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1 Introduction

Policy reform is a complicated process. The agents involved typically have imperfect

control over the scope and direction of reform. One reason for this is that they must

search for ideas upon which to build reform proposals, and it is hard to anticipate which

ideas this search process yields and when. In fact, it is not uncommon to have third

parties like think-tanks, lobbyists, NGOs, and interest groups contributing their diverse

views to the development of a reform proposal. To learn the full implications of the

legislation that they put forward, parties often have to wait until the final reform bill is

made public and evaluated by the same groups that contributed to its formation as well

as other experts, the media, and nonpartisan organizations.1

In this paper, we develop a tractable model of policy reform that accounts for the

limited control that players have over the development of reform proposals, and we use

it to study the dynamics of policy reform. We start by describing the structure of our

model, and then discuss its multiple interpretations. We consider a two player complete

information search model played over T <∞ periods. The set of feasible policies is the

simplex X = {x ∈ R2
+ : x1 + x2 ≤ 1}. At each period t, player i = 1, 2 obtains a flow

payoff equal to the coordinate xti of the policy xt = (xt1, x
t
2) that is in effect. The policy

in place at the start of the game is (0, 0). In each period, a new policy is drawn randomly

from the set of policies that are Pareto improvements to the policy last period, and the

players sequentially decide whether to approve or disapprove the draw. The previous

period policy is replaced if and only if both players approve the change; otherwise, it

remains in place. Players share a common discount factor δ < 1. This process of policy

reform allows players to continually search for step-by-step improvements over existing

policies. Since we are primarily interested in the limiting case with T → ∞, players

have the opportunity to get arbitrarily close to the Pareto frontier.2

This model with randomly generated policies can be interpreted as a bargaining

model in which it is difficult for players to calibrate their offers. This is a natural

assumption when the issue over which players are bargaining is complex, and they have

to wait to discover good ideas on how to improve existing agreements. Examples of such

1The Congressional Budget Office (CBO) is an example of a nonpartisan organization that evaluates
the budgetary consequences of bills, but there are numerous others.

2Studying the limit as T → ∞ of our finite horizon model, rather than the infinite horizon case,
is an equilibrium selection device: while the infinite horizon game has a plethora of subgame perfect
equilibria (SPE), the game with deadline T has an essentially unique SPE.
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Figure 1: Path of play

complex issues include international climate change agreements, trade negotiations, and

negotiations over international conflicts.

Our baseline model is one in which players have no control over the offer that is

generated. In this sense, our model lies at the opposite extreme of the standard approach

to bargaining theory (e.g. Rubinstein (1982) and Baron and Ferejohn (1989)) in which

proposers have full control over the payoff-consequences of their proposals. We extend

our baseline model to an intermediate case in which proposers have partial control over

the payoff consequences of the offers they put on the table. We consider a setting in

which, at each period, players probabilistically choose the distribution from which the

policy will be drawn. We show that our main results carry through in this environment.

Our analysis delivers a clean equilibrium characterization. In any period, the set of

policies that both players find acceptable is a cone defined by two lines with positive

slope that pass through the last period’s policy as its vertex. Figure 1 depicts such “ac-

ceptance cones” for a possible sequence of policies {x1,x2,x3,x4, ...} that are approved

along the path of play. Policies that lie outside the acceptance cone are rejected even if

they are Pareto superior to the status quo. The reason for this is that players cannot

commit to approve future policies that disproportionally benefit their opponents. As a

result, a player strictly prefers to reject Pareto superior offers that yield a substantial
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improvement to her opponent, but only a mild improvement for her, since she anticipates

that approving such a policy will “close the door” in the future to many policies that

she finds attractive. Since players discount the future, the periods of inaction produced

by the rejection of Pareto improving policies generate inefficiency. This inaction and in-

efficiency are not produced by institutional constraints to reform, such as supermajority

requirements, but simply by the difficulty in discovering moderate policies.3

As Figure 1 shows, a distinctive feature of our model is that players will typically

reach a sequence of “interim” agreements, gradually approaching the Pareto frontier.

Real world examples featuring such step-by-step bargaining dynamics include the nuclear

disarmament negotiations between the US and the USSR, climate change agreements,

and trade deals between the US and China.

The randomness of draws and the rigidity of the status quo in our model together

imply that the policy reform process is path dependent. In any period the set of policies

that players find acceptable depends on the current status quo. As a result, at each point

in time the future path of play depends crucially on the policies that players agreed on

at early stages of the reform process.

