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1 Introduction

The industrial revolution marked a dramatic turning point in the economic progress of nations.

During the nineteenth century, a number of technological leaders in the Western Europe and North

America leapt ahead of the rest of the world, while others lagged behind and became colonies or

semi-colonies of the Western powers. After the WWII, most developing countries obtained political

independence and started their industrialization and modernization process. One might expect

that, with the spread of technology and the advantage of backwardness (Gerschenkron (1962)), the

world should have witnessed convergence in income and living standard. Instead, the post WWII

was a period of continued and accelerated divergence (Pritchett (1997)). According to Maddison

(2008), the per capita GDP in the U.S., the most advanced countries in the 20th century, grew at

an average annual growth rate of 2.1% in the period between 1950 and 2008. While some OECD

and East Asian economies were able to narrow the per capita GDP gap with an annual growth rate

higher than that of the U.S. in the catch up process, most other countries in Latin America, Asia,

and Africa failed to achieve so.1

Why some countries fail to converge in growth rates despite the possibility of technology transfer

has been a puzzle. There are several explanations in the literature.2 In this paper we focus on

the explanation of Aghion, Howitt, and Mayer-Foulkes (henceforth AHM) (2005) and Acemoglu,

Aghion, and Zilibotti (2006) based on a Schumpeterian overlapping-generations (OLG) model of

economic growth with credit constraints.3

[Insert Figure 1 Here.]

We contribute to this literature by analyzing the relationship among growth, inflation, and

financial development. Figure 1 presents the cross-sectional evidence on the sample of 71 countries

over the period 1960-1995.4 Panels A and B show that the average inflation rate is negatively

related to the average per capita GDP growth rate and positively related to the average money

growth rate. Panel C shows that the average inflation rate is negatively related to the average

level of financial development and this relationship vanishes at a high level of financial development

(about 50%). Panel D displays the countries that fail to converge to the world frontier growth rate,

identified by AHM (2005). These countries have a low average level of financial development and

their inflation is negatively related to the average level of financial development.

Motivated by the evidence above, we introduce a monetary authority and a government to

a closed-economy version of the AHM model. We modify this model in several ways. First, we

1In the period of 1950-2008, the average per capita GDP growth rates for the whole Latin America, Asia, and
Africa were respectively 1.8%, 1.6%, and 1.2% (Maddison (2008)).

2See Banerjee and Duflo (2005) for a survey.
3AHM (2005) provide empirical evidence to support the importance of the credit constraints for convergence or

divergence.
4Appendix B presents data description.
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introduce money by assuming money enters utility (Sidrauski (1967)). This money-in-the-utility

approach can be microfounded in several ways once one takes into account the role of medium of

exchange (McCallum (1983)). Although money can be valued in the OLG model as a store of value

(Samuelson (1958)), the equilibrium net nominal interest rate is zero and hence one cannot analyze

monetary policy in terms of interest rate rules. Our modeling of money avoids this issue.5 Second,

we introduce intra-generational heterogeneity so that there are savers and borrowers (entrepreneurs)

in each period. We can then endogenize the nominal interest rate in a credit market and study how

credit market imperfections affect interest rates. Third, we assume savers are risk averse so that

we can derive their consumption and portfolio choices. In each period a young saver must choose

optimal consumption, money holdings, and saving in terms of nominal bonds.

We show that the market equilibrium in our model can be summarized by a system of four

nonlinear difference equations for four sequences of variables: the nominal interest rate, the inflation

rate, the normalized R&D investment, and the proximity to the technological frontier. For this

equilibrium system, monetary policy is modeled by a money supply rule. If one uses an interest

rate rule as in the dynamic new Keynesian literature (Woodford (2003)), then money supply is

endogenous and the nominal interest rate is replaced by the money growth rate in the equilibrium

system. Due to the complexity of our model, we cannot reduce this system to a scalar one for

the proximity variable alone as in the AHM model. However we are still able to provide a full

characterization of the steady state along a balanced growth path, which is consistent with the

evidence presented in Figure 1.

It turns out that how money supply is introduced to the economy is critical for how money

affects the equilibrium allocation and long-run growth. We first show that, if money increments

are transferred to the old agents in an amount proportional to their pre-transfer money holdings,

then money is super-neutral in the sense that monetary policy does not affect long-run growth and

the equilibrium allocation along a balanced growth path.6 This result dates back to Lucas’s (1972)

model, in which there is no endogenous growth. The intuition is that the demand for money and

saving depends on the ratio of the nominal interest rate and the money growth rate and hence the

real interest rate in the long run. Thus only real variables are determined in the steady state.

We show that there are three dynamic patterns as in the AHM model with the difference that

our model incorporates inflation:

1. When the credit market is perfect so that the credit constraint does not bind, the econ-

omy converges to the world frontier growth rate and there is no marginal effect of financial

development.

2. When the credit constraint binds, but is not tight enough, the economy converges to the

5Another approach is to introduce a cash-in-advance constraint.
6Money growth has a short-run effect on the transition path.
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world frontier growth rate with a level effect of financial development.

3. When the credit constraint is sufficiently tight, there is divergence in growth rates with a

growth effect of financial development. In this case the economy enters an equilibrium with

poverty trap.

We prove that the steady states for all these three cases are saddle points. For any given

initial value of the proximity to the frontier, there exists a unique saddle path such that the

economy will transition to the steady state. For the first two cases, the transition paths display the

feature of the advantage of backwardness (Gerschenkron (1962)). Moreover, the inflation rate rises

during the transition. But for the third case, the economy exhibits the feature of the disadvantage

of backwardness and falls into the poverty trap with low economic growth, low innovation, and

high inflation. The inflation rate declines during the transition. Moreover, the long-run rate of

productivity growth increases with financial development and the long-run inflation rate decreases

with financial development.

Next we study efficient allocation. Suppose that there is a social planner who maximizes the

sum of discounted utilities of all agents in the present and future generations. We derive the

efficient allocation and long-run growth rate. By comparing with the efficient allocation, we find

there are four sources of inefficiency in a market equilibrium. First, there is monopoly inefficiency

in the production of intermediate goods. The resulting price distortion generates an inefficiently

low level of final net output when taken the innovation rate as given. Second, the private return to

innovation ignores the dynamic externality or spillover effect of technology. Third, the credit market

imperfection prevents innovators to obtain necessary funds for R&D. Finally, the OLG framework

itself may cause dynamic inefficiency and inefficient within generation consumption allocation.

Can a combination of monetary and fiscal policies correct the preceding inefficiencies and make

the market equilibrium attain the efficient allocation? We show that when money increments

are transferred to the entrepreneur, money is not super-neutral and there is a particular nominal

interest rate such that the market equilibrium can achieve innovation efficiency, but it cannot

achieve output and consumption efficiency. The intuition is that money growth is like an inflation

tax and there is a wealth effect when the tax is not proportionally distributed to the agents according

to their pre-transfer money holdings. Money affects the real economy through the redistribution

channel. We then introduce fiscal policies to attain the efficient allocation. We find different

policies are needed in different development stages. When the economy faces severe credit market

imperfections, the government should try to loosen credit constraints by ensuring better contract

enforcements or better monitoring of borrowers. For example, the government can make direct

lending to entrepreneurs financed by lump-sum taxes on savers. When the government has better

monitoring technologies than private agents, the credit constraints can be overcome. The economy
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can then avoid the equilibrium with poverty traps.

Our paper is related to several strands of literature. First, it is related to the literature on

poverty traps and convergence or divergence in economies with credit market imperfections (e.g.,

Banerjee and Newman (1993), Galor and Zeira (1993), Howitt (2000), Mookherjee and Ray (2001),

Azariadis and Stachurski (2005), Howitt and Mayer-Foulkes (2005), Aghion, Howitt, and Mayer-

Foulkes (2005) and Acemoglu, Aghion, and Zilibotti (2006)). As pointed out by Azariadis and

Stachurski (2005) in their survey, this literature typically studies models of self-reinforcing mecha-

nisms that cause poverty to persist. In these models there is no technical progress and therefore no

positive long-run growth. As discussed earlier, our paper is most closely related to Aghion, Howitt,

and Mayer-Foulkes (2005) and Acemoglu, Aghion, and Zilibotti (2006), which incorporate long-run

growth. Unlike these two papers, we introduce money, endogenize interest rates, and provide a

policy analysis. Howitt and Mayer-Foulkes (2005) also derive three convergence patterns analogous

to those in our paper, but the disadvantage of backwardness that prevents convergence in that

paper arises from low levels of human capital rather than from credit-market imperfections.

Second, our paper is related to the literature that analyzes the effects of financial constraints or

financial intermediation on long-run growth. Early contributions include Greenwood and Jovanovic

(1990), Bencivenga and Smith (1991), and King and Levine (1993). None of these papers studies

technology transfer and the associated policy issues which are our focus.

Third, our paper is related to the literature on the relation between money and growth. Recent

papers include Gomme (1991), Marquis and Reffett (1994), Chu and Cozzi (2014), Jones and

Manuelli (1995), Miao and Xie (2013), and Chu et al. (2017), among others. These papers typically

introduce money via cash-in-advance constraints in infinite-horizon models, which do not feature

poverty traps. By contrast, we follow the money-in-the-utility function approach of McCallum

(1983) and Abel (1987) in the OLG framework. Our focus is on how monetary and fiscal policies

can attain efficient allocation and avoid poverty traps.

2 The Model

We consider a monetary overlapping generations model of a closed economy based on Aghion,

Howitt, and Mayer-Foulkes (2005) and Acemoglu, Aghion, and Zilibotti (2006). Time is discrete

and runs forever. Time is denoted by t = 1, 2, . . . . Each generation has a unit measure of identical

entrepreneurs and a unit measure of identical savers. Each agent lives for two periods. Only

entrepreneurs can conduct innovation, but they face borrowing constraints. Savers lend funds to

entrepreneurs, but they cannot innovate. As a benchmark, we follow Lucas (1972) and assume that

the government (or central bank) directly transfers money to all agents and the monetary transfer

is proportional to each agent’s pre-transfer money holdings.
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2.1 Production

All agents work for the producers who combine labor and a continuum of specialized intermediate

goods to produce a general good according to the production function,

Zt = L1−α
t

∫ 1

0
At (i)1−α xt (i)α di, (1)

where Lt is labor demand, xt (i) is the input of the latest version of intermediate good i, and At (i)

is the productivity parameter associated with it. The general good is used for consumption, as an

input to R&D and also as an input to the production of intermediate goods. The general good is

produced under perfect competition. Suppose that the aggregate labor supply is normalized to one

and the real price of the general good is also normalized to one. Then the equilibrium real price of

each intermediate good equals its marginal product:

pt (i) = α

(
xt (i)

At (i)

)α−1

. (2)

For each intermediate good i there is one entrepreneur born each period t who is capable of

producing an innovation for the next period. If he succeeds in innovating, then he will be the ith

incumbent in period t + 1. Let µt (i) be the probability that he succeeds. Then the technology

evolves according to

At+1 (i) =

{
Āt+1 with probability µt (i)
At (i) with probability 1− µt (i)

,

where Āt+1 is the world frontier technology, which grows at the exogenously given constant rate

g > 0. That a successful innovator gets to implement Āt+1 is a manifestation of technology transfer

in the sense that domestic R&D makes use of ideas developed elsewhere in the world. If an

innovation fails, the intermediate good sector i uses the technology in the previous period.

In each intermediate good sector where an innovation has just occurred, the incumbent can

produce one unit of the intermediate good using one unit of the general good as the only input.

