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1 Introduction

A vast literature has documented that various measures of the volatility of asset returns

display features akin to those of a long-memory process. This is also the case for the volatility

of exchange rate series; see, e.g., Anderson et al. (2001) and Anderson and Bollerslev (1997),

among others. On the other hand, it has been suggested that the long-memory features

present in the data could be due to occasional level shifts; see, e.g., Diebold and Inoue

(2001). This follows from similar arguments used in Perron (1989, 1990) who showed that

changes in level and/or slope of the trend function of a series causes the estimate of the sum

of the autoregressive parameters to be biased towards one, suggesting non-stationarity.

Some recent papers have tried to assess whether random level shifts are indeed responsible

for this long-memory feature and not simply a theoretical curiosity. Early attempts to that

e¤ect include St¼aric¼a and Granger (2005) and Granger and Hyung (2004), who argued that

for the volatility of stock market indices the evidence for long-memory is weaker when level

shifts are taken into account. St¼aric¼a and Granger (2005) presented evidence that log-

absolute returns of the S&P 500 index is an i:i:d: series a¤ected by occasional shifts in the

unconditional variance and showed that this speci�cation has better forecasting performance

than the more traditional GARCH(1,1) model and its fractionally integrated counterpart.

Perron and Qu (2007) analyzed the time and spectral domain properties of a stationary short

memory process a¤ected by random level shifts. Perron and Qu (2010) showed that, when

applied to daily S&P 500 log-absolute returns over the period 1928-2002, the level shifts

model explains both the shape of the autocorrelations and the path of log periodogram

estimates as a function of the number of frequency ordinates used. Qu and Perron (2013)

estimated a stochastic volatility model with level shifts using a Bayesian approach with

daily data on returns from the S&P 500 and NASDAQ indices over the period 1980.1-

2005.12. They showed that the level shifts account for most of the variation in volatility, that

their model provides a better in-sample �t than alternative models and that its forecasting

performance is better for the NASDAQ and just as good for the S&P 500 as standard short

or long-memory models without level shifts. Lu and Perron (2010) considered a random

level shifts model for which the series of interest is the sum of a short memory process and a

jump or level shifts component, modeled as the cumulative sum of a process which is 0 with

some probability (1 � �) and is a random variable with probability �. They applied it to

the logarithm of daily absolute returns for the S&P 500, AMEX, Dow Jones and NASDAQ

stock market return indices. The point estimates obtained imply few level shifts for all
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series. But once these are taken into account, there is little evidence of serial correlation

in the remaining noise and, hence, no evidence of long-memory. Once the estimated shifts

are introduced to a standard GARCH model applied to the returns series, any evidence of

GARCH e¤ects disappears. They also considered rolling out-of-sample forecasts of squared

returns. In most cases, the simple random level shifts model clearly outperforms a standard

GARCH(1,1) model and, in many cases, it also provides better forecasts than a fractionally

integrated GARCH model. Varneskov and Perron (2015) extended the analysis to introduce

random level shifts in a general ARFIMA (autoregressive fractionally integrated moving-

average) model. They showed that random level shifts are an essential component to model

adequately the volatility of various series, whether from daily data or from realized volatility

series constructed using high frequency data. From a forecasting perspective, they showed

that the random level shifts model is the only one that consistently belong to the 10% Model

Con�dence Set of Hansen et. al. (2011).

Hence, there is growing evidence that a random level shifts model is indeed a genuine

contender to explain the long-memory features of volatility. However, most of the results so

far pertain to stock market return indices. Little evidence about the adequacy of random level

shifts models is available concerning the properties of the volatility of exchange rate series.

Our goal is to use some of the methodologies recently developed to address this issue. One

exception is Morana and Beltratti (2004) who considered structural changes in the realized

variance processes of the DEM/USD and JPY/USD exchange rates. Their results show that

the volatility of DEM/USD and JPY/USD exchange rates show clear evidence of genuine

long memory and that the structural changes can only partially explain the long memory

features. Their forecasting exercises indicate that for short-term forecasting neglecting the

structural changes is not that important, but that accounting for them provides substantial

improvements for long-term forecasting. However, as noted by Varneskov and Perron (2015),

the results obtained are very di¤erent when considering historical spans of daily returns

compared to shorter spans of realized volatility series constructed from high frequency data.

