018) on the role played by firms in driving
the decline in the labor share, and with the theoretical model in Martinez (2019). Changes in αz in our
model are meant to capture all these potential channels by which improvements in automation affect the
aggregate production function.

12The contribution of a technology to TFP is given by the resulting increase in output holding factor
utilization constant. That is, d ln TFPα = d lnY |K,`z . Given this definition, the total effect on output of
automation is given by d lnY = d ln TFPα + αd lnK, since the `z are fixed but K may adjust over time.
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To derive the supply of capital, we use the characterization in Lemma 1. Let X denote

the total effective wealth in the economy, where recall that effective wealth is the sum of

financial wealth, az(s), and human wealth, wz/r. Integrating equation (2), we obtain

0 = Ẋ =
r − ρ
σ

X − Effective wealth of individuals dying + Effective wealth of newborns.

Because of market clearing, X = K + w̄/r, where w̄ :=
∑

z wz`z is the wage bill. Also,

the effective wealth of individuals dying and newborns differ by pK, which is the amount of

wealth consumed by individuals upon death and not passed as bequests. The difference of

pK reflects the fact that we have imperfect dynasties: new generations are born with the

same human capital as their elders, but with no financial wealth. These observations imply

0 =
r − ρ
σ

(
K +

w̄

r

)
− pK,

which after rearrangement gives the (relative) supply of capital(
K

w̄

)s
=

1− ρ/r
pσ + ρ− r

. (8)

This curves gives an upward-sloping relationship between the return to wealth and the capital

supplied by individuals. As the return to wealth rises, individuals increase their accumulation

rate and supply more capital relative to their labor income. The upward-sloping line in Figure

1 illustrates this curve.

Figure 1: Equilibrium determination of the return to wealth.

On the other hand, from the production side, equation (4) shows that the demand for
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capital (normalized by labor income) is given by(
K

w̄

)d
=

α

1− α
1

r + δ
. (9)

This curves gives a downward-sloping relationship between the return to wealth and the

capital demanded by firms (normalized by the wage bill). As the return that firms need to

pay capital owners rises, they will use less capital relative to labor. Equation (6) gives the

return r∗ at which the supply and demand for capital meet.

The main implication of the supply and demand diagram in Figure 1 is that r∗ lies

between ρ and ρ + pσ, which implies that the return to wealth has a premium above ρ.

Equation (7) shows that α∗net determines exactly where in this range r∗ lies. According to

this equation, the premium of r∗ above ρ is given by pσα∗net, which implies that in steady

state, individuals accumulate wealth at a rate pα∗net > 0.13 Note that aggregate wealth X is

constant, but individuals accumulate wealth at a positive rate. This distinction arises due to

the imperfect dynasties formulation, which requires individuals to start their lives with zero

assets but eventually hold the capital stock of the economy as they age. Thus, in our model

the individual rate of wealth accumulation will change with technology and fundamentals;

whereas the aggregate rate in steady state will remain at zero.

Figure 1 also illustrates the difference between the equilibrium in our model compared

to a model with a representative household (our model with p = 0 or perfect dynasties).

With a representative household, the supply of capital is perfectly elastic and the return to

wealth is fixed at r = ρ. In such models, only the quantity of capital adjusts in the long

run, ensuring that technology can have at most a short lived impact on asset returns. We

view this as a knife edge prediction of representative-household models that our framework

is able to relax.

Despite the simplicity of our model, we find the logic behind the upward-sloping supply

of capital and the result that the return to wealth has a premium above ρ linked to the net

capital share to be quite general. The driving force behind this result is that the wealth

of new cohorts is tightly linked to their human wealth—the net present discounted value of

their wages— since younger cohorts hold less financial assets than older ones. A high return

to wealth exceeding ρ is required to get entering cohorts to accumulate and supply a high

amount of capital relative to their endowment of labor income. How high above ρ must

13 The exact formula for r∗ in this equation follows from rearranging equation (8) and holds independently
of the production structure of the economy. The reason why the return to wealth exceeds ρ is different from
the known formula r = ρ+ σg which holds along a balanced-growth path where technology grows at a rate
g > 0. In that formula, the growth rate of the economy determines the return to wealth; whereas in ours,
changes in factor shares affect the return to wealth even when the economy does not exhibit any growth. By
using the fact that Ẋ = gX(t), we can generalize equation (7) to a setting with growth: r = ρ+σg+pσαnet.
Here, it is still the case that the return to wealth would exhibit a premium above the return in a representative
household economy, ρ+ σg.
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the return to wealth be? This will depend on the importance of capital relative to human

wealth. In an economy where human wealth is less important than financial wealth (i.e.,

the net capital share is high), new-born individuals must accumulate assets rapidly and this

requires a large premium of the interest rate above ρ. In an economy where human wealth

is more important than financial wealth (i.e., the net capital share is low), new generations

already own most of the wealth in the economy in the form of human wealth, and a slow

individual accumulation rate is enough to get them to hold all financial assets.

The results in Proposition 1 can be simplified when δ = 0. In this case, we obtain simple

formulas for aggregates that we will use below to illustrate some of our findings.

Example 1 When δ = 0, we have that α∗net = α and

r∗ = ρ+ pσα, (K/Y )∗ =
α

ρ+ pσα
. (10)

The following propositions explore the effect of automation on aggregates.

Proposition 2 (The effects of automation on macroeconomic aggregates) The re-

turn to wealth, r∗, the individual accumulation rate (r∗ − ρ)/σ, the net capital share α∗net ,

and the capital-output ratio, (K/Y )∗, are all increasing functions of α. Output increases in

all αz.

Proof. See Appendix A.

The proposition shows that the average extent of automation in the economy, α, in-

creases the return to wealth, the individual accumulation rate, and the net share of cap-

ital. Moreover, these aggregates depend only on the average extent of automation, not

the distribution of αz. This finding can be seen directly from Figure 2. An increase in α

raises the demand for capital relative to labor. This demand shift increases the return to

wealth and the individual accumulation rate, (r∗ − ρ)/σ, the capital-wage ratio, (K/w̄)∗,

and the net share of capital, which can be written in terms of the objects in Figure 1 as

α∗net = r∗× (K/w̄)∗/(r∗× (K/w̄)∗+1). Though it cannot be seen from the figure, the propo-

sition also shows that the capital-output ratio, (K/Y )∗, expands as automation increases

the relative demand for capital.

These findings are intuitive. At a fundamental level, automation makes human wealth

less important than financial wealth. As a result, new cohorts—who start life with their

less valuable human wealth—need to accumulate assets at a higher rate so as to supply

the capital required for production. A higher return to wealth is required to induce the

rapid individual accumulation of assets—even though at the aggregate level, the expansion

of capital could be small and will be limited by the higher user cost of capital, as shown in

Figure 2. The result that returns to wealth and the individual accumulation rate rise with
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Figure 2: Effect of automation—an increase in α—on the equilibrium return to wealth, r∗. The red arrows
illustrate how the equilibrium changes in our model and in a model that admits a representative household.

automation is not unique to this model. As we discussed in the introduction, the same result

applies in a broader class of models and in other models with a life cycle component and

imperfect dynasties.14

For comparison, Figure 2 also depicts the effects of automation on returns and capital

accumulation in the representative-household version of our model, that is, the special case

with a death rate of p = 0. As in the neoclassical growth model, long-run capital supply is

now infinitely elastic at r∗ = ρ. Compared to our model with an upward-sloping long-run

capital supply, automation now results in a much larger expansion of investment and has no

effect on the return to wealth.

Considering again our model, does the higher demand for capital following an increase in

automation primarily result in a higher return to capital or in an expansion of the capital-

to-output ratio? Not surprisingly, given the comparison to the representative-household case

in the preceding paragraph, the answer depends on the capital-supply elasticity, which is in

turn linked to p. This can be illustrated in the simple case with δ = 0, so that the return to

wealth and the capital-output ratio are given by the expressions in (10), both of which are

increasing in average automation α. As these equations show, p determines the extent to

which the higher demand for capital results in a higher return to capital (a high p generates

a more inelastic capital supply) or in an expansion of the capital-to-output ratio (a low p

generates a more elastic capital supply).

14In models with uninsured labor income risk a-la Aiyagari, a related result applies. In these models,
automation reduces the importance of labor income and hence of the precautionary motive for saving. As
a result, the interest rate rises (see Proposition 9 in Auclert and Rognlie, 2018). However, the effect on
individual accumulation rates is ambiguous, as returns increase but precautionary motives weaken.
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Finally, the steady state effect of automation on output is given by

d lnY ∗ =
1

1− α
d ln TFPα +

α

1− α
d ln(K/Y )∗ > 0. (11)

Output increases via two channels: because of automation increasing productivity (the first

term) and the endogenous capital deepening resulting from the increase in capital accumu-

lation by individuals.15 For high values of p, the expansion of output will be more modest

as automation will lead to a small expansion of the capital-output ratio.

The main takeaway of Proposition 2 is that, so long as p > 0 and dynasties are imperfect,

automation will increase asset returns and the individual accumulation rate permanently.

This has significant implications for output and the extent to which capital expands due to

automation. As we show next, the same is true for wages and inequality.

Proposition 3 (The long-run effects of automation on wages)

• An increase in αz reduces the wage w∗z relative to other wages w∗v for v 6= z.

• For a given change in the α′zs, there exists a threshold p̄ > 0 such that, for p > p̄, the

average wage w̄∗ falls; and for p < p̄, w̄∗ increases.

Proof. See Appendix A.

The effect of automation on relative wages is unambiguous and follows from the fact that

wz = (1− αz)γz`z Y (see also Hémous and Olsen, 2018; Acemoglu and Restrepo, 2018b).