In each intermediate sector there are an unlimited number of people capable of producing copies

of the latest generation of that intermediate good at a unit cost of χ > 1. The fact that χ > 1

implies that the fringe is less productive than the incumbent producer. The parameter χ captures

technological factors as well as government regulation affecting entry. A higher χ corresponds to

a less competitive market. So in sectors where an innovation has just occurred, the incumbent

will be the sole producer, at a price equal to the unit cost of the competitive fringe, whereas in

noninnovating sectors where the most recent incumbent is dead, production will take place under

perfect competition with a price equal to the unit cost of each producer. In either event the price

will be χ, and according to the demand function (2) the quantity demanded will be

xt (i) =

(
α

χ

) 1
1−α

At (i) . (3)
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It follows that an unsuccessful innovator will earn zero profits next period, whereas the real

profit of a successful incumbent will be

Ψt (i) = pt (i)xt (i)− xt (i) = (χ− 1)

(
α

χ

) 1
1−α

Āt ≡ ψĀt,

where ψ represents the normalized profit:

ψ = (χ− 1)

(
α

χ

) 1
1−α

.

2.2 Entrepreneurs

An entrepreneur born in period t ≥ 1 is endowed with λ ∈ (0, 1) units of labor when young and

supplies labor inelasically to the general good producers. He derives utility from consumption cet+1

when old according to

β log
(
Etc

e
t+1

)
,

where β ∈ (0, 1) is the subjective discount factor. This utility function is an increasing transfor-

mation of a risk-neutral utility function. We will see the role of the log transformation in Section

4.

An innovation costs Nt units of general good in period t, which represents R&D investment. The

young entrepreneur receives labor income λwt, which may not be sufficient to cover the innovation

cost Nt. Suppose that the entrepreneur borrows Bt dollars at the nominal interest rate Rft between

periods t and t+ 1 from the savers so that

Nt =
Bt
Pt

+ λwt, (4)

where Pt denotes the price level and wt is the real wage rate.

We follow Aghion, Banerjee, and Piketty (1999) and Aghion, Howitt, and Mayer-Foulkes (2005)

to model financial market imperfections. Suppose that the entrepreneur can hide a successful

innovation at a real cost κNt so that he can avoid repaying debt. The parameter κ ∈ (0, 1)

reflects the degree of financial development. A higher value of κ means that it is more costly for

the entrepreneur to misbehave. It measures the degree of creditor protection. To implement the

contract without default, the entrepreneur faces an incentive constraint

β

(
µtψĀt+1 −Rft

Bt
Pt+1

)
≥ βµtψĀt+1 − κNt,

where the expression on the left-hand side of the inequality is the discounted expected consumption

if the entrepreneur behaves and the expression on the right-hand side is the discounted expected

consumption if he is dishonest. Simplifying yields the borrowing constraint

Bt
Pt
≤ κNt

βRft/Πt+1
, (5)
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where Πt+1 = Pt+1/Pt denotes the inflation rate. By (4) this constraint is equivalent to

Nt ≤
βRft/Πt+1

βRft/Πt+1 − κ
λwt (6)

for βRft/Πt+1 > κ. Thus R&D investment is limited by a multiple of the entrepreneur’s net worth

λwt. This multiple is called the credit multiplier by AHM and increases with κ, but decreases with

the real interest rate.

Suppose that

Nt = Φ(µt)Āt+1,

where the function Φ is twice continuously differentiable and satisfies Φ(0) = 0 and Φ′ > 0 and

Φ
′′
> 0. The factor Āt+1 reflects the “fishing-out” effect: the further ahead the frontier moves, the

more difficult it is to innovate. This effect is important to have a balanced growth path. We can

also rewrite the preceding equation as

µt = F
(
Nt/Āt+1

)
, (7)

where F = Φ−1 satisfies F (0) = 0, F ′ > 0, and F ′′ < 0.

The entrepreneur’s expected consumption is given by

Etc
e
t+1 = µtψĀt+1 −

RftBt
Pt+1

= F

(
Nt

Āt+1

)
ψĀt+1 −

RftPt
Pt+1

(Nt − λwt) .

The entrepreneur’s objective is to solve the following problem

max
Nt

F
(
Nt/Āt+1

)
ψĀt+1 −

RftPt
Pt+1

(Nt − λwt)

subject to (6). When the credit constraint (6) does not bind, the first-order condition is given by

F ′
(

Nt

Āt+1

)
ψ =

Rft
Πt+1

, (8)

where Πt+1 = Pt+1/Pt denotes the inflation rate. This condition says that the expected marginal

return to R&D is equal to the real interest rate.

The initial old entrepreneur at time t does not have labor income and hence does not conduct

innovation. We assume that he simply consumes his money endowment M e
0 and the government

proportional transfer M e
0z1.

2.3 Savers

A saver born at time t ≥ 1 is endowed with 1 − λ units of labor when young and supplies labor

inelastically to the general good producers. He has the utility function

log(cyt ) + β log(cot+1) + γ log (Mt/Pt) , γ > 0,
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where β is the discount factor, cyt (cot+1) denotes consumption at time t (t + 1) when the saver

is young (old), Mt denotes money holdings chosen in period t. He faces the following budget

constraints

cyt +
St
Pt

+
Mt

Pt
= (1− λ)wt,

cot+1 =
StRft
Pt+1

+
Mt (1 + zt+1)

Pt+1
,

where St denotes saving and zt+1 ≥ 0 denotes the proportional rate of the monetary transfer from

the government. Note that the above utility specification does not have a satiation level of real

balances as in Friedman (1969).

The first-order conditions give
1

cyt
= β

1

cot+1

Pt
Pt+1

Rft,

and
1

cyt
=

γ

Mt/Pt
+

β

cot+1

Pt(1 + zt+1)

Pt+1
.

Using these conditions and the budget constraints, we can derive that

cyt =
(1− λ)wt
1 + β + γ

, (9)

Mt

Pt
=

γ(1− λ)wt
1 + β + γ

1

1− (1 + zt+1) /Rft
, (10)

St
Pt

=
(1− λ)wt
1 + β + γ

[
β − γ

Rft/ (1 + zt+1)− 1

]
. (11)

Thus, consumption, the money demand, and the saving demand are all proportional to the saver’s

real wealth (1− λ)wt. Moreover the money demand decreases with Rft/ (1 + zt+1) and the saving

demand increases with Rft/ (1 + zt+1) . This property is important for the long-run super-neutrality

of money because Rft/ (1 + zt+1) is proportional to the real interest rate in the steady state, which

is independent of the inflation rate.

We assume that

Rft > (1 + zt+1)

(
1 +

γ

β

)
. (12)

This assumption ensures that the money demand Mt/Pt > 0 and the saving demand St/Pt > 0.

The initial old saver is endowed with money holdings M s
0 and derives utility according log (co1) ,

where

co1 =
M s

0 (1 + z1)

P1
.

2.4 Competitive Equilibrium

Define the aggregate technology as

At =

∫
At (i) di.
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In equilibrium the probability of innovation will be the same in each sector: µt (i) = µt for all i.

Thus average productivity evolves according to

At+1 = µtĀt+1 + (1− µt)At. (13)

Define the normalized productivity as at = At/Āt. Normalized productivity is an inverse measure of

the country’s distance to the technological frontier, or its technology gap. It describes the proximity

to the technological frontier and satisfies the dynamics

at+1 = µt +
1− µt
1 + g

at. (14)

Equation (13) implies that

At+1 −At
At

= µt

(
1 + g

at
− 1

)
.

Thus there is an advantage of backwardness (Gerschenkron (1962)) in the sense that the further

the country is behind the frontier, the faster the country grows (a smaller at cause higher growth).

On the other hand, the country’s growth rate also depends on innovation µt. More innovation

allows more firms to adopt the frontier technology and hence enhancing growth. Thus the net

effect depends on both at and µt. Here µt or R&D investment is like the role of human capital that

determines a country’s “absorptive capacity” (Nelson and Phelps (1966)).

In equilibrium Lt = 1. We then use (1), (2), and pt (i) = χ to derive aggregate output of the

general good

Zt = ζAt, where ζ ≡
(
α

χ

) α
1−α

.

The wage rate is given by

wt = (1− α)Zt = (1− α) ζAt. (15)

The equilibrium interest rate Rft and the price level Pt are determined by the market-clearing

conditions for credit and money: Bt = St and Mt = (1 + zt)Mt−1 for t ≥ 1, where zt is the money

growth rate controlled by the central bank and M0 = M s
0 +M e

0 is given.

By (4), (11), and the market-clearing condition Bt = St, we have

Nt − λwt =
(1− λ)wt
1 + β + γ

[
β − γ(1 + zt+1)

Rft − (1 + zt+1)

]
. (16)

Value added in the general sector is wage income, whereas value added in the intermediate

sectors is profit income. Total GDP is the sum of value added in all sectors:

Yt = wt + µt−1ψĀt = (1− α) ζAt + µt−1ψĀt. (17)
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3 Equilibrium Balanced Growth Paths

In this section we solve for competitive equilibrium and derive equilibrium balanced growth path

and local dynamics.

3.1 Perfect Credit Markets

Suppose that the credit constraint (6) does not bind so that the credit market is perfect. It follows

from (8) that the optimal innovation is determined by the condition

F ′(nt)ψ =
Rft
Πt+1

, (18)

where we define nt = Nt/Āt+1. We can rewrite (14) as

at+1 = F (nt) +
1− F (nt)

1 + g
at. (19)

Conjecture that the economy will grow at the rate of the world technology frontier along a

balanced growth path so that At+1 = (1 + g)At. Using (10) to compute the ratio Mt+1/Mt and

then imposing the money market-clearing condition Mt+1 = Mt (1 + zt+1), we obtain

(1 + zt+1)
Pt
Pt+1

=
Mt+1/Pt+1

Mt/Pt
=
wt+1 [1− (1 + zt+1) /Rft]

wt [1− (1 + zt+2) /Rft+1]
.

Using (15), at = At/Āt, and At+1 = (1 + g)At, we simplify the preceding equation as

Πt+1 = (1 + zt+1)
1− (1 + zt+2) /Rft+1

1− (1 + zt+1) /Rft

at
at+1 (1 + g)

. (20)

Thus the inflation rate is determined by money demand and money supply, which in turn are

determined by the nominal interest rate, the growth rate of domestic productivity, and the growth

rate of money supply. Using nt = Nt/Āt+1, (15), and (16), we derive that

nt =
(1− α) ζat

1 + g

[
λ+

(1− λ)

1 + β + γ

(
β − γ(1 + zt+1)

Rft − (1 + zt+1)

)]
. (21)

Now the competitive equilibrium under perfect credit markets can be summarized by a system of

four difference equations (18), (19), (20), and (21) for four sequences {Rft}, {at} , {Πt+1}, and {nt}
such that (12) and (6) are satisfied, given an exogenous sequence of money growth rates {zt}. The

endogenous predetermined variable is at and other equilibrium variables are non-predetermined.

We introduce the following conditions to ensure the existence of the steady-state innovation

rate µ ∈ (0, 1) :

Φ′ (0) <
ψ

1 + g

1 +
γ

β −
[

Φ′(0)g
(1−α)ζ − λ

]
1+β+γ

1−λ


−1

, (22)
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and

Φ′ (1) >
ψ

1 + g

1 +
γ

β −
[

Φ(1)(g+1)
(1−α)ζ − λ

]
1+β+γ

1−λ


−1

. (23)

The following result characterizes the steady state and local dynamics around the steady state. We

relegate its proof and the proofs of all other results to the appendix.

Proposition 1 Suppose that the monetary transfer is given to the old generation only in a quantity

proportional to the pre-transfer money holdings of each. Let conditions (22) and (23) hold. There

exists a cutoff κ∗ such that, if κ ≥ κ∗, then the credit constraint does not bind. Moreover there

exists a unique steady state {µ∗, n∗, R∗f , a∗,Π∗} with µ∗, a∗ ∈ (0, 1) , n∗ > 0, Π∗ = (1 + z) / (1 + g)

and the productivity grows at the rate g. In this steady state money is super-neutral in the sense that

the steady-state real quantities are independent of money growth rate z. They are also independent

of κ. If furthermore
gn∗F ′(n∗)

F (n∗)
< g + F (n∗) , (24)

then the steady state is a saddle point and the local equilibrium around the steady state is unique.

In a neighborhood of the steady state given a1 < a∗ and zt = z for all t ≥ 1, at, nt, µt, and Πt all

increase monotonically to the steady state, but At+1/At and Rft/Πt+1 decrease monotonically to

the steady state.