In this paper, we follow the approach of Lu and Perron (2010). We consider historical

series of daily exchange rates for the JPY/USD, DEM/USD, CAD/USD, GBP/USD and

EUR/USD. We estimate a random level shifts model for the log absolute return series,

adopting the speci�cation that the series is the sum of a short memory process and level

shifts component. The level shifts component is speci�ed as a mixture model which takes

value 0 with probability � and is some random variable with probability 1��. To estimate
the model, we cast it into a generalized state space framework with a mixture of normal
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distributions and use the estimation method developed by Perron and Wada (2009). We

also evaluate the forecasting performance of the random level shifts model relative to the

popular ARFIMA model as well as the time varying parameter and the Markov switching

models, which like ours attempt to allow for changes in the mean of the series. We show

that the random level shift model indeed provides improved forecasts in all cases. Also, we

document that though few level shifts are present, once they are taken into account any

evidence of long-memory disappears and what is left is a noise component that is essentially

white noise.

We further support our results using a variety of robustness checks: a) the estimate of the

long-memory parameter of Hou and Perron (2015) that is robust to random level shifts and

noise; b) the test of Qu (2011) for the null hypothesis that a time series is a stationary long

memory process against the alternative hypothesis that it is a¤ected by random level shifts

(or some other low frequency contamination), which is also robust to noise; c) as in Perron

and Qu (2010), we also look at the path of the log-periodogram estimates d̂ as the bandwidth

m varies, i.e., the number of frequencies used to construct the estimate; d)we present results

from applying the model used in Varneskov and Perron (2015), which jointly estimates the

random level shifts along with the long-memory parameter (and any short-run dynamics if

desired); the ARFIMA(1,d,1) version is robust to noise as discussed in Varneskov and Perron

(2015). All these show that the main results remain valid, namely that the exchange rate

series are better modelled as random level shifts processes with remaining variations that

are essentially white noise. In particular, when accounting for the presence of such random

level shifts, the evidence for any remaining long-memory disappears.

The structure of the paper is as follows. Section 2 presents the model and the speci�ca-

tions adopted. Section 3 discusses the method of estimation. The empirical results obtained

from estimating the model are presented in Section 4 along with evidence that the level shifts

account for all the long-memory features, including various robustness checks. We also show

that a simple RLS model with white noise errors forecasts better than ARFIMA models.

Section 5 o¤ers brief concluding remarks.

2 Model

The random level shifts model considered is speci�ed by

yt = a+ � t + ct
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where a is constant term, � t is the random level shifts component and ct is a short memory

process to model the remaining noise. The level shifts component is given by:

� t = � t�1 + �t

where �t = �t�t with �t a binomial variable, which takes value 1 with probability � and

value 0 with probability 1 � �. When �t = 1, a random level shift �t happens having a

distribution �t � i:i:d N(0; �2�). Furthermore, �t, �t and ct are mutually independent. For
the short memory component, in general ct can be de�ned by the process ct = C(L)et with

et � i:i:d: N(0; �2e), where C(L) = �
1
i=0ciL

i,
P1

i=0 ijcij <1 and C(1) 6= 0. However, as will
be shown for the series considered, once the level shifts are accounted for, barely any serial

correlation remains. Accordingly, we shall simply specify ct as an AR(1) process. Hence, the

model to be used is:

yt = a+ � t + ct

� t = � t�1 + �t

ct = �ct�1 + et

�t = �t�t

Note that we can write �t = �t�1t + (1 � �t)�2t, with �it � i:i:d N(0; �2�i) and �
2
�1 = �2�,

�2�2 = 0. This allows us to cast the model into a state space framework. More speci�cally,

with the error term being a mixture of two normal distributions, where

�yt = ct � ct�1 + �t

and

�t = �t�1t + (1� �t)�2t
ct = �ct�1 + et

In matrix form,

�yt = HXt + �t; Xt = FXt�1 + Ut

In general, when ct follows an AR(p) process, then

Xt = [ct; ct�1; � � � ; ct�p]
0
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F =

0BBBBBBBBB@

�1 �2 � � � � � � �p

1 0 � � � � � � 0

0 1 � � � � � � 0
...