A more novel implication of the proposition is the possibility that automation may lead

to stagnant wages for the average worker. Whether this is the case or not depends on p,

which determines how inelastic the supply of capital is in steady state.

Two complementary intuitions illustrate the importance of the capital supply in deter-

mining the behavior of the wage level. First, following a technological improvement that

15This result contrast the findings by Kotlikoff and Sachs (2014) who study the effects of automation in a
two period OLG model. In their setting, only young workers are able to save. By reducing young workers’
wages, automation may reduce the capital-output ratio in the long run, potentially causing a decline in
output.
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raises total factor productivity by d ln TFPα > 0, we have16

d ln TFPα = (1− α)d ln w̄ + αd lnR, R = r + δ

That is, productivity improvements accrue to capital owners in the form of a higher return

to their wealth or to workers in the form of higher average wages. While this expression is

very general and also holds outside of steady state and in a much broader class of models,

consider now the steady state of our economy. When p > p̄, the supply of capital becomes so

inelastic that all productivity gains from automation accrue to capital in the form of a higher

return to wealth. When p < p̄, the supply of capital becomes so elastic that d lnR∗ ≈ 0 and

most of the productivity gains from automation will accrue to labor—the inelastic factor.17

An alternative intuition comes from studying directly the behavior of the average wage.

From Lemma 2, we have that w̄ = (1−α)Y . From (11) we know that automation results in an

output expansion, with the magnitude depending on the productivity increase d ln TFPα and

the expansion in capital supply d ln(K/Y )∗. The effect of automation on the average wage is

therefore determined by the relative strength of this output expansion and the displacement

effect captured by the term 1 − α. With sufficiently inelastic capital supply (i.e., p > p̄),

the displacement effect dominates. With sufficiently elastic capital supply (i.e., p < p̄), the

output expansion dominates.

1.3 Wealth and Income Inequality

We now study the wealth and income distribution. We take advantage of the fact that our

model is block recursive: as Proposition 1 shows, the behavior of aggregates is independent

of the wealth distribution. In what follows, we take the aggregates in steady state as given

and study the resulting wealth distribution.

Proposition 4 (Automation and the wealth and income distribution) Denote indi-

viduals’ effective wealth by xz(s) := az(s) + w∗z/r
∗. The stationary distribution of effective

16This result holds in general whenever aggregate output exhibits constant returns to scale and markets
are competitive. Under these assumptions, we have Y = w̄L + RK where we now allow for movements in
labor supply L to underline the argument’s generality so that w̄ denotes the average wage. Differentiating
both sides of this identity, we get that, following a technological improvement, we have

d lnY = d ln TFPα + αd lnK + (1− α)d lnL = (1− α)d ln w̄ + αd lnR+ αd lnK + (1− α)d lnL, (12)

where α = RK/Y . The expression in the main text follows by canceling the d lnK and d lnL terms. This
derivation shows that the results in the proposition extend beyond our model: any type of technological
change will raise wages provided that d lnR = 0. See Jaffe et al. (2019, ch.18/19) for a textbook treatment.

17This part of the proposition is in line with papers that have studied the impact of automation in settings
with a representative household or an infinitely elastic supply of capital, such as Simon (1965); Acemoglu
and Restrepo (2018b); Caselli and Manning (2018). These settings correspond to the case with p = 0 in our
model.
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wealth for skill type z is

gz(x) =

(
w∗z
r∗

)ζ
ζx−ζ−1,

1

ζ
=

1

p

r∗ − ρ
σ

= α∗net.

The conditional and unconditional wealth distributions satisfy

Pr(wealth ≥ a|z) =

(
a+ w∗z/r

∗

w∗z/r
∗

)−1/α∗
net

, Pr(wealth ≥ a) =
∑
z

`z

(
a+ w∗z/r

∗

w∗z/r
∗

)−1/α∗
net

;

and the conditional and unconditional income distributions satisfy

Pr(income ≥ y|z) =

(
max{y, w∗z}

w∗z

)−1/α∗
net

, Pr(income ≥ y) =
∑
z

`z

(
max{y, w∗z}

w∗z

)−1/α∗
net

.

In the special case with δ = 0, we have 1/ζ = α. In the general case with δ > 0, 1/ζ = α∗net
increases with the average extent of automation in the economy, α.

Proof. See Appendix A.

The proposition shows that the distribution of effective wealth for skill type z is Pareto

with scale w∗z/r
∗ and tail parameter 1/ζ = α∗net. The driving force behind this result is

the nature of the process for the accumulation of effective wealth. People start life with

effective wealth xz(0) = w∗z/r
∗ and scale it over time by growing it at a rate (r∗− ρ)/σ. The

distribution of wealth is stabilized by deaths that arrive at a rate p. Figure 3 describes the

process of accumulation graphically. This special type of random growth process gives rise

to a Pareto distribution (see Wold and Whittle, 1957; Steindl, 1965; Jones, 2015) with tail

parameter

1

ζ
=

individual accumulation rate

death rate
=

(r∗ − ρ)/σ

p
.

As the formula shows, what matters for inequality is the ratio of the rate at which individuals

accumulate wealth and the probability with which they die and consume all of it, p. The

formula in the proposition follows from the observation that the steady state return to wealth

is given by r∗ = ρ + pσα∗net, which implies an individual accumulation rate of (r∗ − ρ)/σ =

pα∗net.

The reason why we get a Pareto tail is that some individuals are lucky to live very long

lives during which they manage to accumulate wealth exponentially. Instead of interpreting

this mechanism literally, we see it as a metaphor for the fact that wealthy people tend to be-

long to dynasties that have accumulated wealth with no interruption for several generations.

For this metaphor to apply, p should be re-interpreted as the probability that dynastic wealth
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Figure 3: Dynamics of effective wealth accumulation as individuals age.

accumulation stops (say because of changes in the altruism of its members or other shocks)

and the dynasty has to start accumulating wealth from scratch. This reinterpretation un-

derscores the importance of bequests and dynastic wealth accumulation as drivers of wealth

inequality at the very top. As recognized by several authors (see Castañeda, Dı́az-Giménez

and Ŕıos-Rull, 2003; Benhabib and Bisin, 2018), models with finite lives and no bequests

have a hard time generating wealth distributions that are more skewed than earnings.

A complementary view is that our model provides a tractable but unrealistic way of

micro-founding a nexus between returns to wealth and inequality present in a broader class

of models where the process of individual wealth accumulation results in skewed wealth

distributions. This broader class of models includes models with stochastic bequest motives

(see Benhabib and Bisin, 2007), models with stochastic returns or discount rates (see Krusell

and Smith, 1998; Benhabib, Bisin and Zhu, 2011), or models with explosive growth and some

stabilizing force, like the birth and death process with imperfect dynasties in our model (see

Wold and Whittle, 1957; Jones, 2015). Despite differences in their details, in all these models

a random growth process underlies the dynamics of wealth accumulation at the top of the

wealth distribution, creating a natural nexus between return rates and inequality (see Gabaix

et al., 2016). In particular, higher returns shift the rate at which people accumulate wealth,

resulting in a larger mass of people populating the upper tail of the wealth distribution over

time—those with uninterrupted accumulation at a higher than average rate. It follows that

in this broader class of models, technological changes that lead to a higher return to wealth

and more rapid individual wealth accumulation will generate a fatter tail in the wealth

distribution, as is the case in our model.

The distribution of effective wealth is important in an on itself because it tells us about
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inequality in consumption and welfare (a corollary of Lemma 1). But our model also allows us

to characterize the conditional and unconditional distributions of wealth and income, which

is what we typically measure in the data. The remaining formulas in Proposition 4 provide

an exact characterization of the wealth and income distributions. The formulas show that

technology affects both distributions via wages—which determine the scale parameters—

, but more novel via the net capital share—which determines the thickness of the tail of

the wealth and income distribution. Intuitively, technologies like automation that increase

the net capital share raise returns to wealth permanently. This allows some individuals

to accumulate assets at a consistently higher return during long periods of time, generating

more wealth inequality. All the models with a nexus between returns to wealth and inequality

mentioned above share the feature that, by increasing returns to wealth, automation will

increase wealth inequality.

We now characterize the composition, sources of income, and income shares held by the

top q income earners—the top q for short, so that the top 0.1 refers to individuals with the

10% highest incomes. We focus on the tail of the income distribution, where we are able to

obtain a clear characterization.

Proposition 5 (Composition and sources of income at top of income distribution)

Let q̄ := Pr(income ≥ maxz wz). For q < q̄, we have:

• the probability that someone with a wage wz is in the top q is

Pr(skill = z|top q) =
`zw

1/α∗
net

z∑
v `vw

1/α∗
net

v

;

• the share of labor income relative to total income held by the top q is

E[labor income|top q]

E[income|top q]
= (1− α∗net)qα

∗
net

∑
z `zw

1+1/α∗
net

z(∑
z `zw

1/α∗
net

z

)1+α∗
net

;

• the share of national income held by the top q is

S(q) = Λq1−α∗
net , (13)

where Λ is a constant that depends on the wage distribution.

Proof. See Appendix A.

The proposition characterizes the skill composition of top income earners and their

sources of income. The first part of the proposition shows that the share of individuals
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of skill z among top earners depends on their wage wz relative to other wages wv. Technol-

ogy might increase the share of high skill workers among top earners if it is skill biased (that

is, if it increases the relative wage of high wage earners). In particular, the automation of

tasks performed by workers in the middle and bottom of the skill distribution will increase

the share of high skill workers among top earners. On the other hand, an increase in au-

tomation (captured here by an increase in the net share of capital α∗net) makes relative wages

less important in determining the composition of top income earners. Intuitively, many more

individuals that managed to accumulate assets for long periods at the higher rate brought

by automation will be among top earners independently of their wage.