Proposition 1 states that, if the level of financial development κ is sufficiently high, the credit

constraint does not bind. There is a balanced growth path along which output and the productivity

grow at the rate g. The inflation rate is constant over time and increases with the money growth

rate 1 + z proportionally and decreases with the productivity growth rate 1 + g proportionally. All

steady-state values are independent of the level of financial development. Since µ∗ ∈ (0, 1) , the

economy can never reach the world technology frontier in that a∗ ∈ (0, 1) . For the economy to

reach the frontier, we must have condition (23) hold with equality so that µ∗ = a∗ = 1. This case

can happen when innovation profits are sufficiently high, i.e., ψ is sufficiently large.

Proposition 1 also characterizes the local dynamics of the equilibrium system of equations (18),

(19), (20), and (21). For simplicity let the exogenous money growth rate zt = z be constant

over time. We impose a technical condition (24), which can be verified in numerical examples

and is easily satisfied for small g. When the initial value a1 is slightly below the steady state

value a∗, Proposition 1 shows that there exist unique initial values Rf1, Π1, and n1 such that

{at, Rft,Πt+1, nt}∞t=1 will converge to the steady state along a saddle path. In particular, at, nt,

µt, and Πt all increase monotonically to the steady state, but At+1/At and Rft/Πt+1 decrease

monotonically to the steady state.

[Insert Figure 2 Here.]
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We use a numerical example to illustrate the transition dynamics. As in AHM (2006), we set

Φ (µ) = φµ + δ
2µ

2 and F (n) = 1
δ

(√
2nδ + φ2 − φ

)
. We choose parameter values as α = 0.8,

χ = 1.15, φ = 0.0134, δ = 0.2604, λ = 0.01, g = 0.04, β = 0.96, and γ = 0.017. Assume that

money supply grows at a constant rate z = 0.06. Our simple two-period lived OLG model cannot

be calibrated to confront with data. We use our numerical example to illustrate the working of our

model. We find that the critical value κ∗ = 0.678. We choose an arbitrary κ > κ∗. Then the steady

state values are given by R∗f = 1.08, Π∗ = 1.0192, a∗ = 0.5, µ∗ = 0.037, n∗ = 0.0007. Moreover,

the GDP Yt normalized by Āt is equal to 0.024. The steady state is a saddle point. Only at is a

predetermined variable. Figure 2 illustrates the transition dynamics for the case of perfect credit

markets when the economy starts at a1 = 0.3. We find that µt, at, and Πt gradually increase

to their steady-state values, but Rft decreases to its steady state value. Given that we take the

money growth rate fixed, the inflation rate moves inversely with the growth rate of productivity.

The transition path illustrates the advantage of backwardness. When the economy initially falls

behind the world frontier, both its technology and innovation grow faster. Thus its GDP also grows

faster. They eventually catch up with the growth rate of the world frontier.

Notice that the steady-state proximity to frontier a∗ depends on the preference and technology

parameters. A crucial parameter is the marginal cost of innovation φ given the quadratic specifi-

cation of Φ. A higher φ raises the marginal cost and reduces the marginal benefit by reducing the

real interest rate, thereby reducing the innovation rate µ∗. This causes the economy’s absorptive

capacity to be smaller so that a∗ is smaller.

3.2 Binding Credit Constraints

Suppose that the credit constraint (6) binds. Using (16) and (6) we obtain

wt

{
λ+

(1− λ)

1 + β + γ

[
β − γ(1 + zt+1)

Rft − (1 + zt+1)

]}
=

βRft/Πt+1

βRft/Πt+1 − κ
λwt. (25)

We also require that

F ′ (nt)ψ >
Rft
Πt+1

, (26)

which ensures (6) indeed binds in the entrepreneur’s optimization problem by the complementary

slackness condition. Now the equilibrium system consists of equations (19), (20), (21), and (25) for

four sequences {Rft}, {at} , {Πt+1}, and {nt} such that (12) and (26) hold. The following result

characterizes the steady state and the local dynamics.

Proposition 2 Suppose that the monetary transfer is given to the old generation only in a quantity

proportional to the pre-transfer money holdings of each. There exist cutoffs κ∗∗ and κ̄ such that,

if κ∗∗ < κ < min {κ∗, κ̄} , then the credit constraint binds and there exists a unique steady state

{µ∗∗, n∗∗, R∗∗f , a∗∗,Π∗∗} such that µ∗∗, a∗∗ ∈ (0, 1) , 0 < n∗∗ < n∗, Π∗∗ = (1 + z) / (1 + g) , R∗∗f <

13



R∗f , and the net productivity growth rate is g. Moreover, money is super-neutral, and n∗∗, µ∗∗, and

R∗∗f increase with κ. If in addition

gn∗∗F ′(n∗∗)

F (n∗∗)
< g + F (n∗∗) , (27)

then the steady state is a saddle point and the local equilibrium around the steady state is unique.

In a neighborhood of the steady state given a1 < a∗∗ and zt = z for all t, at, nt, µt, Rft, and Πt

all increase monotonically to the steady state, but At+1/At and Rft/Πt+1 decrease monotonically

to the steady state.

We use Figure 3 to illustrate the determination of the steady-state nominal interest rate pre-

sented in Propositions 1 and 2. The curve labeled “Supply” describes the supply of funds for R&D

investment normalized by the wage rate, which is given by the expression on the left-hand side of

equation (25) without the time subscripts:

Nt

wt
= λ+

(1− λ)

1 + β + γ

[
β − γ(1 + z)

Rf − (1 + z)

]
. (supply)

The supply is equal to the sum of the entrepreneur’s wage and the savers’ saving. This curve

increases with the nominal interest rate Rf . The curve labeled “Demand” describes the steady-

state demand for funds normalized by the wage rate, when the credit constraint does not bind. To

derive the demand function, we show that

Nt

wt
=

Nt

(1− α) ζAt
=

n

(1− α) ζa/ (1 + g)
=

n
(1−α)ζF (n)
g+F (n)

, (demand)

where the first equality follows from (15), the second from the normalization by Āt+1 and Āt+1/Āt =

1 + g, and the last from the substitution of a using the steady-state version of equation (19). Using

the steady-state version of (18) to substitute for n into the above equation, we obtain the demand

for funds as a function of Rf . We can show that this demand function decreases with Rf .

[Insert Figure 3 Here.]

The curves labeled “Limit κ > κ∗” and “Limit κ < κ∗” describe the borrowing limits normalized

by the wage rate for κ > κ∗ and κ < κ∗, respectively, which are given by the expression on the

right-hand side of the steady-state version of equation (25)

Nt

wt
=

βRf/Π

βRf/Π− κ
λ =

βRf (1 + g) / (1 + z)

βRf (1 + g) / (1 + z)− κ
λ. (limit)

This expression decreases with Rf .

When κ > κ∗, the equilibrium nominal interest rate R∗f is determined by the intersection of the

demand curve and the supply curve. In this case the credit constraint does not bind and a change
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in κ does not affect equilibrium as shown in Proposition 1. When κ < κ∗, the credit constraint

binds so that the equilibrium nominal interest rate R∗∗f is determined by the intersection of the

supply curve and the borrowing limit curve. From the figure we can see that R∗∗f < R∗f and an

increase in κ raises R∗∗f . Moreover the change in κ has a level effect because n∗∗ and µ∗∗ increase

with κ. However the change in κ does not have a growth effect in that the steady-state productivity

growth rate is equal to 1 + g.

Proposition 2 also shows that the steady state is a saddle point as in Proposition 1. When the

initial value a1 is slightly below the steady state value a∗∗ ∈ (0, 1) , there exist unique initial values

Rf1, Π1, µ1, and n1 such that {at, µt, Rft,Πt+1, nt}∞t=1 will converge to the steady state along a

saddle path. In particular, at, nt, µt, and Πt all increase monotonically to the steady state, but

At+1/At and Rft/Πt+1 decrease monotonically to the steady state.

For a numerical illustration, we choose the same parameter values as in Section 3.1 except that

we set κ = 0.5. Then the credit constraint binds. We find the steady-state values R∗∗f = 1.0796,

Π∗∗ = 1.0192, a∗∗ = 0.327, µ∗∗ = 0.018, and n∗∗ = 0.0003. The normalized GDP is equal to 0.016.

Compared to the case of perfect credit markets, credit market imperfections enlarge the distance to

the frontier even though the long-run grow rates are the same, in that a∗∗ < a∗, µ∗∗ < µ∗, n∗∗ < n∗,

and normalized GDP are all smaller. We find that the steady state is also a saddle point. Figure

4 illustrates the transition dynamics, which also display the advantage of backwardness.

[Insert Figure 4 Here.]

3.3 Poverty Trap

When the level of financial development is sufficiently low such that 0 < κ < κ∗∗, the credit

constraint is too tight so that the economy cannot support a sufficient amount of R&D investment

relative to the long-run productivity growth. As a result, the economy enters a poverty trap in

which the R&D investment relative to productivity growth approaches zero so that the steady state

along a balanced growth path satisfies np = µp = 0. In the poverty trap steady state the economy

still grows but at a rate lower than the technology frontier g. Thus the distance to the frontier

approaches zero, ap = 0. The following proposition summarizes the results:

Proposition 3 Suppose that the monetary transfer is given to the old generation only in a quantity

proportional to the pre-transfer money holdings of each. If 0 < κ < κ∗∗, then there exists a unique

steady-state equilibrium with the inflation rate and nominal interest rate, denoted by Πp and Rpf .

The economy enters the poverty trap with steady-state values µp = ap = np = 0. Money is super-

neutral. The steady-state productivity growth rate is given by

lim
t→∞

At+1

At
= F ′ (0)

(1− α) ζλβRpf/Π
p

βRpf/Π
p − κ

+ 1,
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which is between 0 and 1+g and increases with κ ∈ (0, κ∗∗) . The steady-state inflation rate satisfies Πp >

(1 + z) / (1 + g) and decreases with κ ∈ (0, κ∗∗) . The poverty trap steady state is a saddle point and

the local equilibrium around this steady state is unique. In a neighborhood of the steady state given

a1 > 0 and zt = z for all t, at, Rft, Πt+1, µt, and nt decrease monotonically to the steady state, but

At+1/At and Rft/Πt+1 increase monotonically to the steady state.

It is interesting to compare Propositions 2 and 3. When the credit constraint is not too tight, at

converges to a positive steady state value a∗∗ ∈ (0, 1) . The productivity growth At+1/At converges

to 1 + g and the inflation rate Πt converges to (1 + z) / (1 + g) by (20). By contrast, when the

credit constraint is too tight, at converges to zero. We need to use L’Hospital’s rule to derive the

steady-state productivity growth rate

lim
t→∞

At+1

At
= (1 + g) lim

t→∞

at+1

at
.

We show that this limit is less than 1 + g. Similarly we also use this equation to compute the

steady-state inflation rate Πp by (20), which is higher than (1 + z) / (1 + g). Unlike in the case

with not too tight credit constraints, there is a steady-state growth effect when the level κ ∈ (0, κ∗∗)

of financial development changes.

The transition dynamics are also different, even though both steady states are saddle points.

When the credit constraint is not too tight, at increases monotonically to the steady state when its

initial value a1 is slightly below the steady state a∗∗ ∈ (0, 1) . As the economy moves closer to the

technological frontier, its productivity growth slows down and gradually decreases to the steady

state. By contrast, when the credit constraint is too tight, the economy will fall into the poverty

trap with ap = 0 starting from any small positive initial value a1 > 0. The innovation rate and

R&D investment also decrease to the steady state. As the economy falls farther away from the

technological frontier, its productivity growth will be faster and increase to the steady state, which

is lower than the frontier growth rate 1 + g.

[Insert Figure 5 Here.]