. . . . . . . . .
...

0 � � � 0 1 0

1CCCCCCCCCA
H = [1;�1; � � � ; 0], Ut is a p-dimensional normally distributed random vector with zero mean
and covariance matrix

Q =

0@ �2e 01�(p�1)

0(p�1)�1 0(p�1)�(p�1)

1A
Comparing this model with the standard state space model, the di¤erence is that the error

term is a mixture of two normal distributions.

3 Estimation Method

We apply the estimation method proposed by Perron and Wada (2009), see also Perron and

Wada (2016). In their paper, they generalized the trend cycle decomposition framework

based on unobserved components with errors that are mixtures of normal distributions,

thereby allowing shifts in the slope and level of the trend functions. The main ingredient

that underlies the estimation procedure is that the model can be written as a state space

model with normal errors occurring in two di¤erent possible states. These states can be

described by the combined values of the Bernoulli random variables. From this we can

generate the log likelihood function from the decomposition of the prediction errors to obtain

estimates. Let Yt = [�y1;�y2; � � � ;�yt] represents the observations available at time t
and � = [�2�; �; �

2
e; �1; � � � ; �q] be the parameter vector to be estimated. The log-likelihood

function is

ln(L) =
TX
t=1

ln f(�ytjYt�1; �);

where,

f(�ytjYt�1; �) =
2X
i=1

2X
j=1

f(�ytjst�1 = i; st = j; Yt�1; �)Pr(st�1 = i; st = jjYt�1; �)

Here, st is an indicator to represent whether or not a random level shift occurs. That is,

when st = 1, then �t = 1 and a random level shift happens; when st = 2, �t = 0 and there
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is no level shift. Let $ij
t = f(�ytjst�1 = i; st = j; Yt�1; �) for i; j 2 1; 2, and

e"ijtjt�1 = Pr(st�1 = i; st = jjYt�1; �)

= Pr(st = j)

2X
k=1

Pr(st�2 = k; st�1 = ijYt�1; �)

= Pr(st = j)e"t�1jt�1; i; j 2 1; 2

where,

e"kitjt�1 = Pr(st�2 = k; st�1 = ijYt�1; �)

=
f(�yt�1jst�2 = k; st�1 = i; Yt�2; �)Pr(st�2 = k; st�1 = i; Yt�2; �)

f(�yt�1jYt�2; �)

So we have,

e"kit+1jt = Pr(st+1 = i; st = kjYt; �) = Pr(st+1 = i) 2X
j=1

e"jktjt:
with

e"11t+1jt = � 2X
j=1

e"j1tjt = �[e"11tjt + e"21tjt]
e"21t+1jt = � 2X

j=1

e"j2tjt = �[e"12tjt + e"22tjt]
e"12t+1jt = (1� �) 2X

j=1

e"j1tjt = (1� �)[e"11tjt + e"21tjt]
e"22t+1jt = (1� �) 2X

j=1

e"j2tjt = (1� �)[e"12tjt + e"22tjt]
In matrix form, 0BBBBBB@

e"11t+1j1e"21t+1jte"12t+1jte"22t+1jt

1CCCCCCA =

0BBBBBB@
� � 0 0

0 0 � �

1� � 1� � 0 0

0 0 1� � 1� �

1CCCCCCA

0BBBBBB@
e"11tjte"21tjte"12tjte"22tjt

1CCCCCCA
The conditional likelihood function for �yt is:

f(�ytjst�1 = i; st = j; Yt�1; �) =
1p
2�
jf ijt j�1=2 exp(�

vij
0

t (f
ij
t )

� 1
2vijt

2
)
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where vijt is the prediction error,

vijt = �yt ��yijtjt�1 = �yt � E[�ytjst = i; st�1 = j; Yt�1; �]

and f ijt = E(v
ij
t v

ij0

t ) is the prediction error variance. The prediction �ytjt�1 based on past

information does not depend on the state of time t, but �yt does. The basic inputs are

predictions for the state variables and their variances, which are

X i
tjt�1 = FXtjt�1

P itjt�1 = FP
i
tjt�1F

0 +Q

The prediction error is vijt = �yt �HX ij
tjt�1, so that f

ij
t = HP

i
tjt�1H

0 + Rj, where Rj is the

variance of the error term, which takes two possible values: Rj = �2� with probability � when