The second part of the proposition shows that, as we move up in the income distribution,

individuals derive more of their income from capital ownership. This reflects the fact that

the tail of the income distribution is increasingly made of successful investors for whom labor

income represents a small part of their earnings.

The final part of the proposition shows that the share of national income held by the top

q is increasing in α∗net, and therefore rises with automation. The formula here follows from

the fact that for all levels of income above maxv{w∗v}, all conditional income distributions

have an exact Pareto tail whose thickness depends on the net capital share. The constant Λ

adjusts for the different scales of the Pareto distributions below maxv{w∗v}. When there is

no heterogeneity in wages, Λ = 1 and we obtain the usual formula for the top q percent share

in a Pareto distribution (see Jones, 2015). One implication of this formula is that technology

might affect S(q) through wages (via the Λ term) but this would cause a proportional increase

in S(q) for all q < q̄. Instead, by raising α∗net, technology will increase the share of income

held by higher percentiles disproportionately.

1.4 The Link Between Net Capital Share and Inequality

Propositions 4 and 5 establish a link from the net capital share to income inequality. In

this subsection we distinguish our mechanism from previous arguments emphasizing the

importance of net capital shares for inequality.

Starting with Meade (1964) and more recently with Piketty (2014), several authors have

emphasized that a rise in the net capital share might generate inequality via a compositional

effect. The argument is that because capital is more unequally distributed than labor in-

come, a rise in the relative importance of capital would generate more income inequality.

This argument differs from ours, since we emphasize how technology might increase wealth

inequality and wage inequality directly, with major implications for income inequality.

We can use our model to illustrate the differences between compositional effects and our

mechanism. As above, denote by S(q) the top q percent income share. Also denote by

S̃k(q) and S̃`(q) the share of aggregate capital income and labor income earned by the top
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q percent of the distribution of total income. It follows that18

S(q) = αnet × S̃k(q) + (1− αnet)× S̃`(q).

This simple formula is precisely the one derived by Meade (1964, p.34) and we can use it to

decompose changes over time in S(q) as

dS(q) = (S̃k(q)− S̃`(q))× dαnet︸ ︷︷ ︸
Compositional effect at q

+αnet × dS̃k(q) + (1− αnet)× dS̃`(q)︸ ︷︷ ︸
Changes in within factor distribution at q

. (14)

This decomposition highlights two shortcomings of theories emphasizing compositional

effects. First, the difference between the share of capital income and labor income held

by the top q, S̃k(q) − S̃`(q) above, is not large enough to generate a substantial rise in

income inequality. In the US in 1980, for the top 1%, roughly S(q) = 10%, S̃`(q) = 5% and

S̃k(q) = 20% so that a large increase in the net capital share of ten percentage points would

yield an increase in the top 1% income share of only (S̃k(q)−S̃`(q))×dαnet = 0.15×0.1 = 1.5

percentage points, or a proportional increase of 15%.19 As we discuss below, this number

is small when compared to the effects in our model and in the data. Second, the emphasis

on compositional effects misses the possibility that technology might have sizable effects

on wage inequality—the term dS̃`(q)—and contribute to a more concentrated ownership of

capital—the term dS̃k(q).

Our mechanism amends these shortcomings. First, in our model technology will have

sizable effects on inequality, especially at the very top of the income distribution. Equation

(13) implies a log-linear relation between S(q) and α∗net of the form

lnS(q) = ln Λ− ln(1/q) + ln(1/q)× α∗net, (15)

where ln(1/q) > 0 (q ∈ (0, 1] is in percent terms). Our model predicts that a 1 percentage

point increase in the net capital share should raise the share of income earned by the top 0.1

percent by about 6.9%(= ln(1000); the share of income earned by the top 1 percent by about

4.6%(= ln(100); and the share of income earned by the top 10 percent by about 2.3%(=

18Denote by y(q) the income of individuals at the top q percentile (the top q quantile), by y`(q) their
labor income and by yk(q) their capital income. Further denote the corresponding aggregates by Y :=´ 1
0
y(q)dq, Yk =

´ 1
0
yk(q)dq and Y` =

´ 1
0
y`(q)dq. We have y(q) = yk(q) + y`(q) and Y = Yk + Y` and hence

y(q)/Y = αnet× yk(q)/Yk + (1−αnet)× y`(q)/Y` with αnet := Yk/Y . Hence the top q percent income share
S(q) =

´ q
0
y(v)dv/Y satisfies the equation above.

19These are only rough magnitudes to illustrate the quantitative power of this composition effect. We
conduct a precise calculations of this kind in Section 3. Meade (1964, Table 2.2) performs similar calculations
but obtains much larger effects because he assumes that, for the top 1%, S̃`(q) = 6% and S̃(q) = 47%, which
he defends as appropriate numbers for the United Kingdom in 1959. With these numbers, the compositional
effect is given by (S̃k(p)− S̃`(p))× dαnet = 0.41× 0.1 = 4.1 percentage points.
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ln(10)). The effects for the top 1 percent share are three times larger than compositional

effects.

Second, our mechanism fully accounts for the effect of technology on the distribution of

capital income and labor income. It is precisely because our model predicts that automation

will generate a thicker tail of wealth that we get a sizable effect of changes in the capital

share on income inequality.

The following proposition shows that, in line with this discussion, at the top of the

income distribution, changes in wealth inequality—the changes in the S̃k(p) term—dominate

compositional effects.

Proposition 6 (Decomposing changes in inequality) Consider a change in the net cap-

ital share dα∗net > 0 holding relative wages constant. As q → 0, the share of the total change

in S(q) explained by the composition effect converges to zero.

Proof. See Appendix A

The proposition implies that, following an increase in automation, income inequality rises

due to a more concentrated ownership of capital at the top (and the usual changes in relative

wages); not so much due to a compositional effect.

This result can be illustrated when wz = w̄. Because there is no wage inequality, we have

S(q) =q1−α∗
net , S̃`(q) =q, S̃k(q) =

1

α∗net

(
q1−α∗

net − (1− α∗net)q
)
.

The compositional effect is then given by

Compositional effect at q =
1

α∗net

(
q1−α∗

net − q
)
dα∗net > 0,

whereas the overall change in the share of income held by the top q percent is

Total change at q = ln(1/q)× q1−α∗
netdα∗net > 0.

The share of the total change in S(q) explained by the compositional effect is then given by

1− qα∗
net

α∗net ln(1/q)
,

which converges to zero as q → 0.
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1.5 The Transition of Aggregates and Distributions

Appendix B presents the full description of the model outside of steady state. The following

proposition characterizes the transitional dynamics for the macroeconomic aggregates and

the distribution of effective wealth. As for the steady state equilibrium, the transitional

dynamics are block recursive: we can first characterize the behavior of macroeconomic ag-

gregates and then use them to trace the evolution of the wealth distribution.

Proposition 7 (Transitional dynamics) The behavior of the macroeconomic aggregates,

C and K is given by the unique stable solution to the system of differential equations

Ċ =
1

σ
(r − ρ)(C − pK)− µpK + pK̇

K̇ =Y − δK − C,
µ̇

µ
=µ− r +

1

σ
(r − ρ)

where µ denotes the rate at which individuals consume their effective wealth (to simplify

notation, we removed the time dependence of aggregates). Also, recall that Y is given by

equation (3) and r is given by equation (4).

Along the transition path, individuals accumulate effective wealth at a rate r(t) − µ(t),

which implies that the distribution of effective wealth for individuals with skill z, gz(x, t)

evolves according to the Kolgomorov Forward Equation

∂gz(x, t)

∂t
= − ∂

∂x
[(r(t)− µ(t))xgz(x, t)]− pgz(x, t) + pδ̃(x− hz(t)) (16)

where δ̃(·) is the Dirac delta function, and hz(t) =
´∞
t
e−
´ s
t r(τ)dτwz(s)ds is a time-varying

reinjection point.

Proof. See Appendix B.

The proposition shows that the transitional dynamics for aggregates are no more compli-

cated than those in the usual representative-household model. The main difference is that we

need to keep track of the extra variable µ(t), which controls the common marginal propen-

sity to consume out of effective wealth. Also, the Euler equation has some extra terms to

account for the difference in consumption between new cohorts and the cohorts they replace

(the term µ(t)pK(t)), as well as the consumption of the dying (the terms pK(t) and pK̇(t)).

The fact that technology contributes to wealth inequality by permanently raising the

return to wealth is the main result of our model. We can use the result in Proposition 7 to

explain how this mechanism plays out over time and contrast our findings to an economy

that admits a representative household.
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Suppose the initial distribution of effective wealth conditional on skills is given by

Pr(xz0 > x) =

(
x

w∗z0/r
∗
0

)−ζ0
, (17)

where 1/ζ0 = α∗net0 as in Proposition 4. Here, xz0 is a random variable denoting the effective

wealth of individuals with skill z.

First consider our model with an upward-sloping long-run supply of capital. Following an

increase in automation at time t = t0, individuals with skills z and effective wealth xz0 see a

revaluation of their human wealth of ∆z (this could be negative for individuals experiencing

a real decline in wages over time). This implies that the distribution of xz, denoted by

gz(x, t), starts from

gz(x, t0) =

(
w∗z0
r∗0

)ζ0
ζ0(x−∆z)

−ζ0−1 for x ≥ w∗z0
r∗0

+ ∆z.

and from there on evolves according to the Kolgomorov Forward Equation (16). The first

term in equation (16) captures the rate at which individuals accumulate assets. This rate

equals r(t)−µ(t) and converges to (r∗− ρ)/σ, where r∗ > r∗0 since automation increases the

return to wealth permanently. The remaining terms capture the birth and death process.