To illustrate Proposition 3 numerically, we use the same parameter values as in Section 3.1

except that we set κ = 0.1. We then find the poverty trap equilibrium with the steady-state values

Rpf = 1.0792 and Πp = 1.0205. In the steady state, the normalized GDP is equal to 0 and the

technology growth rate is 1.0387. The steady-state inflation rate is higher than the two cases

studied in Sections 3.1 and 3.2. We also find the poverty-trap steady state is a saddle point.

Figure 5 illustrates the transition dynamics when the economy starts at a1 = 0.5. It shows that

the economy falls further behind the technological frontier. Both at and µt decrease to zero. The

inflation rate Πt and the nominal interest rate Rft also decrease to their steady-state values, but
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the real interest rate Rft/Πt+1 increases to its steady-state value. The growth rate of productivity

increases to a level lower than the technological frontier. The economy falls into a poverty trap

with low economic growth and high inflation. Thus there is a disadvantage of backwardness when

the level financial development is extremely low.

4 Efficient Allocation

In this section we study efficient allocation. Following Abel (1987), suppose that a social planner

maximizes the sum of discounted utility of all agents in the economy

ωu (ce1) + u (co1) +
∞∑
t=1

βt−1
[
u (cyt ) + βu

(
cot+1

)
+ ωβu

(
cet+1

)]
(28)

=

∞∑
t=1

βt−1 [u (cyt ) + u (cot ) + ωu (cet )] ,

where the planner assigns the utility weight ω to the entrepreneur and discounts utilities of future

generations by β. Here we set u (c) = log (c) . As in the dynamic new Keynesian framework, we

consider a cashless limit and ignore money in the utility (Woodford (2003) and Gali (2008)). The

resource constraint is given by

cyt + cot + cet +Nt = L1−α
t

∫ 1

0
At (i)1−α xt (i)α di−

∫
χt(i)xt (i) di, (29)

where χt(i) = 1, when an innovation occurs in sector i, and χt(i) = χ, otherwise.

Maximizing the expressions on the right-hand side of equation (29) yields the efficient labor

input Lt = 1 and the efficient intermediate goods input

xt (i) =

 α
1

1−αAt (i) if an innovation occurs(
α
χ

) 1
1−α

At (i) otherwise
. (30)

We can then compute the GDP (net output):

Y e
t =

∫ 1

0
At (i)1−α xt (i)α di−

∫
χt(i)xt (i) di

=

(
1

α
− 1

)[
α

1
1−αµt−1Āt + (1− µt−1)

(
α

χ

) 1
1−α

χAt−1

]
. (31)

The resource constraint (29) becomes

cyt + cot + cet +Nt = Y e
t . (32)

where µ0 = 0 and A0 is exogenously given.
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Now the planner’s problem is to maximize (28) subject to (7), (13), and (32). By the first-order

conditions we can immediately derive that

cet = ωcyt = ωcot . (33)

Since Āt+1/Āt = 1 + g, we conjecture that, on the efficient balanced growth path, at = At/Āt, µt,

and Nt/Āt+1 = nt are constant over time, but cyt , c
o
t , and cet all grow at the rate g. In the appendix

we show that the efficient steady-state innovation rate µ is determined by the following equation

Φ′ (µ) =
β

1 + g
(

1

α
− 1)

[
α

1
1−α −

(
α

χ

) 1
1−α

χ

]
(34)

+
β

1 + g − β(1− µ)
(

1

α
− 1)

(
α

χ

) 1
1−α χg

g + µ
.

The expression on the left-hand side of the equation represents the marginal cost of innovation and

the expression on the right-hand side represents the associated present value of marginal benefit.

We can easily check that the marginal cost is an increasing function of µ and the marginal benefit

is a decreasing function of µ. Given the following assumption, there is a unique solution by the

intermediate value theorem, denoted by µFB ∈ (0, 1) , to the above equation.

Assumption 1 The parameter values satisfy

Φ′(0) <
β

1 + g

(
1

α
− 1

)[
α

1
1−α −

(
α

χ

) 1
1−α

χ

]
+

β

1 + g − β

(
1

α
− 1

)(
α

χ

) 1
1−α

χ,

and

Φ′(1) > β
1

1 + g

(
1

α
− 1

)[
α

1
1−α −

(
α

χ

) 1
1−α

χ

]
+

β

1 + g

(
1

α
− 1

)(
α

χ

) 1
1−α χg

g + 1
.

We then obtain the efficient innovation rate µFB, the efficient normalized R&D investment

nFB = Φ (µFB) , and the efficient proximity to the frontier aFB. Moreover, the implied real interest

rate is given by

RrFB =
u′ (cyt )

βu′
(
cot+1

) =
1 + g

β
. (35)

We summarize the preceding analysis below.

Proposition 4 Under Assumption 1, there exists a unique efficient allocation with µFB ∈ (0, 1) ,

aFB ∈ (0, 1) , and nFB > 0 along the balanced growth path with the productivity growth rate being

g.7 Moreover µFB is independent of ω.

7In the knife-edge case where the second inequality in Assumption 1 holds as an equality, the efficient innovation
rate µFB = 1. In this case aFB = 1 and the economy reaches the world frontier technology level.
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By the analysis in the previous section, we can immediately see that competitive equilibrium

allocation is generally not efficient. There are four sources of inefficiency in the market economy

studied in Sections 2 and 3. First, there is monopoly inefficiency in the production of interme-

diate goods. The resulting price distortion generates an inefficiently low level of final net output

when taken the innovation rate as given. Second, entrepreneurs face credit constraints, which dis-

torts innovation investments and within generation consumption allocation. Third, innovators are

monopolists. Private innovation does not take into account of the externality effect on future pro-

ductivity. When choosing innovation investment, entrepreneurs only maximize expected monopoly

profits in the next period. Efficient innovation not only causes profits in the next period to rise, but

also causes future productivity to rise, which raises future profits. Fourth, there is intertemporal

inefficiency in the sense that the equilibrium real interest rate and the implied efficient rate may

be different.

In general the market equilibrium innovation may be either higher or lower than the efficient

innovation depending on the parameter values. To see this fact we consider the case with a perfect

credit market. The equilibrium innovation is determined by equation (18), which can be written

as the steady-state form:

Φ′ (µ∗) =
ψ

R∗f/Π
∗ .

Comparing this equation with the efficient condition (34), we can see clearly how the market

equilibrium generates inefficiency.8 First, the market real interest rate R∗f/Π may not be equal

to the efficient rate RrFB = (1 + g) /β. Second, the private return to innovation (the normalized

monopoly profit) ψ may not be equal to the one-period social return described by the expression

(excluding β/ (1 + g)) on the first line of equation (34). Third, the positive externality effect

captured by the expression on the second line does not appear in the above equilibrium condition.

In fact we can show that the private return to innovation ψ is smaller than the one-period

social return and hence smaller than the total social return.9 But the market real interest rate may

be either higher or lower than the efficient rate RrFB. When γ is sufficiently large, savers have a

sufficiently large preference for money so that his saving is sufficiently low. In this case the market

real interest can be higher than the efficient rate and hence the market equilibrium innovation is

lower than the efficient level.

8Notice that F ′ (n) = 1/Φ′ (µ) .
9We need to prove that

ψ = (χ− 1)

(
α

χ

) 1
1−α

< (
1

α
− 1)

[
α

1
1−α −

(
α

χ

) 1
1−α

χ

]
.

This inequality is equivalent to

α

1 − α
<
χ
(
χ

α
1−α − 1

)
χ− 1

.

The expression on the right-hand side is equal to α/ (1 − α) when χ = 1 and increases with χ > 1.
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Using the parameter values in Section 3.1, we computer the efficient steady-state values: aFB =

0.858, µFB = 0.1886, and nFB = 0.0072. The normalized GDP is 0.047. The implied real interest

rate is 1.0833. Even though the implied real interest rate is higher than the market real interest

rate, it turns out that the market equilibrium gives low levels of innovation and GDP.

5 Monetary and Fiscal Policies

In this section we study monetary and fiscal polices under which a competitive equilibrium can

achieve the efficient allocation along the balanced growth path derived in the previous section. For

simplicity we set ω = 1. Our analysis can be similarly applied to other values of ω. In Sections

2 and 3 we have shown that monetary policy is super-neutral if money is transferred to savers in

an amount proportional to their pre-transfer holdings and entrepreneurs do not hold any money.

In this section we relax this assumption. Since entrepreneurs face credit constraints, we naturally

assume that the government transfers money increments to young entrepreneurs in a lump-sum

manner. Then monetary policy is not super-neutral.

5.1 Perfect Credit Market

We first study the case where the credit market is perfect so that the credit constraint is slack. We

consider the following policy tools such that the government’s budget balances in each period t.

For simplicity we do not consider government spending and government debt.

• The central bank sets a constant nominal interest rate Rf and transfers the money increments

τet to the old entrepreneur.

• The government subsidizes the production of the final good by imposing a tax credit 1−τxt (i)

on the intermediate input.

• The government subsidizes the old entrepreneur’s expected profits from innovation at the

constant rate τN .

• The government levies a lump-sum tax TN Āt on the old entrepreneur’s income.

• The government levies a lump-sum tax TwĀt on the wage income.

When the central bank sets a nominal interest rate, the money growth rate z will be endogenous.

Equivalently, we can assume that the money growth rate is an exogenous policy instrument so that

the nominal interest rate is endogenous as in Sections 2 and 3. Our focus on the interest rate

policy is consistent with the practice in many countries and also with the dynamic new Keynesian

literature. Notice that here money increments are transferred to entrepreneurs instead of savers

unlike in the model of Section 2. In the appendix we show that savers’ money demand decreases
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with the nominal interest rate Rft and the saving demand increases with Rft, instead of the real

interest rate. This property allows money to be not super-neutral.

We first show that monetary policy alone can achieve the efficient innovation and R&D invest-

ment, but cannot achieve production and consumption efficiency.

Assumption 2 The parameter values are such that

λ (1− α) ζ

1 + g

(1 + g)F (nFB)

g + F (nFB)
< nFB <

[
λ+ (1− λ)

β + γ

1 + β + γ

]
(1− α) ζ

1 + g

(1 + g)F (nFB)

g + F (nFB)

and
ψF ′ (nFB)

1 + g
> 1 +

γ

β
. (36)

Assumption 2 ensures that on the balance growth path the efficient level of R&D investment

cannot be self-financed by the entrepreneur’s wage income alone but can be financed by the en-

trepreneur’s wage income plus savers’ total savings. Moreover, the marginal return to the R&D

investment must be sufficiently high. Thus monetary transfers and external credit are needed. We

are interested in whether a particular monetary policy can ensure savers’ savings are efficiently

channeled to entrepreneurs through the credit market.

The restriction on γ in (36) is a sufficient condition to ensure that the monetary transfers

combined with the entrepreneur’s wage income are not sufficient for entrepreneurs to finance the

efficient level of the R&D investment. Thus external debt is needed through the credit market. If

γ is too large, then the savers’ money demand would be large enough so that the government can

transfer a sufficient amount of money to the entrepreneurs and the credit market is not needed. In

this paper we will not consider this uninteresting case.

Proposition 5 Suppose that money increments are transferred to young entrepreneurs and there

is no fiscal policy. Under Assumption 2, there exists a nominal interest rate R̄f > 1 + γ/β such

that the market equilibrium under a perfect credit market achieves the efficient R&D investment

nFB along the balanced growth path with the productivity growth rate being g.

The intuition for this result can be seen from the equilibrium optimality condition for innovation

or R&D investment, (18). The central bank can choose a particular nominal interest rate (or money

growth rate) such that the private optimality condition coincides with the efficient optimality

condition for innovation along a balanced growth path.

In the appendix we show that for any given µt−1 the efficient output level is higher than

the market equilibrium level because of the monopoly distortion. Monetary policy alone cannot

correct this inefficiency. We thus need fiscal policy. To achieve efficient output, the government can

subsidize the final good firm’s input expenditure by a suitable choice of tax credit 1− τxt (i).
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Since innovators or entrepreneurs are monopolists and face credit constraints, this causes in-

efficiency in innovation. To correct this inefficiency, the government can subsidize entrepreneurs’

profits at rate τN and transfer money increments τet to young entrepreneurs.