�t = 1, Rj = 0 with probability (1� �) when �t = 0. Applying the updating formula, given
st = j; st�1 = i, we obtain:

X ij
tjt = X

i
tjt � P itjtH 0(HP itj�1H

0 +Rj)
�1(�yt �HX i

tjt�1)

P ijtjt = P
i
tjt�1 � P itjt�1H 0(HP itjt�1H

0 +Rj)
�1HP itjt�1:

As in Perron and Wada (2009), to reduce the dimension of the estimation problem, we adopt

the re-collapsing procedure of Harrison and Stevens (1976), given by:

Xj
tjt =

P2
i=1 Pr(st�1 = i; st = jjYt; �)X

ij
tjt

Pr(st = jjYt; �)

and

P jtjt =

P2
i=1 Pr(st�1 = i; st = jjYt; �)[P

ij
tjt + (X

j
tjt �X

ij
tjt)(X

j
tjt �X

ij
tjt)

0]

Pr(st = jjYt; �)
:

4 Empirical Results for Exchange Rate Returns

This section presents the main results of the paper. We �rst discuss the data used. We then

present in Section 4.2 preliminary diagostics suggesting that the various series are better

characterized as random level shifts processes with short-memory noise rather than long-

memory processes. In Section 4.3, we then present the estimates of the model discussed in

the previous section. Using the smoothed estimate of the random level shifts process, we

show that once accounting for the shifts the remaining variations are essentially white noise.

In order to further substantiate this result, Section 4.4 present results from applying the
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model used in Varneskov and Perron (2015), which jointly estimates the random level shifts

component along with the long-memory parameter (and short-run dynamics if desired).

These show that the results remain valid with estimates of d close to 0 and statistically

signi�cant parameters for the level shifts process. Finally, in Section 4.5, we show that

a simple RLS model with white noise errors forecasts better than ARFIMA, time varying

parameter and Markov switching models.

4.1 The data

We consider the random level shifts model for �ve daily exchange rate returns series: the

JPY/USD, DEM/USD (both from 10/11/1983 to 7/30/2010; 6,994 observations; obtained

from the CRSP database), CAD/USD (from 01/05/1971 to 09/11/2015; 11224 observa-

tions), GBP/USD (from 01/05/1971 to 09/11/2015; 11218 observations) and EUR/USD

(from 01/05/1999 to 09/11/2015; 4197 observations). The last three daily series are from

the database of the Federal Reserve Bank of St. Louis. We apply our level shifts model

to log-absolute returns since they do not su¤er from a non-negativity constraint as do, say,

absolute or squared returns. There is also no loss relative to using squared returns in iden-

tifying level shifts since log-absolute returns are a monotonic transformation. Since we wish

to identify the probability of shifts and their locations, the fact that log-absolute returns

are quite noisy is not problematic since our methods are robust to the presence of noise.

Another reason is the fact that for many asset returns, a log-absolute transformation yields

a series that is closer to being normally distributed (see, e.g., Andersen, Bollerslev, Diebold

and Labys, 2001). When returns are zero or close to it, the log absolute value transformation

implies extreme negative values. Using our method, these outliers would be attributed to

the level shifts component and thus bias the probability of shifts upward. To avoid this

problem, we bound absolute returns away from zero by adding a small constant, i.e., we use

log (jrtj+ 0:001), a technique introduced by Fuller (1996).

4.2 Preliminary diagnostics

Our aim is to assess whether the long-memory feature is genuine or caused by the presence

of level shifts. To that e¤ect, we �rst discuss some features of the series. We �rst estimate

the long-memory parameter d using the modi�ed local Whittle estimator of Hou and Perron

(2014). The most general version of this class of estimators, the LWPLFC estimate, has the

advantage of accounting for all kinds of contaminations: low frequency (e.g., random level

shifts), additive noise and short memory dynamics. When low frequency contaminations are
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present, it has, in most cases, the smallest bias and mean-squared error amongst all existing

estimators designed to control for low frequency contaminations, whether or not other types

of contaminations are present. The results are reported in Table 1, along with the standard

Local Whittle estimate (LW) (Kunsch, 1987). First, as expected the estimates of d using

the standard LW estimator are high, ranging from 0.23 to 0.46, suggesting long-memory

processes. However, the LWPLFC estimates of Hou and Perron (2014), which are robust to

noise and random level shifts, are small ranging from -0.02 to 0.11. Comparing the results

obtained from both estimator strongly suggests that the apparent long-memory feature in

the data is actually due to random level shifts. The bandwidths used in the standard LW

and Hou and Perron robust LW are both m = T 0:8.