People die with probability p and are replaced by their offspring, who start life with an

effective wealth equal to x0
z(t). The birth and death process ensures that the distribution

gz(x, t) converges to a new Pareto distribution which is independent of the starting one.

This discussion implies that technology affects the effective wealth distribution and its

evolution in two ways. First, technology will influence the effective wealth distribution via

wages, which determine the revaluation effects in the short run, and the reinjection points

in the long run. Second, technologies that make capital more important in production will

influence the effective wealth distribution by permanently increasing the return to wealth,

which causes individuals to accumulate wealth more rapidly during their lives, and generates

a Pareto distribution with a thicker tail.20

These dynamics can be contrasted to what would happen in a model with individuals

who differ in their skills but that admits a representative household, as in Caselli and Ven-

tura (2000). The dynamics of aggregates and the distribution of effective wealth in this class

of models corresponds to the special case with p = 0 in Proposition 7 (we will use a super-

script h to distinguish the value of aggregates in this case). The wealth distribution is now

20Other forms of skill-biased technical change that do not involve changes in the share of capital will have
a different effect on the income distribution. Such changes will generate a revaluation effect in the short
run and affect the steady-state distribution of income only through the reinjection points. As a result, these
other forms of skill-biased technical change will affect the scale parameters of the income distribution, but
wont generate a thicker tail by raising the returns to wealth.
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indeterminate, in the sense that any distribution is consistent with equilibrium in steady

state. Despite the indeterminacy, starting from a given initial distribution of wealth and

wages, the transitional dynamics of the wealth distribution are uniquely defined. To make

things comparable, assume that the initial distribution of effective wealth is given by (17),

and coincides with that in our model. Following an increase in automation at time t = t0,

individuals with skills z and effective wealth xz0 see a revaluation of their human wealth of

∆h
z (this will differ from the revaluation in our model since wages behave differently in an

economy that admits a representative household—see Proposition 3). People then accumu-

late assets starting from xz0 +∆z at a common rate rh(t)−µh(t), which is temporarily above

zero but converges to zero over time (recall that in the representative-household model, rh(t)

and µh(t) converge to ρ, reflecting the fact that the supply of capital is fully elastic). This

temporary period of accumulation scales everyones’ effective wealth by the same amount,

M , but does not contribute to thicker tails in effective wealth. The resulting distribution of

effective wealth is given by

Pr(xz > x) =

(
x/M −∆h

z

w∗z0/r
∗
0

)−ζ0
, for x ≥M · (∆h

z + w∗z0/r
∗
0).

This is a shifted Pareto distribution, with the shifts explained by the changes in wages.

Unlike in our model, the new steady state distribution has the same tail parameter as the

initial distribution.

To summarize, in an economy that admits a representative household, technology only

affects inequality through wages, which determine the revaluation effects ∆h
z . The temporary

increase in return rates scales everyone’s wealth, but does not contribute to inequality.

2 Model Meets Data

2.1 Calibration

As discussed in the introduction, we feed changes in αz to the model and explore the con-

sequences of this particular type of technological change for aggregates and inequality in

wages and wealth. We will focus on changes in automation between 1980 and 2014, a period

with a marked shift in technology towards automation (Autor and Salomons, 2018; Ace-

moglu and Restrepo, 2019), especially of tasks performed by workers in routine jobs, both

in manufacturing and in services (Autor, Levy and Murnane, 2003; Acemoglu and Autor,

2011).21

21Our focus on this period does not imply that there was no automation before then. As discussed in
Acemoglu and Restrepo (2019), before 1980 jobs were automated in some specific industries and tasks, but
automation was counteracted by other technological improvements that raised labor shares in other industries
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To bring the model to the data, we interpret z as indexing the group of workers in a given

percentile of the wage distribution, so that we have 100 skill groups. The main ingredient

in our calibration is a measure of how automated the tasks being performed by workers in

each percentile of the wage distribution have been over time, αz(t). In what follows, we will

use a time argument to indicate which variables change over time. We assume that changes

in αz(t) are driven by the automation of routine jobs, and that all routine jobs have been

automated at the same rate over time. To operationalize this assumption, we posit the rule

of motion for αz(t) (see Appendix C for a derivation of this equation):

1

1− αz(t)
− 1

1− α0

= ωzR

(
1

1− α(t)
− 1

1− α0

)
. (18)

Here, α0 denotes the extent to which non-routine tasks are automated (assumed invariant

over time), and ωzR denotes the share of labor income derived by workers in percentile z from

routine jobs relative to the labor income derived by all workers from routine jobs—a measure

of the comparative advantage held by these workers in routine jobs. Equation 18 implies

that groups of workers who specialize in routine jobs have a bigger share of the tasks they

performed being automated over time. The implicit assumption here is that the observed

decline in the labor share since 1980 is driven by the automation of routine jobs.

Figure 4: Calibrated αz by wage percentile in 1980 and the new steady state (left panel), and the implied
behavior of the aggregate labor share compared to the data (right panel).

Using equation (18), we measure αz(t) for all percentiles of the wage distribution by

computing their ωzR using the 2000 Census—a point in the middle of the period we study.22

or introduced new labor-intensive roles for labor in production. As a result, the labor share—the key object
determining how technology affects wealth inequality—remained stable during this period. Technological
change might have contributed to rising wage inequality before 1980, but our mechanism did not contribute
to rising wealth inequality back then.

22In our model, the composition of a skill group is assumed invariant. However, in the data, the composition
of workers in a given wage percentile might change over time, as the relative ranking of groups of workers with
different characteristics changes. In our baseline calibration, we used the 2000 values for ωzR as describing
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We normalize αz(1980) to be equal across all z (this pins down α0 = α(1980)), and pick

the level of α(1980) and α(2014) to match the (gross) capital share in these years (0.345

and 0.42, respectively, in the BLS series for the non-financial corporate sector). Finally,

we assume a linear increase in αz(t) from its value in 1980 to its final value in 2014. This

procedure results in the change between 1980 and 2014 in αz(t) plotted in the left panel of

Figure 4. The average change in αz(t) (weighted by γz) is of 8.4 percentage points, which

roughly matches the observed decline in the labor share during our period of analysis (8.3

p.p decline).23 The right panel of Figure 4 plots the implied behavior of the labor share

given the change in αz(t) over time ( 1−α(t) =
∑
γz(1−αz(t)) in our model) and the BLS

series for the labor share in the corporate non-financial sector.

Turning to the remaining parameters, we calibrate γz to match the wage distribution in

1980 (obtained from the 1980 Census). Note that the γz’s might have changed over time as a

result of other forms of skill biased technical change not modeled here, but we do not explore

this possibility. We pick ψz to ensure that human labor is 30% more costly than using capital

in the production of automated tasks. This number is in line with studies exploring the cost-

saving gains from using industrial robots in manufacturing (see Acemoglu and Restrepo,

2019). Because it is not clear that one can extrapolate from these studies, in Appendix C

we present results assuming cost saving gains of 15% and 45%. For our baseline value of

ψz, the automation of routine jobs explains 15% of the gains in productivity experienced by

the US economy during the 1980-2014 period. We view this estimate as plausible given that

automation is one of many technological improvements determining productivity during this

period.

The remaining parameters are standard and chosen to match aggregates in 1980. We

take a capital output ratio of K/Y = 3, which implies a rental rate of capital R = 11.5%.

We take a depreciation rate of 5% so that the net capital share equals 23% and the return

to wealth equals r = 6.5%. We pick ρ = p = 3.85% to ensure a 6.5% return to wealth and

target a long-run elasticity of capital supply d lnK/dr of about 50 (we get an elasticity of

51.28).24 We view this choice of p as conservative, in the sense that much of the evidence

suggests a more inelastic supply of capital (see Appendix C). The factor-neutral technology

term, A, is chosen to match output per hour in 1980. We do not feed changes in A to

the model, which would capture other sources of technological improvement different from

the level of specialization of different groups in routine jobs. We also experimented with measuring ωzR
using the 1980 Census and obtained similar results. The reason is that ωzR is highly correlated over time
(the correlation between the 1980 and 2000 measures is of 0.9714).

23The average change in αz(t) in the model is slightly larger than the one observed in the data. The
reason is that over time, we also have changes in γz that are not fed to the model. In particular, the
observed changes in γz imply that other technological changes resulted in a reallocation of value added from
highly automated skills to less automated ones at the top of the wage distribution.

24As Appendix D shows, in a more general model, the role of p is replaced by p + n + δH . here n is the
growth rate of population and δH the rate at which human capital depreciates as individuals age past their
prime. Many plausible combinations of p, n, and δH yield a combined value of p+ n+ δH = 3.85%.
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Table 1: List of calibrated parameter values
Description Value Target / Source

Preferences
σ Inverse IES 3 Standard calibration
% Pure rate of time preference (p.a.) 0% Target r = 6.5%
p Death rate (p.a.) 3.85% Target capital-supply elasticity d lnK/dr ≈ 50
ρ Effective discount rate (p.a.) 3.85% p+ %

Technology
A Hicks-neutral productivity term 0.14 Y/L in 1980
δ Depreciation rate (p.a.) 5% Standard calibration
Z Number of skill types 100 Each type = percentile of wage distribution
`z Labor supply of each type 1% Each type = percentile of wage distribution

α(1980) Capital share in 1980 0.345 BLS labor share in 1980
α(2014) Capital share in 2014 0.428 BLS labor share in 2014
α0 Capital share in non-routine tasks 0.345 Constant αz(1980) across z
ωzR Routine jobs share in each pctile in 2000 vector Acemoglu-Autor + 2000 Census/ACS
γz Skill demand shifters in 1980 vector Wage levels in 1980 Census/ACS
ψz Productivity of labor relative to capital vector Automation reduces costs by 30% (= wz

ψzR
)

Notes: The table provides the parameters used in our baseline calibration of the model. For details, see the
main text and Appendix C.

automation. Table 1 summarizes the parameters used in our exercise.