Since there are overlapping generations of agents in the economy, the consumption allocation

within and across generations in a market equilibrium may not be efficient. The government can

levy lump-sum taxes TN Āt and TwĀt on (or make lump-sum transfers to) entrepreneurs and savers,

keeping the government budget balanced in the meantime.

The following result shows that the economy can achieve efficient innovation, production, and

consumption by a suitable choice of the above monetary and fiscal policy tools.

Proposition 6 Suppose that money increments are transferred to young entrepreneurs. Then un-

der Assumption 3 given in the appendix the steady-state efficient innovation and allocation can be

implemented by the competitive equilibrium with a perfect credit market along a balanced growth

path under the monetary and fiscal policy tools R0
f , τ0

xt (i) , τ0
et, τ

0
N , T 0

N , and T 0
w described in the

appendix.

The intuition behind the proposition is that we set the nominal interest rate such that the real

interest rate is given by the efficient rate in (35). At this rate we ensure intertemporal efficiency so

that cyt = cot . The implied money growth rate z0 and inflation rate Π0 in the steady state satisfy

z0 = βR0
f − 1, Π0 =

1 + z0

1 + g
.

Moreover, the subsidy rate τ0
N ensures that it is optimal for the entrepreneur to choose the efficient

level of innovation. Finally, the taxes or transfers T 0
N and T 0

w ensure that within generation con-

sumption allocation is efficient (cet = cyt = cot ) and that the government budget balances. Notice

that the signs of T 0
N and T 0

w are ambiguous and they may be either interpreted as taxes or subsidies.

We impose Assumption 3, similar to Assumption 2, to ensure that a nontrivial market equi-

librium exists given the specific monetary and fiscal policy tools described in Proposition 6. Since

this assumption is technical, we present it in the appendix.

5.2 Binding Credit Constraints

When the credit constraint binds so that the credit market is imperfect, the government should

improve credit markets to raise κ by imposing better creditor protection and better contract en-

forcement. If we take κ as given, we can introduce another policy instrument to overcome the credit

constraint. Once the credit constraint is slack, we then use the policy tools studied in the previous

subsection to achieve the efficient allocation.

Specifically, consider the case of κ < κ0, where κ0 is defined in equation (A.62) in the appendix.

Then the credit constraint binds and the policies described in Proposition 6 cannot achieve ef-

ficiency. Suppose that the government can make direct lending Dt at the nominal interest rate
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Rft to the young entrepreneur. Suppose that the government has better monitoring abilities than

private agents so that the entrepreneur cannot hide or divert the government funds. Then the

credit constraint only applies to Nt−Dt. The government finances the loans by levying lump-sum

taxes on the young saver and then makes transfer DtRft to the old saver. In this case the saver’s

consumption and portfolio choices are not affected.

To implement the efficient allocation along the balanced growth path, we suppose Dt = DĀt+1

and set D at a value higher than the expression below:[
(1 + g) ηFB
1 + g − κ0

− (1 + g) ηFB
1 + g − κ

][
λ+

βR0
f − 1

βR0
f

1− λ
1 + β + γ

γ (1 + g)

1 + g − β

]
,

where ηFB is given in the appendix. Then the credit constraint is slack at the equilibrium allocation

and interest rate R0
f described in Proposition 6. Now we can apply the analysis in Section 5.1 and

Proposition 6 to achieve the efficient allocation.

6 Conclusion

An important feature of developing countries is that credit markets are imperfect due to reasons

such as weak contract enforcement, weak creditor protection, and agency issues. We follow AHM

(2005) and incorporate this feature into a Schumpeterian overlapping-generations model of economic

growth to explain convergence and divergence. Our contribution is to introduce money and study

how monetary and fiscal policies can achieve efficient allocation in a market equilibrium. We find

that how money increments are transferred to agents is important for their long-run impact on

economic growth. When money increments are transferred to agents in an amount proportional

to their pre-transfer holdings, money is super-neutral. For a sufficiently low level of financial

development, the economy can enter a poverty trap with low economic growth and high inflation.

When money increments are transferred to young entrepreneurs, to whom money is most needed,

it is not super-neutral. Monetary policy affects the real economy through a redistribution channel.

The government should first improve credit market conditions so that entrepreneurs are not credit

constrained. Then there is a combination of monetary and fiscal policies such that the economy

can avoid the poverty trap and achieve efficient allocation. In this case the economy will grow at

a faster rate for some period of time and then gradually converge to the same rate as the world

frontier.

One limitation of our model is that we have assumed that the world frontier technology grows at

an exogenously given constant rate. In the future research, it is desirable to relax this assumption

and treat the technological innovation as endogenously determined in both advanced countries and

developing countries. In the new setup, a developing country with well-functioning financial mar-

ket, appropriate fiscal and monetary policies, and the advantage of backwardness in technological

innovation, may achieve absolute convergence and become an advanced country.
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Appendix

A Proofs

Proof of Proposition 1: We first study the steady state. Using equations (18), (19), (20), and

(21) and setting zt = z, we derive a system of four steady-state equations

Rf =
1 + z

1 + g
F ′(n)ψ, (A.1)

a =
(1 + g)F (n)

g + F (n)
, (A.2)

n =
(1− α) ζa

1 + g

{
λ+

(1− λ)

1 + β + γ

[
β − γ

Rf/ (1 + z)− 1

]}
, (A.3)

and Π = (1 + z) / (1 + g) to determine four steady-state variables Rf , a, n, and Π.

From these equations, we show that n is determined by the equation

n =
(1− α) ζF (n)

g + F (n)

{
λ+

(1− λ)

1 + β + γ

[
β − γ

F ′(n)ψ/ (1 + g)− 1

]}
.

Equivalently, it follows from n = Φ (µ) and F = Φ−1 that µ is determined by the equation

Φ′ (µ) =
ψ

Rf/Π
, (A.4)

where

Rf
Π

= (1 + g)

1 +
γ

β −
[

Φ(µ)(g+µ)
(1−α)ζµ − λ

]
1+β+γ

1−λ


and Π = (1 + z) / (1 + g) . Since Φ′′ > 0, Φ′ > 0, and Φ (0) = 0, we can check that Φ (µ) (g + µ) /µ

decreases with µ. Thus the real interest rate Rf/Π is decreasing in µ and Φ′ (µ) is increasing in

µ. Given conditions (22) and (23), it follows from the intermediate value theorem that there is a

unique solution µ∗ ∈ (0, 1) to (A.4).10 The associated R&D investment is given by n∗ = Φ (µ∗) and

hence R∗f and a∗ are determined by (A.1) and (A.2). We also assume that the condition

R∗f
1 + z

> 1 +
γ

β
(A.5)

is satisfied so that (12) holds along the balanced growth path. We will verify later that this condition

is indeed satisfied in the proof of Proposition 2.

Using (A.3) and (15), we can rewrite the credit constraint (6) along a balanced growth path as

n

(
βRf

Π
− κ
)
≤
βRf

Π

λ (1− α) ζa

1 + g
.

10We do not consider the knife-edge case of boundary solutions.
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The critical value of κ such that the credit constraint just binds in the steady-state equilibrium is

given by

κ∗ =
βR∗f

Π

[
1− λ (1− α) ζa∗

n∗ (1 + g)

]
. (A.6)

When κ > κ∗, the credit constraint does not bind. It follows from (A.4) that money supply does not

affect the equilibrium innovation rate µ∗. An increase in the money growth rate raises the nominal

interest rate one for one and hence does not affect savings. Thus the supply of funds for innovation

does not depend on monetary policy.

Next we study local dynamics. By defining rt ≡ Rft/ (1 + zt+1) and eliminating Rft/Πt+1, we

can reduce the equilibrium system (18), (19), (20), and (21) to three equations

at+1 = F (nt) +
1− F (nt)

1 + g
at, (A.7)

rt − 1 = F ′(nt)ψ
at

at+1 (1 + g)

rt+1 − 1

rt+1
, (A.8)

nt =
(1− α) ζat

1 + g

[
λ+

(1− λ)

1 + β + γ

(
β − γ

rt − 1

)]
(A.9)

for three variables at, nt, and rt. Assume that zt is constant over time.

Log-linearizing the above equations around the steady state yields

ât+1 =
g

1 + g

nF ′(n)

F (n)
n̂t +

1− F (n)

1 + g
ât,

r̂t =
(r − 1)

r

[
F ′′(n)n

F ′(n)
n̂t −

g

1 + g

nF ′(n)

F (n)
n̂t +

g + F (n)

1 + g
ât

]
+

1

r
r̂t+1,

n̂t = ât +

(1−λ)
1+β+γγ

r
(r−1)2

λ+ (1−λ)
1+β+γ

(
β − γ

r−1

) r̂t ≡ ât + ϑr̂t, (A.10)

where a variable without time subscript denotes the steady state value and a variable with a hat

denotes the log deviation from the steady state. It follows from condition (A.5) that ϑ > 0.

Eliminating n̂t yields a system of two linear difference equations[
ât+1

r̂t+1

]
= J

[
ât
r̂t

]
, (A.11)

where

J ≡

 g
1+g

nF ′(n)
F (n) + 1−F (n)

1+g ϑ g
1+g

nF ′(n)
F (n)

(1− r)
[
1− g

1+g
nF ′(n)
F (n) −

1−F (n)
1+g + F ′′(n)n

F ′(n)

]
r + (r − 1)ϑ

[
g

1+g
nF ′(n)
F (n) −

F ′′(n)n
F ′(n)

]  .
We now study the eigenvalues of J to determine the local stability of the equilibrium system.

Consider the quadratic characteristic equation

G (ν) = |J − νI| = 0.
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After a tedious calculation we obtain

G(0) =

[
g

1 + g

nF ′(n)

F (n)
+

1− F (n)

1 + g

]
r − 1− F (n)

1 + g
(r − 1)ϑ

F ′′(n)n

F ′(n)

+ϑ
g

1 + g

nF ′(n)

F (n)
(r − 1), (A.12)

and

G(1) =

[
g

1 + g

nF ′(n)

F (n)
+

1− F (n)

1 + g
− 1

]
(r − 1)

[
1− F ′′(n)n

F ′(n)

]
+ϑ

g

1 + g

nF ′(n)

F (n)
(r − 1)ϑ

F ′′(n)n

F ′(n)
. (A.13)

Under conditions (24), (A.5), F ′ > 0, and F ′′ < 0, we can check that G (0) > 0 and G (1) < 0.

It follows from the intermediate value theorem that there exists an eigenvalue ν1 ∈ (0, 1) such that

G (ν1) = 0. Since lim x→∞G(x) = ∞, it follows from the intermediate value theorem that there

exists another eigenvalue ν2 > 1 such that G (ν2) = 0. We conclude that the steady state is a saddle

point.

[Insert Figure 6 Here.]

Finally we study transition dynamics. We set zt = z for all t for simplicity. Then we can write

the log-linearized equilibrium solution as

ât+1 = φaât, r̂t = R̂ft = φrât, n̂t = φnât, r̂ft = φrrât, and Π̂t+1 = φΠât,

where rft ≡ Rft/Πt+1 denotes the real interest rate. We want to determine the signs of all the

coefficients. We first use the phase diagram in Figure 6 to determine the signs of φa and φr. By

(??) the locus ât+1 = ât represents the equation

r̂t =
1− g

1+g
nF ′(n)
F (n) −

1−F (n)
1+g

ϑ g
1+g

nF ′(n)
F (n)

ât, (A.14)

which has a positive slope by condition (24). The locus r̂t+1 = r̂t represents the equation

rt =
1− g

1+g
nF ′(n)
F (n) −

1−F (n)
1+g + F ′′(n)n

F ′(n)

1 + ϑ[ g
1+g

nF ′(n)
F (n) −

F ′′(n)n
F ′(n) ]

ât. (A.15)

Since F ′′ < 0 and F ′ > 0, the slope of this line may be either positive or negative. The left panel of

Figure 6 plots the case in which the locus r̂t+1 = r̂t is negative. We can see that, if â1 < 0, namely

if the initial value a1 is below the steady state, the interest rate r̂t declines but at increases over

time to their steady-state values along the saddle path. We now turn to case in which the slope

of the locus r̂t+1 = r̂t is positive, illustrated in the right panel of Figure 6. We can show that the
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slope of the locus ât+1 = ât is greater than the slope of the locus r̂t+1 = r̂t. We can see that, if

the initial value a1 is below the steady state, rt and at both increase over time, approaching their

steady-state values.