To further provide evidence, we applied the test of Qu (2011) for the null hypothesis that

a given time series is a stationary long memory process against the alternative hypothesis

that it is a¤ected by regime change, random level shifts or a smoothly varying trend (i.e., a

low frequency contamination), which is robust to noise. The results are presented in Table

2 for two trimming parameters " = 0:02, 0:05. Except for the DEM/USD, the test strongly

rejects the null hypothesis of a long memory process for all other four volatility series.

Another way to distinguish a long memory process from a short memory process with

random level shifts is to look at the path of the log-periodogram estimates d̂ as the bandwidth

m varies, i.e., the number of frequencies used to construct the log-periodogram estimate of

d (Geweke.and Porter-Hudak, 1983). As discussed in Perron and Qu (2010), there is a

discontinuity in the asymptotic distribution for small and larger rates of increase of m.

First, when m is near or below T 1=3, d̂ will be in a neighborhood of 1. When m is roughly

between T 1=3 and T 1=2, d̂ drops to a new level when the stationary component starts to a¤ect

the limiting distribution. As m increases beyond T 1=2 there is a further gradual decrease in d̂

as the short-memory component becomes increasingly more important, relative to the level

shifts component, in determining the limiting distribution. The picture is very di¤erent if

the underlying model is that of a long-memory process, e.g., a fractionally integrated model.

Here, the limiting distribution of the log periodogram estimate d̂ is the same regardless of

the rate of increase of m relative to the sample size T . Hence, we can use the path of the

estimates d̂ obtained for a wide range of values of m to discriminate between the two models.

In Figure 1, we plot the paths of the log-periodogram estimates as a function of m. The

vertical lines in each plot refers to values for the bandwidth of m = T a for a = 1=3; 1=2; 2=3:

The pattern of the paths is very similar to what is predicted by the theoretical results if the

true underlying structure is a short memory process with level shifts. The estimates d̂ reach
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a peak value near m = T 1=3, then gradually decrease as the stationary component starts to

a¤ect the limiting distribution.

4.3 Results from estimating the basic model

The empirical evidence discussed above indicates that a random level shifts model is a more

likely candidate to explain the features of the data rather than a long-memory process. We

now present the estimates of the RLS model for the exchange rate volatility series. For the

speci�cation of the short memory component, we consider the white noise case: ct = et, so

that the parameters to be estimated are (��; �; �e). The initial value for the state vector is

X 0
0j0 = (0; 0)

0 and the initial value for the covariance matrix is set to

P0j0 =

0@ �2e 0

0 0

1A :
The estimates are presented in Table 3. The probability of shifts is very small. Given

the point estimate of the probability of shifts, one can deduce an implied estimate of the

number of shifts in the sample: 5 for JPY/USD, 8 for DEM/USD, 75 for CAD/USD, 47 for

GBP/USD and 7 for EUR/USD. As we shall see, even when such few shifts are taken into

account the properties of the remaining noise is substantially changed.

We seek to assess whether or not the random level shifts component can explain the long

memory property of the exchange rate returns. The �rst strategy we adopt is the following.

Given the estimated number of shifts, we estimate the break dates and regime speci�c means

using the method of Bai and Perron (2003). Once these are obtained, we estimate the noise

component as the di¤erence between the original series and the �tted level shifts process 1.