2.2 Numerical findings

We now present the transitional dynamics and steady state implications of a change in αz

over time. Because we are not feeding any other shocks to the model, the results here must

be interpreted as counter-factual changes relative to the trend that the economy would have

experienced in a world with not automation.

Figure 5 presents the transitional dynamics for the labor share (summarizing the tech-

nological change fed to the model), output per worker, the net investment rate, the capital-

output ratio, the return to wealth, and the average wage per hour. For comparison, we also

plotted the transitional dynamics for the representative household case following the same

shift in technology.

In our model, automation leads to a modest expansion of output and the capital-output

ratio of 11% and 15%, respectively. Despite the increase in the average output per hour of

labor, mean wages go down by 4.5% in 2020 and by 2% in the long run. The productivity

gains from automation accrue to capital owners in the form of a higher return to their wealth,

which goes up by 0.9 percentage points in the long run and 1.3 p.p. by 2020.25

25Equation (12) shows why a small increase in the return to wealth of roughly 1 percentage point can have
a large effect on wages. Using this equation with α = 0.4—close to the midpoint of our calibration—shows
that a small increase in R∗ of 1 percentage point or 10% in percent terms is enough to ensure that the 3%
increase in TFP driven by automation results in a decline in real wages, w̄, of roughly 2%.
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Figure 5: Transitional dynamics for the main aggregates following an improvement in automation technolo-
gies in 1980. The solid line presents the transitional dynamics in the baseline calibration of our model. The
dashed line presents the transitional dynamics when p = 0 and the model admits a representative household.

This is in contrast to what would happen in the representative-household model, where

automation leads to a more pronounced economic expansion propelled by a boom in invest-

ment, a temporary increase in the return to wealth, and higher average wages in the long

run. The differences between these models underscore the importance of the capital-supply

elasticity. Even though the supply of capital in our model is still fairly elastic, the response

of macroeconomic aggregates to automation differs significantly from what one would get in

a representative-household model.

The average decline in wages of 0.5 dollars masks substantial heterogeneity. Figure 6 plots

the change in wages by percentile from 1980 onwards. In line with the literature emphasizing

how the automation of routine jobs affected workers in the middle of the wage distribution,

our model generates a polarization of wages over time. The real wage of workers below the

80th percentile of the wage distribution declines over time, but the most pronounced effects

are for workers at the 25th percentile of the wage distribution, whose real wages fall by
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Figure 6: Predicted change in wages by wage percentile (left axis) and observed change in wages by wage
percentile (right axis). Observed wage changes computed using the 1980 Census and 2012-2016 ACS. See
Appendix C for details.

10%. In contrast, the real wage of workers at the 95th percentile of the wage distribution

rises by 5%. For comparison, the figure also plots on a different vertical axis the observed

change in wages by percentile between 1980 and 2014 (using data from the US Census and

the ACS). The model explains 60% of the observed variation in relative wages. Although

other technologies not considered here also affected the level of wages and their relative

change during this period, our model suggests that automation might have been a significant

contributor to wage inequality and to anemic wage growth at the low end of the wage

distribution.

We now turn to the implications of our model for income inequality. Figure 7 presents the

change in total income at each quantile of the income distribution. The right panel zooms to

the top of the income distribution. The figure reveals substantial uneven growth. Below the

50th quantile, individuals experienced declines in total income of 5%. Between the 50th and

80th percentile, individuals experienced a modest income growth of 5%. This is in contrast

to the top income quantile, which experienced an increase in income ranging from 30% (for

the top 1%) to 50% (for the top 0.1%). Although other technologies not modeled here also

shifted incomes, the figure shows that automation is capable of generating substantial rises

of income at the very top of the distribution and declines or stagnant incomes at the bottom.

Both wage and wealth inequality combine to produce the pattern observed in Figure

7. The blue-shaded area plots the contribution of changes in labor income. The fall in real

wages for individuals at the bottom of the wage distribution contributed to declining incomes

for individuals at the middle and bottom of the income distribution. The red-shaded area

plots the contribution of changes in capital income. This is uniformly positive, as everyone

benefits from a higher return to wealth. But the benefits from a higher return to wealth
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Figure 7: Predicted change in income by income percentile decomposed into the contribution of capital
and labor income. The right panel zooms to the top tail of the income distribution. The line with circle
dots plots the change in a model that admits a representative household.

are highly dispersed. People at the bottom of the distribution have few assets, and so do

not benefit as much from an increase in the return to wealth. In contrast, a higher return

to wealth allows some individuals at the top of the income distribution to accumulate large

swaths of wealth and earn a high capital income.

Interestingly, although automation is skill biased and raises wages at the top of the wage

distribution relative to the middle and bottom (see Figure 6), changes in wage income have a

negative contribution at the top of the income distribution. Intuitively, there are two effects.

On the one hand, Proposition 5 shows that the top of the income distribution is populated

by more skilled workers. The skill-biased nature of automation tends to raise the wages

of individuals at the top of the distribution more than at other percentiles. However, the

permanent increase in returns also means that the top of the income distribution becomes

increasingly populated by low wage individuals with very high capital incomes. This shift

in the composition of top earners dominates at the top of the income distribution and

generates the observed negative contribution of labor income. This negative effect would

not be present for other forms of skill biased technical change that do not results in higher

returns to wealth.26

26Formally, the expected wage of individuals at the top of the income distribution is∑
z `zw

1+1/α∗
net

z /
∑
z `zw

1/α∗
net

z . Skill-biased changes in wages raise this expected wage, but increases in

32



To illustrate the relevance of having a model where the return to wealth increases per-

manently, we study the behavior of income inequality in a model with individuals with

different skills that admits a representative household (see Caselli and Ventura, 2000). In

this model, the return to wealth does not depend on technology, and technology only af-

fects income inequality through wages. The green dashed line in Figure 7 shows the change

in income by quantile in this model. Both the representative-household model and ours

start from the same conditional distributions of wages and wealth and are subject to the

same changes in technology. However, the representative-household model does not generate

uneven growth: there is a fairly uniform increase in income between 10% and 18% for all

income quantiles. This reflects two differences. First, there is no wage stagnation in the

representative-household model, which implies a less pronounced decline in labor income at

the middle and bottom of the distribution. Second, the temporary increase in returns to

wealth benefits all individuals equally, as they are all able to scale their effective wealth by

the same amount. This is in contrast to our model with imperfect dynasties, where indi-

viduals who manage to accumulate wealth for longer periods will benefit disproportionally

from the higher return to wealth.

Figure 8: Predicted behavior of income at different percentiles of the income distribution over time. For
each percentile, we plot its behavior relative to its steady-state value in 1980.

Figure 8 shows the evolution of several income quantiles over time. In line with our

findings above, we see a fanning out of the income distribution, with incomes below the 50th

percentile declining over time and incomes above the 50th percentile rising. The fanning

α∗
net reduce it. See the related discussion of Proposition 5. Note that as we keep moving up the tail, the

contribution of labor income converges to zero since individuals’ own mostly capital income.
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out of top incomes continues over time and takes place slowly, but even by 2020 the model

predicts substantial uneven growth.

3 Confronting the Model with Past and Current Trends

Our theory has predictions for the evolution of a number of key macroeconomic aggregates as

well as the dynamics of the distributions of income and wealth. One purpose of this section

is to confront these predictions with the data and to discuss to what extent our model is

consistent with observed trends in key variables, both quantitatively and qualitatively. We

also use our model as a laboratory to examine a number of other trends that we have not

discussed so far but that have been emphasized elsewhere, such as rising markups, falling

capital taxes or a rising efficiency of producing investment goods. We do this to showcase

the theory’s breadth and its applicability as a framework for thinking through many of the

most important trends in modern, advanced economies.

Secular trends in returns to wealth. Ceteris paribus, our theory predicts that automa-

tion increases returns to wealth. This can be most transparently seen in the expression for

the steady-state rate of return in Example 1 with δ = 0, namely r∗ = ρ + pσα which is

increasing in average automation α. To what extent observed trends in measured returns to

wealth are consistent with this prediction?

Before proceeding to discuss these empirical trends, it is important to clarify one key

point. In our model, what matters for the evolution of wealth inequality is not the level of

the return to wealth r but rather its deviation from the rate of time preference r−ρ. This gap

determines the rate of wealth accumulation (r − ρ)/σ and top tail inequality (see Lemma

1 and Proposition 4). Therefore, for understanding trends in capital income and wealth

inequality, secular trends in returns to wealth are, in a sense, not directly relevant and it

would be preferable to contrast the model’s prediction for the rate of wealth accumulation

with its empirical counterpart. We return to this point below.