In summary we have shown that φa ∈ (0, 1) and φr can be either positive or negative. Up to

the first order approximation, the productivity growth satisfies

logAt+1 − logAt = ât+1 − ât + log(1 + g) = (φa − 1)ât + log(1 + g).

Thus, when a1 is slightly below the steady state, the productivity growth is positive and decreases

to the steady state. By n̂t = ât + ϑr̂t, we have φn = 1 + ϑφr. If φr > 0, then we have φn > 0 since

ϑ > 0. In the case of φr < 0 as in the left panel of Figure 6, we see that the saddle path is flatter

than the locus rt+1 = rt. Namely we must have

φr >
1− g

1+g
nF ′(n)
F (n) −

1−F (n)
1+g + F ′′(n)n

F ′(n)

1 + ϑ[ g
1+g

nF ′(n)
F (n) −

F ′′(n)n
F ′(n) ]

.

This implies that

φn = 1 + ϑφr > 1 + ϑ
1− g

1+g
nF ′(n)
F (n) −

1−F (n)
1+g + F ′′(n)n

F ′(n)

1 + ϑ[ g
1+g

nF ′(n)
F (n) −

F ′′(n)n
F ′(n) ]

=
1 + ϑg+F (n)

1+g

1 + ϑ
[

g
1+g

nF ′(n)
F (n) −

F ′′(n)n
F ′(n)

] > 0,

where the inequality follows from F ′ > 0, F ′′ < 0, and ϑ > 0. Thus, as at increases to the steady

state, nt will do so too. Since µt = F (nt) and F ′ > 0, µt also increases to the steady state.

Log-linearizing equation (18) yields

r̂ft =
nF ′′(n)

F ′(n)
n̂t =

nF ′′(n)

F ′(n)
φnât ≡ φrrât.

It follows from F ′′ < 0, F ′ > 0, and φn > 0 that φrr < 0. Thus as at increases to the steady state,

the real interest rate rft decreases to the steady state. Finally, log-linearizing equation (20) given

zt = z for all t yields

Π̂t+1 = ât − ât+1 −
1

r − 1
(r̂t − r̂t+1) = (1− φa)ât −

1

r − 1
(1− φa)φrât

= (1− φa)
(

1− 1

r − 1
φr

)
ât ≡ φΠât.

If φr < 0, then we have φΠ > 0. If φr > 0, we use the equation

Π̂t+1 = r̂t − r̂ft = (φr − φrr) ât ≡ φΠât

to deduce φΠ > 0. In both cases, Πt increases with at to the steady state. Q.E.D.
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Proof of Proposition 2: The equilibrium system consists of equations (19), (20), (21), and (25).

First we study the steady state, in which the equilibrium system becomes (A.2), (A.3), and the

following equation

λ+
1− λ

1 + β + γ

[
β − γ

Rf/ (1 + z)− 1

]
︸ ︷︷ ︸

supply

=
λβRf/Π

βRf/Π− κ︸ ︷︷ ︸
limit

, (A.16)

where Π = (1 + z) / (1 + g) . The expression on the left-hand side of equation (A.16) is increasing

in Rf and the expression on the right-hand side is decreasing in Rf . When Rf/ (1 + z) = 1 + γ/β,

the credit supply takes the value λ, which is below the borrowing limit when βRf/Π−κ > 0. When

Rf →∞, the credit supply approaches λ+ (1−λ)β
1+β+γ , which is higher than the credit limit λ. Thus by

the intermediate value theorem there is a unique solution for Rf to equation (A.16) such that

Rf
1 + z

> max

{
1 +

γ

β
,

κΠ

β (1 + z)

}
. (A.17)

Let R∗∗f denote the solution. Using equations (A.3), (A.2) and (A.16), we derive that

n =
λ (1− α) ζF (n)

g + F (n)

βR∗∗f /Π

βR∗∗f /Π− κ
.

We can equivalently rewrite this equation in terms of µ as

Φ (µ) (g + µ) =
(1− α) ζλβR∗∗f /Π

βR∗∗f /Π− κ
µ. (A.18)

Notice that there is a trivial solution µ = 0 to the above equation since Φ (0) = 0. We rule out this

solution by the following condition:

Φ′ (0) g <
(1− α) ζλβR∗∗f /Π

βR∗∗f /Π− κ
< Φ (1) (g + 1) . (A.19)

Then it follows from the intermediate value theorem that there is a unique solution, denoted

by µ∗∗ ∈ (0, 1) , to equation (A.18). The corresponding R&D investment level is denoted by

n∗∗ = Φ (µ∗∗) > 0.

Define the critical values κ∗∗ and κ̄ for κ such that

Φ′ (0) g =
(1− α) ζλβR∗∗f /Π

βR∗∗f /Π− κ∗∗
,

(1− α) ζλβR∗∗f /Π

βR∗∗f /Π− κ̄
= Φ (1) (g + 1) .

where R∗∗f is the solution to equation (A.16) and is a function of κ. We can verify that the expression

R∗∗f /Π

R∗∗f /Π− κ
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increases with κ along the supply curve in Figure 3. Thus the values κ∗∗ and κ̄ are unique. When

κ∗∗ < κ < κ̄, condition (A.19) holds.

From Figure 3, we can see that the unconstrained equilibrium interest rate under perfect credit

market is higher than that under binding credit constraint. Thus (A.17) and hence (22) and (A.5)

must hold for the unconstrained equilibrium. If κ∗∗ < κ < min {κ∗, κ̄} , then the unconstraint

equilibrium derived in Proposition 1 violates the credit constraint and condition (A.19) is satisfied.

For (26) to hold, we need

ψF ′ (n∗∗) >
R∗∗f
Π

.

Since (A.1) holds at n∗ and R∗f and since n∗∗ < n∗ and R∗∗f < R∗f , the above condition follows

from the concavity of F . The rest of the proof follows from the analysis in the main text using

Figure 3. In particular, an increase in κ raises the nominal interest rate R∗∗f and hence raises n∗∗

by combining equations (A.3) and (A.2). It also raises the corresponding a∗∗ by (A.2). But there

is no growth effect because the economy still grows at the rate g on the balanced growth path.

Next we study the local stability. As in the proof of Proposition 1, we rewrite the equilibrium

system (19), (20), (21), and (25) as

at+1 = F (nt) +
1− F (nt)

1 + g
at, (A.20)

rt − 1 =
Rft
Πt+1

(rt+1 − 1)

rt+1

at
at+1 (1 + g)

, (A.21)

nt =
(1− α) ζat

1 + g

[
λ+

(1− λ)

1 + β + γ

(
β − γ

rt − 1

)]
, (A.22){

λ+
(1− λ)

1 + β + γ

[
β − γ

rt − 1

]}
=

βRft/Πt+1

βRft/Πt+1 − κ
λ. (A.23)

Define rft ≡ Rft/Πt+1. Log-linearizing this system yields

ât+1 =
g

1 + g

nF ′(n)

F (n)
n̂t +

1− F (n)

1 + g
ât,

r

r − 1
r̂t = r̂ft +

1

r − 1
r̂t+1 + ât − ât+1,

n̂t = ât + ϑr̂t,

r̂ft = −
ϑ(βRf/Π− κ)

κ
r̂t ≡ −%r̂t, (A.24)

where ϑ is given in (A.10). Notice that %, ϑ > 0 by condition (A.17).

Simplifying yields a system of two equations for ât and r̂t :[
ât+1

r̂t+1

]
=

 g
1+g

nF ′(n)
F (n) + 1−F (n)

1+g ϑ g
1+g

nF ′(n)
F (n)

(1− r)
[
1− g

1+g
nF ′(n)
F (n) −

1−F (n)
1+g

]
r + (r − 1)[ϑ g

1+g
nF ′(n)
F (n) + %]

[ ât
r̂t

]

≡ J

[
ât
r̂t

]
(A.25)
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Consider the quadratic characteristic equation G (ν) ≡ |J − νI| = 0. We can check that G (0) > 0

and G (1) < 0 by condition (27). Moreover limx→∞G (x) =∞ As in the proof of Proposition 1, we

deduce that there is an eigenvalue inside the unit circle and an eigenvalue outside the unit circle.

Thus the steady state is a saddle point.

[Insert Figure 7 Here.]

Finally we study transition dynamics using the phase diagram in Figure 7. The locus at+1 = at

represents the line

r̂t =
1− g

1+g
nF ′(n)
F (n) −

1−F (n)
1+g

ϑ g
1+g

nF ′(n)
F (n)

ât,

and the locus rt+1 = rt represents the line

r̂t =
1− g

1+g
nF ′(n)
F (n) −

1−F (n)
1+g

1 + ϑ g
1+g

nF ′(n)
F (n) + %

ât.

Notice that both lines have a positive slope and the locus r̂t+1 = r̂t is flatter than the locus

ât+1 = ât. Thus, if the initial value â1 < 0, then both r̂t and ât will increase over time to their

steady-state values.

We now examine the dynamics of other variables. As in the proof of Proposition 1, we only

need to study the signs of coefficients φrr, φn, and φΠ. Since Rft = rt(1 + z) and z is constant, Rft

increases over time as at increases over time given initial â1 < 0. Since n̂t = ât + ϑr̂t ≡ φnât and

φn > 0, as both ât and r̂t increase overtime, so does n̂t. Since

r̂ft = −
ϑ(βRf/Π− κ)

κ
r̂t ≡ −%r̂t = −%φrât ≡ φrrât,

we have φrr < 0. Thus the real interest rate Rft/Πt+1 decreases with at to the steady state. The

growth rate of the economy up to the first-order approximation is given by

logAt+1 − logAt = ât+1 − ât + log(1 + g) = (φa − 1)ât + log(1 + g).

It follows from φa ∈ (0, 1) that the growth rate of the economy declines as at increases. It follows

from

Π̂t+1 = r̂t − r̂ft = (φr − φrr)ât ≡ φΠât,

φr > 0, and φrr < 0 that the inflation rate Πt increases with at to the steady state. Q.E.D.

Proof of Proposition 3: The equilibrium system still consists of equations (19), (20), (21), and

(25). We first study the steady state which is characterized by equations (A.3), (A.2), (A.16), and

Π =
1 + z

1 + g
lim
t→∞

at
at+1

. (A.26)
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Notice that at may not converge to a positive constant when 0 < κ < κ∗∗. As in the proof of

Proposition 2, equation (A.18) still holds. But when κ ∈ (0, κ∗∗) , the first inequality in assumption

(A.19) is violated so that the following inequality holds in the steady state:

Φ′ (0) g >
(1− α) ζλβRf/Π

βRf/Π− κ
. (A.27)

Thus the only solution to equation (A.18) is µp = 0. As a result, we have np = ap = 0 in the steady

state.

The following algebra shows that the productivity growth will converge to a rate between 0 and

1 + g for κ < κ∗∗ :

lim
t→∞

At+1

At
= (1 + g) lim

t→∞

at+1

at
= (1 + g) lim

t→∞

(
µt
at

+
1− µt
1 + g

)
= (1 + g) lim

t→∞

F (nt)

at
+ 1 = (1 + g) lim

a→0

F (n)

a
+ 1

= (1 + g)F ′ (0)
∂n

∂a
|a→0 + 1 = F ′ (0)

(1− α) ζλβRf/Π

βRf/Π− κ
+ 1

< F ′ (0) Φ′ (0) g + 1 = g + 1,

where we have used equations (A.3) and (A.16) and µt → 0 to derive the second last equality. The

last inequality holds because (A.27) holds. By (A.26) and the above expression for lim
t→∞

at+1

at
, the

steady-state inflation rate satisfies

Π =
1 + z

F ′ (0)
(1−α)ζλβRf/Π
βRf/Π−κ + 1

>
1 + z

1 + g
. (A.28)

The poverty-trap steady state is characterized by a system of two equations (A.16) and (A.28) for

two variables Rf and Π.