To be more speci�c, let m be the number of breaks (e.g., 8 for the DEM/USD, 5 for

the JPY/USD, etc.), Ti (i = 1; � � � ;m) be the break dates (with the convention that T0 =
0; Tm+1 = T ), and fui; i = 1; :::;m + 1g be the means within each regime. The method of
Bai and Perron (2003) allows obtaining estimates of the break dates fT̂i; i = 1; :::;mg and
regime-speci�c means fûi; i = 1; :::;m + 1g as global minimizers of the objective functionPm+1

i=1

PTi
t=Ti�1+1

(yt � ui)2. The noise component, say ĉt is then obtained as ĉt = yt �Pm+1
i=1 ûiDUi;t, where DUi;t = 1 if T̂i�1 < t � T̂i and 0, otherwise. To get a better view of

the implied level shifts process and its relation to the volatility of the exchange rate series,

Figure 2 presents graphs of the �tted level shifts process in conjunction with a smoothed

1Given the relatively large nuber of breaks due to the long span of data available, note that for CAD/USD
we use only the last 4500 observations and for GBP/USD the last 5000.
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estimate of the log-absolute returns, obtained using a standard Gaussian kernel. The results

reveal that the level shifts capture the main movements of the series.

The autocorrelation functions of yt and ĉt are presented in Figure 3. The autocorrelation

functions decay slowly for the original series. However, once the level shifts are taken into

account, the autocorrelation functions show basically no serial correlations left. Even if

the level shifts are few in number, they can fully explain and account for the long-memory

features of the exchange rate series.

4.4 Joint estimation of level shifts and long memory

The second strategy we adopt to assess whether or not the random level shifts component

can explain the long memory property of the exchange rate returns, is to extend the model to

jointly estimate the RLS model along with a long-memory process. We adopt the model and

estimation method proposed by Varneskov and Perron (2015) to jointly estimate random

level shifts together with an ARFIMA model. We model the volatility of an exchange

rate series as following a random level shifts processes with a fractionally integrated noise

component. We estimate the model using two speci�cations, RLS_ARFIMA(0,d,0) and

RLS_ARFIMA(1,d,1). The latter incorporates short memory dynamics in the form of an

ARMA(1,1) process. Note in particular that the version RLS_ARFIMA(1,d,1) is robust to

the presence of noise in the series because of the inclusion of the moving-average component;

see Varneskov and Perron (2015) for a discussion and supporting evidence of this feature.

The estimation results are presented in Table 4. In all cases, the estimates of the pa-

rameters of the RLS component are similar to those reported in Table 3, in particular the

estimated shift probabilities remain small but the overall importance of the RLS compo-

nent is large. Also of importance is the fact that the estimates of d are all close to 0.

This shows that after accounting for random level shifts, there is no evidence for remain-

ing long-memory in the data. Note that the estimate of the AR and MA parameters in the

RLS_ARFIMA(1,d,1) speci�cation are close to each other suggesting near-cancellation. The

reason they are slightly di¤erent is due to the way the RLS_ARFIMA(1,d,1) speci�cation

accounts for noise in the series (again, see Varneskov and Perron, 2015, for a discussion).

4.5 Forecasting

We further consider the performance of the random level shifts model with white noise errors

in forecasting volatility proxied by squared returns relative to three competing models: the

ARFIMA, the time varying parameter (TVP) and the Markov switching models. The reason
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to make the comparisons with the ARFIMA model is that it is generally perceived as a

good forecasting model for asset volatility. We also include the time varying parameter and

Markov switching models because they are popular models that consider smooth changes or

regime switches in the unconditional mean, as our model does. The time varying parameter

model (TVP) speci�es the unconditional mean as a random walk process: yt = � t + et and

� t = � t�1+�t; where et; �t are independent to each other and et s N(0; �2e); �t s N(0; �2�): It
is actually a special case of the RLS model proposed in this paper with the binomial variable

�t taking value 1 with probability 1. For the Markov switching model, we use a two-state

Markov regime switching model de�ned by yt = �St + "t where St = 1; 2 and "t � i:i:d:

N(0; �2St) with an unconstrained transition matrix P for the state variable St; see Hamilton

(1994) for details 2.