With this caveat in mind, Figure 9 plots various measures of returns to capital. To begin,

the solid line with diamonds in panel A plots the real return to holding 5-year US treasury

bills, that is a risk-free interest rate. As is well-known the last thirty years have seen a strong

secular decline in this series: between 1980 and 2014, the treasury rate declined from around

eight percentage points per year to zero. Along the lines of the discussion in the preceding

paragraph, one possible interpretation of this trend is that the secular decline in safe real

interest rates is due to other secular changes captured in a reduced form by a decline in the

rate of time preference, ρ, for example demographics or the “saving glut.” As equation (10)

shows, forces that are captured by a decline in ρ will result in a one-to-one decline in the

return to wealth r∗. These changes would have no effects on individuals’ accumulation rate
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Figure 9: Secular trends in various measures of returns to wealth. The top panel presents after-tax series
from Gomme, Ravikumar and Rupert (2011) and the return to a 5-year treasury bill. The bottom panel
presents pre-tax series of returns to private equity, computed as in Moskowitz and Vissing-Jørgensen (2002).
All series for returns exclude capital gains.

nor wealth inequality, both of which depend on α but not ρ. Automation, i.e. a concurrent

increase in α would keep r∗ = ρ + pσα∗net from declining by the same amount as ρ, thereby

generating an increase in r∗ − ρ and wealth inequality.

Risk-free interest rates or rates of return on other safe assets like AAA corporate bonds

(rsafe from now on) may provide little information on the importance of capital income and

the overall return to wealth obtained by US households, especially those at the top of the

wealth distribution. Treasuries and AAA bonds represent a small fraction of the assets in

the economy and using risk-free interest rates to infer movements in the average return of all

productive assets in the US requires strong assumptions. Also, using risk-free interest rates

to impute net capital income as rsafe ×K leads to a large and volatile residual category of

“factorless income” whose behavior is hard to justify (see Karabarbounis and Neiman, 2018)

Panel A of Figure 9 therefore plots two alternative return series. Both of these aim to

measure the return to the overall stock of capital in the US economy using national accounts
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data. The approach defines capital income Yk as net output minus wage payments and taxes

and computes the return to capital as r := Yk/K where K is the stock of capital measured at

replacement cost. That is, the approach computes r so that rK matches aggregate capital

income from the national accounts. This strategy recognizes that all profits eventually

accrue to renters of capital and equity owners, and as such, must be taken into account

when computing capital income and the return to capital. This is the approach followed by

Poterba (1998); Mulligan (2002); Gomme, Ravikumar and Rupert (2011); Karabarbounis

and Neiman (2018) and the BLS multifactor productivity program. Figure 9 plots the

after-tax return to US business capital (excluding housing) and to all US capital (including

housing) using the data from Gomme, Ravikumar and Rupert (2011). Both measures exhibit

an increasing trend between 1980 and 2017, with this measure of the return to wealth rising

by 1 to 2 percentage points.27,28

Are individuals benefiting from the increasing return to US business capital and overall

capital as in our model? Though we do not have direct evidence on the return that people

(especially those with high incomes) obtain on their assets, we can use the return to private

equity to get a sense of this. The bottom panel of Figure 9 plots a measure of returns from

private proprietor and partnerships. Following Moskowitz and Vissing-Jørgensen (2002), we

compute these returns using data on private equity from the US Flow of Funds Accounts

(FFA) and profits generated by these business from NIPA. The return to private equity

shows a marked increase from 13 percentage points per year in 1980 to an average level of

17 percentage points between 1990-2015. Analogous measures constructed from the Survey

of Consumer Finances (SCF) confirm that the returns to proprietorships and partnerships

(P&P), and to S and C corporations have retained their levels since 1990 and have not

followed the sharp decline observed for treasury bills.29

Summarizing, since the 1980s the US has seen an upward trend in various measures of

returns to wealth, with the exception of risk-free interest rates. To the extent that the

increasing return measures are most informative about returns earned by individuals at the

27We plot the after-tax returns because this is what is relevant for inequality—an issue we discuss in more
detail below. The pre-tax series behaves in the same way after 1980 but exhibits a declining trend from 1950
to 1980. This declining trend is partly explained by the sharp decline in capital taxation during this period
(see Poterba, 1998). Finally, we plot a series that excludes capital gains, since capital gains are volatile
during this period but do not exhibit any clear trends.

28The observed divergence between real risk-free interest rates and the returns to capital shown in Figure
9 has been previously emphasized by Caballero, Farhi and Gourinchas (2017) and Farhi and Gourio (2018)
who propose various candidate explanations ranging from rising market power to rising discounts on safe
assets. Our baseline model does not feature any elements that drive a wedge between different rates of
returns and is therefore silent on this divergence. We briefly discuss an extension of our model with markups
below.

29As before, we plot a series that excludes capital gains, since capital gains are volatile during this period
but do not exhibit any clear trends. Unlike the series for the overall return to capital, this measures of return
to private equity are pre-tax, since information on tax rates faced by individuals who own private equity is
not available.
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top of the income and wealth distributions, these secular trends can qualitatively explain

the concurrent increase in income and wealth inequality.

An alternative perspective is that the returns might be on a declining tend due to other

forces such as demographic changes (captured by a lower ρ in our model), which as we discuss

below, do not affect top tail inequality. Our mechanism could still increase the rate of wealth

accumulation (r− ρ)/σ and top tail inequality, even as these other secular forces operate to

reduce r∗.30

Markups and profits. The approaches described above to measure r and returns to

private equity assume that all non-labor income is capital income. One potential issue with

this approach is the observation that markups might have risen over time (see De Loecker

and Eeckhout, 2017), which implies that a portion of capital income represents economic

profits (payments to capital that are above its “normal” return rate). Despite the ongoing

debate regarding the rise of markups, the distinction between “normal” returns and economic

profits is not consequential for our model. Appendix D provides a generalization of our model

including markups and economic profits. The formulas for the return to wealth and the tail

parameter of wealth inequality (in the simpler case with δ = 0) generalize to

r∗ =ρ+ pσ((1− π)α + π) = ρ+ pσ(1− labor share)

1

ζ
=(1− π)α + π = 1− labor share,

where π is the profit share of output. The extension shows that the return to wealth and

the behavior of wealth inequality depends on the importance of capital income inclusive of

economic profits. Intuitively, claims on economic profits are also part of the total stock of

financial assets that individuals must own, and as such they play the same role as capital.

The above generalization shows that the implications of our model for the return to

wealth and the behavior of wealth inequality depend only on the labor share in the economy.

Both automation and rising markups will reduce the labor share and increase the return to

wealth and top-tail wealth inequality. To the extent that markups are rising, they will also

contribute to rising wealth inequality and higher returns to wealth, but would have different

implications than automation for aggregates and wage inequality.31

30Another secular force behind the potential decline in r∗ is the deceleration of economic growth (see
Grossman et al., 2017). Suppose that δ = 0 and ψz grows over time at a rate g. We have r∗ = ρ+ pσα+ σg
(see also footnote 13). As shown in Appendix D, what matters for inequality in this environment is the
individual accumulation rate relative to the growth rate of the economy: r−ρ

σ − g = pα. It follows that a
deceleration in growth will lower r∗ but wont generate an increase in top tail inequality (with δ > 0, it will
actually reduce top tail inequality but not by much).

31Using a quantitative model, Boar and Midrigan (2019) identify a number of additional channels through
which concentration and markups may affect inequality and show that policies that reduce firm concentration
may actually have the unintended effect of increasing income and wealth inequality.
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Other forces affecting capital markets. Going back to the diagram in Figure 1, we

can think of our theory as explaining how changes in the relative demand for capital lead to

a simultaneous increase in the return to wealth, the ratio of capital to wages, and inequality.

We can use our model to study the role of other forces affecting capital markets. On

the one hand, we have changes in the supply of capital, driven by demographic trends and

by technological changes in the investment sector. On the other hand, we have changes

in capital taxation. The main point we wish to make is that all these forces shape the

equilibrium of capital markets and contributed to a rise in capital-output or capital-wages

ratios since 1950. But so long as capital and labor are gross complements (as they are in our

model), such changes cannot account for recent trends in wealth inequality and the rising

after-tax return to wealth.

To discuss these forces, we generalize our model slightly so that capital is produced using

qK units of the final good and capital income is taxed at a rate τK ≥ 0 (revenue is used to

finance government expenditure). As in our baseline model, wealth inequality depends on

the after-tax return to wealth, which we denote by r∗. Appendix D shows that the formulas

for the steady-state return to wealth and the tail parameter of wealth inequality (in the

simpler case with δ = 0) generalize to

r∗ =ρ+ pσ
α(1− τK)

α(1− τK) + (1− α)
,

1

ζ
=

α(1− τK)

α(1− τK) + (1− α)
(19)

These formulas show that increases in the supply of capital do not contribute to inequality.

Demographic changes increasing savings (a reduction in ρ) cause an equal decline in r∗, affect

neither the individual accumulation rate nor inequality. Improvements in the investment

sector (a rise in qK) reduce the price of a unit of capital, but do not affect the return to

wealth nor inequality.

The logic behind these results is the same: although expansions in the supply of capital

increase the the quantity of capital, they cause a fully offsetting reduction in the return rate

per unit of capital, r∗/qK . In our model, this is driven by the fact that the demand for

capital has an elasticity of −1 (recall that technology is Cobb-Douglas). As a result, the

importance of capital income relative to wages (r∗/qK)×K/w̄—the key object determining

the rate of accumulation and inequality—remains constant and equal to α(1− τK)/(1− α).

This line of reasoning shows that, so long as capital and labor are gross complements with an

elasticity close to 1, as some of the empirical evidence suggests, the demand for capital will

be inelastic and expansions in the supply of capital will bring a small reduction in inequality.