We modify Figure 3 to show the existence of a unique solution denoted by Πp and Rpf . Now

the horizontal axis shows the real interest rate Rf/Π instead of the nominal interest rate Rf . The

borrowing-limit curve still describes the expression on the right-hand side of equation (A.16) as a

decreasing function of Rf/Π. The supply curve describes the expression on the left-hand side of

(A.16), which is written as a function Rf/Π :

λ+
1− λ

1 + β + γ

[
β − γ

Rf
Π

Π
1+z − 1

]
= λ+

1− λ
1 + β + γ

β − γ

Rf
Π

(
F ′ (0)

(1−α)ζλβRf/Π
βRf/Π−κ + 1

)−1
− 1

 ,
where we have used (A.28) to substitute for Π. We can check that the above expression increases

with Rf/Π. As in the proof of Proposition 2, there is a unique intersection point between the

borrowing-limit and supply curves such that (A.17) holds, which determines the equilibrium real

interest rate Rf/Π. Then Πp and Rpf are determined.
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It follows from (A.28) that Πp > (1 + z) / (1 + g) and Πp decreases with κ as
λβRf/Π
βRf/Π−κ increases

with κ (see Figure 3). Similarly, lim
t→∞

At+1/At increases with κ.

Next we study the local stability of the poverty trap steady state. The equilibrium system is

still given by equations (A.20) through (A.23). Since the steady-state values of nt and at are zero,

we cannot use log-linearization. Instead we use linearization in levels to derive

F (nt) = F (0) + F ′(0)nt = F ′(0)nt.

Substituting this equation into (19) yields

at+1 = F ′(0)nt +
1− F ′(0)nt

1 + g
at (A.29)

Combining equations (21) and (25) yields

nt =
(1− α) ζat

1 + g

λβRft/Πt+1

βRft/Πt+1 − κ
.

Linearizing around the steady state yields

nt =
(1− α) ζ

1 + g

λβRf/Π

βRf/Π− κ
at. (A.30)

Substituting this equation into (A.29), we obtain the approximate law of motion for at :

at+1 =

{
F ′(0)

(1− α) ζ

1 + g

λβRf/Π

βRf/Π− κ
+

1

1 + g

}
at −

F ′(0)

1 + g

(1− α) ζ

1 + g

λβRf/Π

βRf/Π− κ
a2
t . (A.31)

We have shown earlier that

0 < F ′(0)
(1− α) ζ

1 + g

λβRf/Π

βRf/Π− κ
+

1

1 + g
< 1,

when κ ∈ (0, κ∗∗) . It follows from (A.31) that at decreases monotonically to the steady state ap = 0

whenever it starts at any small a1 > 0. Thus the steady state is a saddle point. It follows from

(A.30) that nt also decreases monotonically to the steady state np = 0. Since µt = F (nt) , µt also

decreases monotonically to the steady state µp = 0.

We can derive the approximate productivity growth rate around the steady state

At+1

At
− 1 =

at+1

at
(1 + g)− 1

= F ′(0) (1− α) ζ
λβRf/Π

βRf/Π− κ
− F ′(0)

(1− α) ζ

1 + g

λβRf/Π

βRf/Π− κ
at, (A.32)

where the second equality follows from substitution of (A.31). Since F ′ (0) > 0 and
λβRf/Π
βRf/Π−κ > 0,

the productivity growth rate increases to the steady state when at decreases to the steady state.
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We log-linearize equation (A.21) to derive

r

r − 1
r̂t = r̂ft +

1

r − 1
r̂t+1 + x̂t (A.33)

where we define rft = Rft/Πt+1 and

xt ≡
at
at+1

=
1

F ′(0) (1−α)ζ
1+g

[
βRf/Π

βRf/Π−κλ
]

+ 1
1+g −

F ′(0)
1+g

(1−α)ζ
1+g

λβRf/Π
βRf/Π−κat

.

Here the second equality follows from equation (A.31). We then obtain the log-linearized equation

x̂t =
F ′(0) (1−α)ζ

1+g
λβRf/Π
βRf/Π−κ

F ′(0) (1− α) ζ
λβRf/Π
βRf/Π−κ + 1

at ≡ φxat.

Substituting (A.24) into (A.33) yields

r̂t =
1

r + (r − 1)%
r̂t+1 +

r − 1

r + (r − 1)%
x̂t. (A.34)

We now drop the quadratic term in (A.31) and write the first-order approximation to the law of

motion as at+1 = φaat, where φa ∈ (0, 1) . Since r = Rf/ (1 + z) > 1 and % > 0 by (A.17), we

iterate (A.34) forward to derive

r̂t =
(r − 1)φx

r + (r − 1)%− φa
at.

Thus, as at decreases to the steady state, r̂t also decreases to the steady state and so does Rft. It

follows from (A.24) and % > 0 that the real interest rate rft = Rft/Πt+1 increases to the steady

state when r̂t or Rft decreases to the steady state. Finally, since

Π̂t+1 = r̂t − r̂ft = (1 + %)r̂t,

the inflation rate Πt decreases to the steady state when r̂t decreases to the steady state. Q.E.D.

Proof of Proposition 4: Let βtΛt and βtΛtqt be the Lagrange multipliers associated with (32)

and (13), respectively. The variable qt represents the shadow value of the technology At+1. The

first-order conditions are given by

ωu′ (cet ) = u′ (cot ) = u′ (cyt ) = Λt,

Λt = βΛt+1(
1

α
− 1)

[
α

1
1−α Āt+1 −

(
α

χ

) 1
1−α

χAt

]
F ′
(
Nt/Āt+1

)
Āt+1

+Λtqt[Āt+1 −At]
F ′
(
Nt/Āt+1

)
Āt+1

,

Λtqt = β(1− µt+1)Λt+1qt+1 + β2Λt+2(1− µt+1)(
1

α
− 1)

(
α

χ

) 1
1−α

χ.
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In the steady state, we have

q =
β

1 + g
(1− µ)q +

(
β

1 + g

)2

(1− µ)(
1

α
− 1)

(
α

χ

) 1
1−α

χ,

and
1

F ′ (n)
= β

1

1 + g
(

1

α
− 1)

[
α

1
1−α −

(
α

χ

) 1
1−α

χ
a

1 + g

]
+ q

[
1− a

1 + g

]
.

Equation (13) implies

a =
F (n) (1 + g)

g + F (n)
. (A.35)

Using the above three equations we can derive

1

F ′ (n)
=

β

1 + g
(

1

α
− 1)

[
α

1
1−α −

(
α

χ

) 1
1−α

χ

]

+
β

1 + g − β(1− F (n))
(

1

α
− 1)

(
α

χ

) 1
1−α

χ
g

g + F (n)
.

This equation is equivalent to equation (34). We can easily check that the expression on the

left-hand side of the equation is an increasing function of µ and the expression on the right-hand

side is a decreasing function of µ. Given Assumption 1, it follows from the intermediate value

theorem that there is a unique solution, denoted by µFB ∈ (0, 1) , to the above equation. Then we

obtain the efficient investment level nF = Φ (µFB) . Plugging it into (A.35) gives aFB. The efficient

consumption and production allocation is derived in the main text. Q.E.D.

Proof of Proposition 5: Suppose that there is no fiscal policy. When money increments are

transferred to entrepreneurs instead of savers, the saver’s consumption and portfolio choices are

given by

cyt =
(1− λ)wt
1 + β + γ

, (A.36)

cot+1 =
β

1 + β + γ

Rft
Πt+1

(1− λ)wt, (A.37)

Mt

Pt
=

γ

1 + β + γ

Rft
Rft − 1

(1− λ)wt, (A.38)

St
Pt

=
1

1 + β + γ

βRft − β − γ
Rft − 1

(1− λ)wt, (A.39)

where we assume that

Rft > 1 +
γ

β
,

so that savings and money demand are positive. Notice that the demand for money and savings

depends on the nominal interest rate instead of the real interest rate. The monetary transfer is

given by
Mt −Mt−1

Pt
=

zt
zt + 1

Mt

Pt
=

zt
zt + 1

γ

1 + β + γ

Rft
Rft − 1

(1− λ)wt,
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where the second equality follows from (A.38).

The competitive equilibrium for a given interest rate sequence {Rft} under perfect credit mar-

kets can be summarized by a system of four difference equations, (18), (19), (20), and

nt =
(1− α) ζat

1 + g

[
λ+

zt
1 + zt

(1− λ)

1 + β + γ

γRft
Rft − 1

+
(1− λ)

1 + β + γ

βRft − β − γ
Rft − 1

]
. (A.40)

for four sequences {zt}, {at} , {Πt+1}, and {nt} such that (6) and Rft > 1 + γ/β are satisfied.

Equation (A.40) says that R&D investment is financed by the entrepreneur’s wage income, monetary

transfer, and external credit.

In the steady state the system becomes three equations (A.1), (A.2), and

n =
(1− α) ζa

1 + g

[
λ+

z

1 + z

(1− λ)

1 + β + γ

γRf
Rf − 1

+
(1− λ)

1 + β + γ

βRf − β − γ
Rf − 1

]
, (A.41)

for three unknowns n, z, and a, when the nominal interest rate Rf is set by the monetary authority.

Given the efficient innovation rate µFB, we have nFB = Φ (µFB) , and

aFB =
(1 + g)F (nFB)

g + F (nFB)
.

We now show that the monetary authority can set a specific nominal interest rate such that the

efficient innovation can be implemented in a market equilibrium with a perfect credit market on

the balanced growth path. Specifically, using the steady-state system, we can derive one equation

for one unknown Rf :

nFB =
(1− α) ζaFB

1 + g

[
λ+

(1− λ)

1 + β + γ

(γ + β) (Rf − 1)− γψF ′ (nFB) / (1 + g)

Rf − 1

]
,

The expression on the right-hand side of the equation is an increasing function of Rf . Under

Assumption 2, this function takes a value lower than nFB at Rf = 1 + γ/β and a value higher

than nFB when Rf →∞. It follows from the intermediate value theorem that there exists a unique

solution, denoted by R̄f > 1+γ/β, to the above equation. Given Rf = R̄f , we can also easily show

that n = nFB is the only equilibrium solution.

Once R̄f is determined, we can solve for the money growth rate z using (A.1):

1 + z =
R̄f (1 + g)

F ′ (nFB)ψ
.

Other equilibrium variables can also be easily determined.

Finally we show that there exists a cutoff κ0 such that when κ ≥ κ0 the credit constraint does

not bind in the market equilibrium described above. The credit constraint is given by(
βRft
Πt+1

− κ
)
Nt ≤

βRft
Πt+1

[
λwt +

zt
1 + zt

γ (1− λ)

1 + β + γ

Rft
Rft − 1

wt

]
,
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where the second term in the square bracket is the monetary transfer. In the steady state this

constraint becomes(
βRf

Π
− κ
)
n ≤

βRf
Π

(1− α) ζa

1 + g

[
λ+

z

1 + z

1− λ
1 + β + γ

γRf
Rf − 1

]
,

where we have used equation (15). The desired cutoff κ0 is defined by the following equation

nFB =
βR̄f (1 + g) / (1 + z)

βR̄f (1 + g) / (1 + z)− κ0

(1− α) ζaFB
1 + g

[
λ+

z

1 + z

1− λ
1 + β + γ

γR̄f
R̄f − 1

]
.

The proof is completed. Q.E.D.

Proof of Proposition 6: First we show that for any given µt−1 the efficient GDP is higher than

the market GDP because of the monopoly distortion. To show this result, we observe that the

efficient GDP Y e
t is given by (31). By (17), the equilibrium GDP in the market economy is given

by

Yt = wt + µt−1ψĀt

= (1− α)

(
α

χ

) α
1−α [

µt−1Āt + (1− µt−1)At−1

]
+ (χ− 1)µt−1

(
α

χ

) 1
1−α

Āt,

where we have substituted equations (13) and (15) and the expressions for ζ and ψ. We can easily

verify that Y e
t > Yt.