We follow the method adopted by Varneskov and Perron (2015) to assess the relative

forecasting performance. For the random level shifts model, we obtain � -step ahead forecasts

directly from the �ltered estimates obtained when estimating the state-space model. The

� -step ahead forecast is then given by:

bytjt+� = yt +HF �
"

1X
i=0

1X
j=0

Pr(st+1 = j) Pr(st = ijYt)X ij
tjt

#
where X ij

tjt is the �ltered estimate of Xt which depends on whether st+1 = j and st = i

for i; j 2 f0; 1g2. We consider out-of-sample forecasting of the last 900 (T out 2 [1; 900])
days of the �ve exchange rate series. We compare �ve models, the Random Level Shift,

ARFIMA(1; d; 1), ARFIMA(0; d; 0), TVP and markov switching. We consider direct � -

step ahead forecasting for three di¤erent horizons � = (1; 5; 10). The � -step ahead forecasts

are de�ned as yt+� jt =
P�

s=1 byt+sjt. Similarly the cumulative volatility proxy is de�ned by
�2t;� =

P�
s=1 yt+s. We use the mean square forecast error (MSFE) criterion de�ned as:

MSFE� =
1

T f

T fX
t=1

(�2t;� � yt+� jt)2

where T f is the total number of forecasts produced. The MSFEs of the forecasts are reported

in Table 5 for di¤erent forecasting horizons. The RLS model performs the best with the

smallest MSFEs for all �ve exchange rate series. In most cases, the TVP model is the second

best except for the case of GBP/USD, in which case the ARFIMA(1; d; 1) is the second best

2For the estimation, we used the Matlab codes based on MS_Regress, the MATLAB Package for Markov
Regime Switching Models by Marcelo Perlin.
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model. The forecasting performance of the Markov Switching model is considerably worse

than all other competing models. In general, the forecasting performance of the RLS model

is robust to di¤erent series and di¤erent forecasting horizons.

5 Conclusion

We considered series of daily exchange rates for the JPY/USD, DEM/USD, CAD/USD,

GBP/USD and EUR/USD. We estimated a random level shifts model for the log absolute

return series, adopting the speci�cation that the series is the sum of a short memory process

and level shifts component. We documented that though few level shifts are present once

they are taken into account any evidence of long-memory disappears and what is left is a

noise component that is essentially white noise. We also presented evidence to that e¤ect via

various diagnostics and by showing that the long-memory parameter estimate is near zero

when estimating a model that accounts for random level shifts and long-memory jointly.

Hence, our results are robust. We also evaluated the forecasting performance of the random

level shifts model relative to the popular ARFIMA, time varying parameter and Markov

switching models. We showed that the forecasting performance of the pure RLS model

is superior in the sense that it has the smallest MSFE in all cases and for all forecasting

horizons. Our paper therefore adds to the recent literature that considered the volatility

of stock market indices by showing that a random level shifts model is indeed a serious

contender to explain the long-memory features of the volatility of exchange rate series.

Our results have direct implications that are of relevance for practitioners. First, it

points to the random level shifts model as strong candidate for modeling and, especially,

forecasting exchange rate volatility. As shown, the superiority in terms of forecast accuracy

is important, especially at longer forecasting horizons. Second the timing of the shifts can be

of interest in documenting ex-post from a historical perspective the changes in volatility as

being related to in�uential crises, important macroeconomic events or policy announcements.

Third, it suggests that an important avenue of future research is to devise ways to forecast

such changes by modeling the probability of level shifts and their magnitude as depending

on some covariates. This would be helpful not only in enhancing forecast accuracy but could

also be bene�cial as a valuable indicator for a �nancial warning tool. For steps in that

direction, see Xu and Perron (2015).
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Table 1: Memory parameter estimates 

 

 

 

 

 

 

Table 2: Test statistics for spurious long memory (Qu; 2011) 

 JPY DEM CAD GBP EUR 

W(ε=0.02) 1.52*** 0.55 1.51** 1.44** 1.47** 

W(ε=0.05) 1.52*** 0.51 1.11** 1.42** 1.32** 

Note: ***, ** and * denote significance at 1%, 5% and 10% level. ε is the trimming 

proportion.  

 

 

 

 

 

 

Table 3: Parameter estimates for the RLS model 

Parameter ση α σe 

JPY 1.0430 0.0007 0.7522 

 (0.0460) (0.0003) (0.0070) 

DEM 0.6780 0.0012 0.7480 

 (0.2418) (0.0008) (0.0065) 

CAD 0.3242 0.0067 0.5528 

 (0.0622) (0.0026) (0.0038) 

GBP 0.5600 0.0042 0.6624 

 (0.0877) (0.0012) (0.0046) 

EUR 0.4638 0.0017 0.7016 

 (0.2530) (0.0016) (0.0078) 

Note: Standard errors are in parentheses.  