Only if capital and labor are highly substitutable, expansions in the supply of capital will

increase the net share of capital and result in more inequality.32

32In particular, one would need capital and labor to be net substitutes. More generally, let Fnet(K, {`z})
denote net output and F (K, {`z}) denote gross output. A decline in ρ results in a higher net share of
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Regarding taxes, equation (19) shows that, as in a typical market, a reduction in capital

taxes will lead to an increase in capital deepening, a lower interest rate faced by firms,

r∗/(1 − τK), but a higher after-tax return to wealth r∗. Capital taxes in the US declined

sharply between 1950 and 1980 but stabilized since 1980. Our model predicts that the sharp

decline in capital taxation contributed to a declining pre-tax return, an increasing after-tax

return to wealth, rising wealth inequality, and an expansion of capital, but mostly during

1950-1980.

Investment and capital. Our model predicts that automation should lead to an expan-

sion in investment and the capital-output ratio, though less so than in a representative-

household model (Figure 2). Figure 10 plots various measures of the empirical counterparts

of these variables. The left panel plots two series from the BLS capturing how the value of

capital services used by the private sector has evolved relative to GDP, and a series from the

BEA giving the value of the US stock of private non-residential fixed assets relative to GDP.

Since the 1970s the US capital-to-GDP ratio has increased somewhat according to these

measures, with the increase being more pronounced for the BLS measure of capital services

(see Gourio and Klier, 2015). The right panel shows that since the 1970s, the ratio of private

non-residential fixed investment to GDP (from the BEA) also increased somewhat. Because

the price of investment goods declined dramatically during this period, we also find it useful

to look at the behavior of the quantity of private non-residential fixed investment relative

to the quantity of GDP. The right panel shows that in terms of quantities, investment grew

faster than GDP through the postwar period. The prediction in our model of an expansion

in the capital-output and investment-output ratios of 15% (see Figure 5) is at the low end

of what these series show.

Our point here is not that the effects of automation predicted by our model quantitatively

account for the observed trends in investment and capital accumulation (clearly, many other

factors affect these variables). Rather, it is that our model with an upward-sloping long-

run capital supply provides a partial answer to the question “if the decline in the US labor

share was driven by automation, shouldn’t investment and capital have increased?” The

answer is “yes, but only slightly, precisely because capital supply is upward-sloping.” To see

this in more detail, recall from above that the (gross) capital share increased from 0.345 to

0.43 percent between 1980 and 2014, a 25 percent increase. How much would we expect the

capital-output ratio to increase? The answer is simple and can be gauged from manipulating

capital if and only if capital is a net substitute for labor (that is ∂ lnFnet/∂ lnK is increasing in K). A
decline in ρ results in a higher net share of capital if and only if capital is a net substitute for labor (that
is ∂ lnFnet/∂ lnK is increasing in K). A increase in qK results in a higher net share of capital if and only
if capital is a gross substitute for labor (that is ∂ lnF/∂ lnK is increasing in K). See Rognlie (2015) for a
related discussion of models capable of explaining the recent rise in the net capital share. .
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Figure 10: Percent change since 1950 in capital and investment to GDP ratios in the US. Panel A: ratio of
capital services to value added for private and nonfarm sectors (BLS Multifactor Productivity series); and
ratio of private nonresidential fixed assets (BEA fixed-assets Table 4.1 Line 1 plus Table 4.4 Line 1) to GDP
(NIPA Table 1.1.5 Line 1). Panel B: ratio of private nonresidential fixed investment (NIPA Table 1.1.5 Line
9) to GDP (NIPA Table 1.1.5 Line 1); and ratio of quantity of private nonresidential fixed investment (NIPA
Table 1.1.3 Line 9) to real GDP (NIPA Table 1.1.3 Line 1).

the definition of the capital share α = RK/Y :

(K/Y )2014

(K/Y )1980

=
α2014/α1980

R2014/R1980

(20)

Now consider two scenarios, and assume in both that R1980 = 11.5% as in our calibration.

Consider first the case where the rental rate R is unchanged so that R2014/R1980 = 1, as

in the representative-household model. In that case, the capital-output ratio must increase

by 25 percent. But suppose instead that the rental rate R rises by one percentage point,

as it is the case in our model. Then
(K/Y )2014
(K/Y )1980

= 0.43/0.345
12.5%/11.5%

= 1.15. Rather than increasing

by 25%, the capital-output ratio increases by only 15%. Summarizing, it does not follow

that automation predicts massive expansions in investment and capital accumulation. While

automation leads to an increase in the gross capital share α = RK/Y , a substantial fraction

of this increase may show up in R rather than K/Y .

The link between capital shares and inequality in the data. Does the prediction

that rises in the net capital share are accompanied by large increases in top income inequality

receive support from the data? Bengtsson and Waldenström (2018) explore this link in a long

panel with data for 21 countries going back to at least the 1930s. Their analysis shows that

a 1 percentage point increase in the net capital share is associated with: a 6.67% increase in

the top 0.1 percent share of income; a 3.84% increase in the top 1 percent share of income;

and a 1.55% increase in the top 10 percent share of income.33 Figure 11 illustrates this link

33In the published paper, Bengtsson and Waldenström (2018) use a log-log specification, whereas our
theory suggests estimating a log-linear specification. We used their data and the same methodology behind
their estimates in Table 2 of their paper to estimate the log-linear specifications reported here. Interestingly,
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for the US during the postwar period using the data in Bengtsson and Waldenström (2018)

as well as the most recent update of Piketty and Zucman (2014) data. Since 1980, the 8

percentage point increase in the net capital share was accompanied by a 60% increase (in

log points) in the top 1% share (a 7.5% increase for every one percentage point increase in

the net capital share). All these estimates are of the same order of magnitude to what the

mechanism in our model would predict—recall from (15) that in our model, a 1 percentage

point increase in the capital share is associated with a ln(1/q) increase in the top q share.

The 8 percentage point increase in the US net capital share should result in a 37% increase

in the top 1% share of income.

Figure 11: Net capital share and top 1% income share in the US. Data from Bengtsson and Waldenström
(2018) and Piketty and Zucman (2014). The figure superimposes the contribution of compositional effects
to the rise in top 1% income share.

In contrast, the standard compositional effect emphasized in the literature and defined

more precisely in Section 1.4 cannot account for a quantitatively meaningful increase in

top income inequality. This is easy to see from a back-of-the-envelope calculation based on

equation (14) using US data. In 1980, the top one percent income share was 10% and about

35% of the income of that group was capital income (see Piketty and Saez, 2003). The fact

that αnet = 23% implies that the shares of capital and labor incomes going to the top 1%

of the total income distribution were S̃k(q) = 15.3% and S̃`(q) = 8.3%.34 Therefore, if there

had only been a composition effect, the 8 percentage point increase in the US net capital

share would have increased the top 1% income share by dS(q) = (S̃k(q) − S̃`(q)) × dαnet =

(0.153−0.083)×0.08 = 0.56 percentage points. This is equivalent to a 5.6% increase, a tenth

their data show an increase in the share of income held by the top 0.1% relative to the top 1% and the top
10%, as well as an increase in the share of income held by the top 1% relative to the top 10%, which is
consistent with capital shares being associated with a thicker Pareto tail of the income distribution.

34As in footnote 18, denote by y(q), yk(q) and y`(q) the income, capital income and labor income of the top
q percent, the corresponding aggregates by Y, Yk, Y` and S(q) = y(q)/Y, S̃k(q) = yk(q)/Yk. Then, using that
yk(q) = αnet(q)y(q) where αnet(q) = 35% is that quantile’s share of capital income, and yk(q) = S̃k(q)Yk =
S̃k(q)αnetY , we have S̃k(q) = (αnet(q)/αnet)S(q) = (35%/23%)× 10% = 15.3%.
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of what we observe in the data and a fifth of what our mechanism generates. The dashed

line in Figure 11 shows the small contribution of compositional effects to the evolution of

the top 1% income share.35

The link between capital shares and inequality can be also seen at other historical periods

during which automation (or mechanization) was a dominant force, like the onset of the

industrial revolution in Britain. As documented in Allen (2009) and reproduced here in

Figure 12, from 1760 to 1840, the capital share (excluding land) rose from 20% to 40% in

Britain and the labor share declined from 60% to 50%. In line with our model, the return to

wealth (what Allen terms the profit rate) doubled from 10 percentage points to 20 percentage

points at the same time as average wages stagnated. Data from Lindert (2000) show a sharp

rise in income inequality starting exactly at this period, as can be seen from the evolution

of the top 5% income share in Britain, plotted in the right panel of the figure.

Figure 12: Gross capital share, the return to capital, and the top 5% income share during the British
industrial revolution. Data from Allen (2009) and Lindert (2000).

Capital income and the rise in top inequality. One of this paper’s main premises is

that not all income is labor income and that, at any given point in time, capital income

is important, particularly at the top of the income distribution. Along the same lines,

our theory predicts that capital income is important for generating a large increase in top

35Writing fifty years ago, Meade (1964) painted a bleak picture of automation’s impact, explicitly linking
it to capital income and wealth inequality: “But what of the future? Suppose that automation should
drastically reduce [the labor share...] There would be a limited number of exceedingly wealthy property
owners; the proportion of the working population required to man the extremely profitable automated
industries would be small; wage-rates would thus be depressed; [...] we would be back in a super-world of
an immiserised proletariat and of butlers, footmen, kitchen maids, and other hangers-on.” He then goes on
to justify the connection between the capital share and income inequality with the composition-effect logic
explained above. Our analysis suggests that Meade was right to emphasize a connection between the capital
share and inequality but that he had in mind the wrong mechanism (see Figure 11).
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inequality – see Figure 7. A natural question is therefore to what extent empirical trends

are consistent with this prediction.
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Figure 13: Capital income and the rise in top inequality (IRS and PSZ data)

To this end, we use US data to examine to what extent uneven growth in the US economy

is accounted for by capital income and wage income. We use two different data sources: the

NBER IRS public use sample from 1980 to 2012 and the data of Piketty, Saez and Zucman

(2018) from 1980 to 2018 (PSZ, hereafter).36 The IRS dataset is based on administrative tax

records and therefore yields reliable information for the very top of the distribution. However,

it only records fiscal income and therefore omits tax-exempt income such as pension income.