To achieve the efficient GDP, the government can subsidize the final good firm’s input expen-

diture. Let τxt(i) be the subsidy to input i in period t. Then the final good producer’s problem is

given by

max L1−α
t

∫ 1

0
At (i)1−α xt (i)α di−

∫ 1

0
τxt(i)pt(i)xt(i)di− wtLt.

This leads to

xt(i) =

(
τxt(i)pt (i)

α

) 1
α−1

At (i) . (A.42)

Since pt (i) = χ, it follows from (30) and (A.42) that setting

τxt(i) = τ0
xt(i) ≡

{ 1
χ if an innovation occurs

1 otherwise

achieves the efficient intermediate input level and final GDP Y e
t .

In this case a successful innovator produces intermediate good xt (i) = α
1

1−α Āt and earns

monopoly profits

pt (i)xt (i)− xt (i) = χα
1

1−α Āt − α
1

1−α Āt = ψ∗Āt,

where ψ∗ ≡ α
1

1−α (χ− 1) > ψ. Since the final good firm earns zero profit, the real wage under the

government policies is given by

wt = (1− α)

[
α

α
1−αµt−1Āt + (1− µt−1)

(
α

χ

) α
1−α

At−1

]
. (A.43)
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The total subsidy is given by∫ 1

0
(1− τxt (i)) pt (i)xt (i) di = α

1
1−αµt−1Āt(χ− 1).

Let wDt = wt − TwĀt denote the after-tax wage. Since money increments are transferred to

entrepreneurs instead of savers, we rederive the saver’s decision rules as

cyt =
(1− λ)wDt
1 + β + γ

, (A.44)

cot+1 =
β

1 + β + γ

Rft
Πt+1

(1− λ)wDt, (A.45)

Mt

Pt
=

γ

1 + β + γ

Rft
Rft − 1

(1− λ)wDt, (A.46)

St
Pt

=
1

1 + β + γ

βRft − β − γ
Rft − 1

(1− λ)wDt, (A.47)

where we assume that

Rft > 1 +
γ

β
,

so that savings and money demand are positive.

The entrepreneur’s budget constraint (4) when young becomes

Nt =
Bt
Pt

+ λwDt + τet, (A.48)

where τet is the monetary transfer

τet =
Mt −Mt−1

Pt
. (A.49)

The entrepreneur’s problem is to maximize his expected consumption when old:

max (1 + τN )F
(
Nt/Āt+1

)
ψ∗Āt+1 − TN Āt+1 −Rft

Pt
Pt+1

[Nt − λwDt − τ et ].

Suppose that the credit constraint is slack. The first-order condition implies that

(1 + τN )F ′(nt)ψ
∗ = Rft

Pt
Pt+1

. (A.50)

By the market-clearing condition for loans and equations (A.46), (A.47), (A.48), and (A.49),

we derive that

Nt = λwDt +
zt

1 + zt

(1− λ)γ

1 + β + γ

Rft
Rft − 1

wDt +
1− λ

1 + β + γ

βRft − β − γ
Rft − 1

wDt. (A.51)

The three terms on the right-hand side of this equation give three sources of funds for the R&D

investment: internal funds (wage), government monetary transfers, and external debt.

In the steady state equation (A.2) still holds and (A.50) becomes

(1 + τN )F ′(n)ψ∗ =
Rf
Π
, (A.52)
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where Π = (1 + z) / (1 + g) . Using (15) and (A.2), we rewrite (A.51) as

n = η

[
λ+

z

1 + z

(1− λ)

1 + β + γ

γRf
Rf − 1

+
1− λ

1 + β + γ

βRf − β − γ
Rf − 1

]
, (A.53)

where it follows from (A.43) that

η ≡ wDt
Āt+1

= (1− α)

[
α

α
1−αµ

1 + g
+ (1− µ)

(
α

χ

) α
1−α a

(1 + g)2

]
− Tw

1 + g
(A.54)

is constant along a balanced growth path. The variable η represents the normalized after-tax wage

on the balanced growth path.

By (A.48), and (A.49), the credit constraint (5) becomes

Nt ≤
βRft/Πt+1

βRft/Πt+1 − κ

[
λwDt +

zt
1 + zt

γ (1− λ)

1 + β + γ

Rft
Rft − 1

wDt

]
. (A.55)

In the steady state this constraint becomes

n ≤
ηβRf/Π

βRf/Π− κ

[
λ+

z

1 + z

1− λ
1 + β + γ

γRf
Rf − 1

]
, (A.56)

where we have used equation (??).

Since we do not consider government spending and government debt, the following government

budget constraint must be satisfied:

τNF
(
Nt−1/Āt

)
ψ∗Āt + α

1
1−αµt−1Āt(χ− 1) + τet = TN Āt + TwĀt +

Mt −Mt−1

Pt
,

where the second term represents the total subsidy to intermediate inputs. By (A.49), this con-

straint along a balanced growth path becomes

τNF (n)ψ∗ + α
1

1−αµ(χ− 1) = TN + Tw. (A.57)

The steady-state competitive equilibrium under fiscal and monetary policy instruments {Rf , τx (i) ,

Tw, τN , TN} consists of four equations (A.2), (A.52), (A.53), and Π = (1 + z) / (1 + g) for four vari-

ables n, a, z, and Π such that (A.56) and (A.57) hold.11

We use (33) and ω = 1 to derive the efficient consumption for the young saver

cyt =
1

3
(Y e
t −Nt) .

To implement this efficient consumption in a market equilibrium, we use (A.44) to set the labor

income tax as

TwĀt = wt −
1 + β + γ

3(1− λ)
(Y e
t −Nt) .

11During the transition path, we may use the interest rate rule

Rft = Rf

(
Πt

Π

)θ
.
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Using equations (15) and (31), we derive that

Tw =

[
1− 1 + β + γ

3(1− λ)

]
(1− α)

[
α

α
1−αµ+ (1− µ)

(
α

χ

) α
1−α a

(1 + g)

]
(A.58)

+
1 + β + γ

3(1− λ)
(1 + g)n,

on the balanced growth path. We set TN such that the government budget constraint (A.57) is

satisfied.

It remains to choose τN and Rf such that the competitive equilibrium implies efficient produc-

tion and innovation such that a = aFB, n = nFB, and µ = F (nFB). We maintain the following

assumption similar to Assumption 2 such that the efficient R&D investment cannot be self-financed

by the entrepreneur’s wage income and monetary transfers and external credit are needed.

Assumption 3 Parameter values are such that 0 < γ < 1− β and

ληFB < nFB < ηFB

[
λ+

(1− λ) (β + γ)

1 + β + γ

]
,

where ηFB is defined in (A.54) and where Tw is defined in (A.58) with µ = µFB and a = aFB.

We now set policy variables R0
f , τ

0
N , T

0
N , and T 0

w such that they satisfy

nFB = ηFB

λ+
1− λ

1 + β + γ

β (γ + β)
(
R0
f − 1

)
− γ

β
(
R0
f − 1

)
 , (A.59)

τ0
N =

(1 + g) /β

F ′(nFB)ψ∗
− 1, (A.60)

T 0
N = τ0

NF (nFB)ψ∗ + α
1

1−αF (nFB) (χ− 1)− T 0
w,

T 0
w =

[
1− 1 + β + γ

3(1− λ)

]
(1− α)

[
α

α
1−αµFB + (1− µ)

(
α

χ

) α
1−α aFB

(1 + g)

]
(A.61)

+
1 + β + γ

3(1− λ)
(1 + g)nFB.

As in the proof of Proposition 5, we use the intermediate value theorem to show that under

Assumption 3 there exists a unique solution for R0
f > 1 + γ/β to equation (A.59).

Define the cutoff κ0 by the equation

nFB =
(1 + g) ηFB
1 + g − κ0

[
λ+

βR0
f − 1

βR0
f

1− λ
1 + β + γ

γ (1 + g)

1 + g − β

]
. (A.62)

Then when κ ≥ κ0 the credit constraint does not bind on the balanced growth path.
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Given the above monetary and fiscal policy variables, the steady-state system (A.2), (A.52),

(A.53), and Π = (1 + z) / (1 + g) becomes

a =
F (n) (1 + g)

g + F (n)
, Π =

1 + z

1 + g
,

F ′ (n)

F ′ (nFB)
=
R0
f

Π

β

1 + g
,

n = η

[
λ+

z

1 + z

(1− λ)

1 + β + γ

γR0
f

R0
f − 1

+
1− λ

1 + β + γ

βR0
f − β − γ
R0
f − 1

]
,

for four variables n, a, µ, and z.

We can simplify this system to one equation for n :

n

η
= λ+

[
1− F ′ (n)

βR0
fF
′ (nFB)

]
(1− λ)

1 + β + γ

γR0
f

R0
f − 1

+
1− λ

1 + β + γ

βR0
f − β − γ
R0
f − 1

, (A.63)

where

η =
1 + β + γ

3(1− λ)

(1− α)

α α
1−αF (n)

1 + g
+ (1− F (n))

(
α
χ

) α
1−α

F (n)

(1 + g) (g + F (n))

− (1 + g)n

 .

We can check that n = nFB is a solution to equation (A.63). We next show that this is only

solution. Since F (n) is concave and F (0) = 0, we can show that F (n) /n decreases with n. Thus

η/n decreases with n or n/η increases with n. We also know that the expression on the right-hand

side of (A.63) increases with n. Two monotonic curves can only have one intersection point if there

is any. Thus there is a unique solution n = nFB to equation (A.63).

We can then verify that the solution to the above system is given by

a = aFB, n = nFB, z = βR0
f − 1, Π =

βR0
f

1 + g
.

Since the market real interest rate R0
f/Π = β (1 + g) is the same as the efficient rate in (35), the old

saver consumption satisfies cot+1 = cyt (1 + g) . Thus cot = cyt on the balanced growth path. We then

attain consumption efficiency by (33) with ω = 1. Since the above system has a unique solution,

the preceding solution is the only steady-state equilibrium that attains the efficient innovation,

production, and consumption allocation. Q.E.D.

B Data Description

For Figure 1 we follow Levine, Loayza, and Beck (2000) and AHM (2005) and consider cross-

sectional data on 71 countries over the period 1960–1995. As in their papers, we use private credit,

defined as the value of credits by financial intermediaries to the private sector, divided by GDP, as

our preferred measure of financial development. We construct this measure using the updated 2017

version of the Financial Development and Structure Database. We have also used other measures
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of financial development and the pattern in Figure 1 does not change. We construct the average

per capita GDP growth rates using the Penn World Table and construct the average inflation rates

and the average (broad) money growth rates using the World Bank WDI database. We delete

outliers with average inflation rates higher than 40%, but the pattern in Figure 1 still holds for

the full sample. The outliers are Argentina, Bolivia, Brazil, Chile, Israel, Peru, and Uruguay. The

non-convergence countries used in Panel D of Figure 1 are identified according to Table II of AHM

(2005).
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Figure 1: The average inflation rate, the average per capita GDP growth rate, the average money
growth rate, and the average level of financial development, 1960-1995.
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Figure 2: Transition dynamics for the case of perfect credit markets.
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Figure 3: Determination of the steady-state equilibrium nominal interest rates. The curves labeled
“Supply” and “Demand” describe the supply of and demand for funds normalized by the wage rate,
respectively. The curves labeled “Limit κ > κ∗” and “Limit κ > κ∗” describe the borrowing limits
normalized by the wage rate for κ > κ∗ and κ < κ∗, respectively.
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Figure 4: Transition dynamics for the case of not too tight credit constraints.
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Figure 5: Transition dynamics for the case of poverty trap.
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Figure 6: Phase diagram for the case with perfect credit market.

Figure 7: Phase diagram for the case with not too tight credit constraint.
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