 

 JPY DEM CAD GBP EUR 

Standard 

LW 
0.23 0.31 0.46 0.45 0.36 

Hou-Perron 

Robust LW 
0.11 0.07 0.11 0.10 -0.02 



 

Table 4: Parameter estimates for the RLS_ARFIMA model 

Panel A: RLS_ARFIMA(0,d,0) 

Parameter ση α σe d   

JPY 0.4331 0.0010 0.7569 0.0582   

 (0.0372) (0.0024) (0.0065) (0.0110)   

DEM 0.1889 0.0097 0.7504 0.0220   

 (0.0351) (0.0006) (0.0066) (0.0129)   

CAD 0.3493 0.0033 0.5571 0.0494   

 (0.0679) (0.0015) (0.0039) (0.0106)   

GBP 0.5906 0.0025 0.6672 0.0460   

 (0.1713) (0.0012) (0.0047) (0.0106)   

EUR 0.4371 0.0019 0.7016 0.00002   

 (0.4526) (0.0035) (0.0078) (0.0005)   

Panel B: RLS_ARFIMA(1,d,1) 

Parameter ση α σe d ϕ θ 

JPY 0.6830 0.0002 0.7588 0.0334 0.2961 0.4021 

 (0.8878) (0.0004) (0.0065) (0.0115) (0.1048) (0.1117) 

DEM 0.0780 0.0043 0.7506 0.0500 0.3962 0.4377 

 (0.0128) (0.0011) (0.0065) (0.0236) (0.0463) (0.0504) 

CAD 0.3858 0.0010 0.5612 0.0123 0.9609 0.9223 

 (0.0841) (0.0005) (0.0038) (0.0060) (0.0166) (0.0201) 

GBP 0.5995 0.0014 0.6715 0.0189 0.9586 0.9292 

 (0.1685) (0.0007) (0.0048) (0.0096) (0.0238) (0.0289) 

EUR 0.3671 0.0029 0.6990 0.0242 0.3021 0.3894 

 (0.1216) (0.0017) (0.0078) (0.0024) (0.1176) (0.1154) 

Note: Standard errors are in parentheses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 5: Forecasting comparisons based on the MSFE 

 
1_step 5_step 10_step 

JPY 

RLS 0.590* 4.295* 11.262* 

ARFIMA(0,d,0) 0.639 4.838 12.891 

ARFIMA(1,d,1) 0.634 4.645 11.916 

TVP 0.622 4.534 12.003 

Markov Switching 0.720 6.772 20.277 

DEM 

RLS 0.541* 2.901* 7.032* 

ARFIMA(0,d,0) 0.603 3.761 10.220 

ARFIMA(1,d,1) 0.581 3.306 8.364 

TVP 0.577 3.129 7.716 

Markov Switching 0.645 4.853 14.382 

CAD 

RLS 0.374* 2.206* 5.193* 

ARFIMA(0,d,0) 0.419 2.421 5.766 

ARFIMA(1,d,1) 0.415 2.459 5.732 

TVP 0.413 2.391 5.562 

Markov Switching 0.492 4.336 13.269 

GBP 

RLS 0.358* 1.826* 4.099* 

ARFIMA(0,d,0) 0.400 2.104 5.033 

ARFIMA(1,d,1) 0.392 1.978 4.432 

TVP 0.393 2.002 4.471 

Markov Switching 0.455 3.596 10.850 

EUR 

RLS 0.432* 2.200* 5.304* 

ARFIMA(0,d,0) 0.475 3.080 8.929 

ARFIMA(1,d,1) 0.456 2.394 5.916 

TVP 0.450 2.267 5.397 

Markov Switching 0.519 3.983 12.136 

Note: * indicates the lowest MSFE across all models.  
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Figure 1: The LP estimates of d with different bandwidth choices
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Figure 2: Fitted level shifts and smoothed estimates of exchange rate volatilities
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Figure 3: Autocorrelations of the original series and the residuals
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