To remedy this, PSZ try to impute this “missing income” by making various adjustments to

36The NBER IRS public use sample is available through the NBER. See https://users.nber.org/∼taxsim/
gdb/ and https://www.nber.org/taxsim-notes.html. This IRS data is also used in Piketty and Saez (2003).
For the PSZ data, we do not have micro data at the individual or household level (in contrast to the IRS
data). The figure instead uses tabulations by income percentiles from the Piketty, Saez and Zucman (2018)
dataset that were kindly computed by Gabriel Zucman.
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the fiscal income series and bringing to the table other data sets as well as making various

assumptions. Given this, the main advantage of the PSZ data are the more comprehensive

income concept being used that also adds up to national income but this comes up at the

cost of strong assumptions and numerous imputations. Conversely, the main advantage of

the IRS data is the transparency and simplicity of the data construction but this comes up

at the cost of substantial amounts of “missing income.”

Figure 13 provides our analysis of the sources of uneven growth in the United States.

Panel (a) uses the IRS data and panel (b) the PSZ data. The dash-dotted black line labelled

“total income” in both panels plots the average annual income growth between 1980 and

2012 for the 100 percentiles of the income distribution. The right-hand side of each panel

provides a “zoom” of the top tail of the distribution where much of the action is. As this

figure shows, the income percentiles corresponding to the lower half of the distribution have

stagnated or declined between 1980 and 2012. In contrast, top income percentiles have grown

rapidly. For example, in both data sets, the top 0.1 percentile increased at a yearly rate of

more than 5 percent. The hockey stick shape of income growth at different percentiles in

the figure is qualitatively similar to that predicted by our model (see Figure 7).37

The blue and red shaded areas in both panels of Figure 13 decompose the growth in

total income into a part due to labor income and a part due to capital and entrepreneurial

income.38 In both datasets, capital income is unimportant for income growth at the bottom of

the distribution. As in our model, the stagnant incomes at the bottom of the distribution are

driven by declines in real wages. However, further up in the distribution and especially within

the top 1 percent, capital and entrepreneurial income becomes more and more important.

The extent to which capital income accounts for the observed uneven growth and at which

percentiles it starts to be important differs between the two datasets. The IRS data in panel

(a) suggest that up to the 90th percentile, essentially all growth in total income is accounted

for by labor income and that capital and entrepreneurial income are mostly important within

the top 1% and especially at the top 0.1% where capital and entrepreneurial income account

37The change in total incomes in panels (a) and (b) is qualitatively similar but there are some quantitative
differences in terms of both the average growth and the relative growth across different income percentiles.
The blue line in panel (b) labelled “total income” is the same as that in Figure II(a) of Piketty, Saez and
Zucman (2018) and they discuss this discrepancy. In particular, they note that their series yields “more
growth for the bottom 90% since 1980 than suggested by the fiscal data studied by Piketty and Saez (2003)”
which is essentially our IRS series. They go on to say that “the main reason for this discrepancy is that the
tax-exempt income of bottom 90% earners – which fiscal data miss – has grown since 1980” and that “all of
this increase derives from the rise of imputed capital income earned on tax-exempt pension plans.” Piketty,
Saez and Zucman’s Appendix C.2 discusses in more detail the importance of capital income for the rise of
the top 1% income share and compares their results to those of Smith et al. (2019).

38Denoting by yt(q) the qth income percentile at time t and by y`,t(q) and yk,t(q) that percentile’s labor

and capital income, we decompose the T -year growth rate from a base year t = 0, yT (q)−y0(q)
y0(q)

, into a part due

to labor income
y`,T (q)−y`,0(q)

y0(q)
and a part due to capital income

yk,T (q)−yk,0(q)
y0(q)

. Figure 13 plots an annualized

version of this decomposition in which we scale the annualized T -year growth rate, (yT (q)/y0(q))1/T − 1 by
the fractions of T -year growth (yT (q)/y0(q))−1 due to each income type. See Appendix A.2 for more detail.
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for around 60% of the cumulative growth from 1980-2012. In contrast, the PSZ data in

panel (b) suggest that capital income plays an important role already around the median of

the income distribution, accounts for around half of cumulative growth of the top 1% and is

twice as important as labor income for the rise in top 0.01% incomes. The empirical pattern

in both data sets is qualitatively consistent with that generated by our model – see Figure

7. The fact that wage income plays a more prominent and positive role at the tail of the

income distribution in the data than in our model suggest there are forms of skill-biased

technical change other than automation affecting relative wages (see the discussion of Figure

7 in Section 2.2).

Dynamics of top income and wealth inequality. The past forty years have seen a

rapid rise in top income inequality in the United States (see e.g. Piketty and Saez, 2003;

Piketty, Saez and Zucman, 2018). There is also an ongoing debate about the dynamics of top

wealth inequality,39 with some observers arguing that top wealth inequality has also increased

rapidly. While our theory can account for large changes in inequality between steady states

– see for example Figure 7 – it cannot generate the rapid transition dynamics of top income

inequality observed in the data. Figure 8 shows that the model-implied transition dynamics

at the top of the distribution are very slow and, for example, the 99.9 percentile of the

income distribution still has not converged 80 years after the initial shock.

That theories like ours cannot generate fast transition dynamics is a known result: Gabaix

et al. (2016) have shown that standard theories of the Pareto tails of the income and wealth

distributions, which build on a random growth mechanism, generate transition dynamics

that are too slow relative to those observed in the data. Our theory is exactly a special case

of such a theory – see Proposition 4 – and is therefore subject to the same criticism.

The good news is that we know how to “fix” random growth theories to deliver fast transi-

tion dynamics like those observed in the data. Gabaix et al. (2016) show that what is needed

are particular deviations from Gibrat’s law, what they call “type- and scale-dependence.”

For the case of wealth dynamics, heterogeneous and persistent rates of return to wealth are

one candidate for generating such type- and scale-dependence and seem to be a prevalent

feature of the data (Fagereng et al., 2016). Future work should build more quantitatively

serious theories of the general-equilibrium interaction between technology and income and

wealth distribution that feature these model elements.40

39See for example Kopczuk (2015), Saez and Zucman (2016), and Bricker et al. (2016).
40Alternatively, theories with changing asset prices – another model feature of the data that we do not

model – are promising for generating fast wealth inequality dynamics.
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4 Conclusion

In this paper, we developed a tractable framework to study the effects of technology on

income inequality. Our theory allowed us to go beyond wages and to explore how technology

affects wealth inequality and overall income inequality. We used our framework to study

the effects of automation and identified a new channel by which technology may affect

inequality. Technology affects not only wages but also asset returns to wealth and this

can have substantial distributional effects. Because the productivity gains from automation

accrue to owners of capital in the form of higher returns, automation does not necessarily

lead to a large expansion of investment, output, and wages. Instead, the higher returns raise

the cost of capital and moderate the response of investment. Automation may therefore

result in stagnant or declining real wages, especially at the bottom and middle of the wage

distribution.

There are two fruitful avenues for future work. First, one could use our tractable frame-

work to study the distributional consequences of other types of technical change, changes

in market structure and markups, and government policies, like the taxation of capital or

estates, or redistributive policies. For example, it could be worthwhile to integrate our model

with a theory of international trade so as to examine the effects of globalization on income

and wealth distribution, and not just that of wages as is common in the trade literature.

Similarly, our analytically tractable theory featuring a less-than-perfectly-elastic capital sup-

ply and non-degenerate wealth distribution may serve as a useful laboratory for exploring

the optimal taxation of capital income and wealth.

Second, one could think of building more elaborate quantitative models to study the

effect of technologies on inequality. As explained in the introduction, these more elaborate

models should retain the two key features underscored by our analysis: an upward-sloping

supply of capital and a return inequality nexus. More elaborate versions of our model could

include realistic life-cycle structures, a careful treatment of bequests and intergenerational

transfers, and heterogeneity in portfolio and return rates. Successful quantitative extensions

should also include some form of scale-dependence and type-dependence to account for the

rapid rise of inequality observed in the data.

In connecting our model to the data, one crucial questions is how important is the rise

of capital income at the top of the distribution. This is still an open and interesting ques-

tion. Some researchers assert that capital income plays a more prominent role in European

countries. If so, perhaps our theory applies more forcefully to the European context. After

all, Western Europe is ahead of the US when it comes to industrial automation (see Ace-

moglu and Restrepo, 2018a), and the decline in the labor share appears common to all these

countries (Karabarbounis and Neiman, 2013). In the US, wages pay a more prominent role,

pointing to the importance of other forms of skill-biased technical change different from the
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automation of routine jobs. Besides wages, entrepreneurial income seems to play an impor-

tant role at the top of the income distribution (see Smith et al., 2019). One key question

going forward is to understand how much of the rise in entrepreneurial income is the result

of technologies that allow entrepreneurs to grow their firms without paying a high share of

the generated income in wages, or if rising entrepreneurial incomes at the top reflect other

changes in regulation, market structure, and the way we reward talent. That is, we need

to understand whether rising entrepreneurial incomes reflect the higher returns brought by

automation or these other factors.
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