This path dependence disappears, however, when players become fully patient (δ →
1). In this case, the acceptance cone collapses to a line segment connecting the status

quo to a point on the frontier: only policies on this line segment are implemented on

the path of play. Intuitively, the cost in terms of forgone future payoff of implementing

a policy that is more beneficial to one’s opponent increases with δ. In the limit, the

only policies that both players accept are those that give a payoff vector on this line

segment. When policies are drawn from a symmetric distribution, the long run policy

converges to an equal split of the surplus. In this case, the path that the equilibrium

induces when players are arbitrarily patient coincides with the so-called “Raiffa path”;

i.e., the path of policies proposed in Raiffa (1953) as a plausible outcome in settings in

which the bargaining parties engage in step-by-step negotiations.4

3Our explanation for inefficient gridlock therefore stands in contrast to the explanations that have
traditionally been highlighted by the literature, e.g. Brady and Volden (1998) and Krehbiel (2010).

4There have been other attempts to provide foundations for the Raiffa path. Livne (1989), Peters
and Van Damme (1991), Diskin et al. (2011) and Samet (2009) provide axiomatizations for this bargain-
ing solution. Myerson (2013) provides a noncooperative foundation by proposing a bargaining model
with a finite deadline, in which players make offers with equal probability in each round. However,
his model lacks the incremental improvements by which players approach the Pareto frontier since the
unique equilibrium of his model has the players reach the frontier immediately. So his model provides
a foundation for the Raiffa path only in the sense that as the number of periods goes to infinity, the
agreement that the players reach in the first period converges to the long-run outcome (i.e., endpoint)
of the Raiffa path.
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Lastly, we show that our model may give rise to reform cycles, under which periods

of high and low likelihood of agreements alternate. To understand why such cycles may

occur, consider a game with a fixed deadline T . At the deadline, there is no benefit to

waiting so players accept any policy that constitutes a Pareto improvement relative to

the status quo. In period T − 1, however, players are less accommodating, since they

anticipate that the policy that they implement today will affect the policies that will

be accepted tomorrow. Consider next period T − 2. If the probability of drawing an

acceptable policy at T − 1 is small, the players know that they are unlikely to enact a

reform in the next period, and, in all likelihood, will have to wait until the final period

to change policy. Since waiting two periods is more costly than waiting one period, at

time T −2 players are more accommodating than in period T −1. We provide conditions

for such reform cycles to occur even in the limit as the deadline T goes to infinity.

Our paper is primarily related to the literature on collective search, e.g., Compte

and Jehiel (2010), Albrecht et al. (2010) and Penn (2009). Compte and Jehiel (2010)

and Albrecht et al. (2010) study models in which a group of agents sequentially sample

alternatives from a distribution and have to choose when to stop. Closer to our model,

Penn (2009) studies a setting with randomly generated alternatives and with an endoge-

nous status-quo. Penn (2009) focuses on how the dynamic nature of the problem affects

players’ voting behavior among Pareto undominated policies. In contrast, our focus is

on understanding the process by which policy approaches the Pareto frontier.5

Because the players in our model approach the Pareto frontier in incremental steps,

our paper relates to prior work on incremental bargaining and partial agreements.

Compte and Jehiel (2004) study a bargaining model in which each players’ outside

option depends on the history of offers. They show that, in this setting, players will

make gradual concessions until they reach a final agreement. More recently, Acharya

and Ortner (2013) analyze a model in which two players bargain over two issues, one of

which will only be open for negotiation at a future date. The main result is that players

may reach a partial agreement on the first issue, only to complete the agreement when

the second issue becomes available.

Our result on commitment and inefficiency relates our paper to the literature on

bargaining failures as a result of commitment problems; e.g., Fearon (1996), Powell

(2004, 2006), Acemoglu and Robinson (2000, 2001), Ortner (2015). These papers focus

5The rigidity of the status quo relates our model to the growing literature on policy bargaining with
an endogenous status quo – see, for instance, Kalandrakis (2004), Duggan and Kalandrakis (2012),
Dziuda and Loeper (2015) and Bowen et al. (2013).
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on understanding the conditions under which the players’ inability to commit will result

in bargaining inefficiencies. Instead, we focus on how the players’ inability to commit

shapes the evolution of policy towards the Pareto frontier.

Finally, our paper shares the spirit of Callander (2011), who also considers a setting of

policy-making in complex environments. Callander (2011) focuses on how policy-makers

learn about the payoff consequences of different policies from previous experiences. In

contrast, bargainers in our model can fully evaluate the payoff consequences of the

policies that they vote on. The complexity of the environment in our model is instead

captured by the players’ inability to draft policies that will deliver particular payoffs.

The paper proceeds as follows. Section 2 presents the model, establishes equilibrium

existence and uniqueness, and provides a recursive characterization of equilibrium pay-

offs. Section 3 studies the main properties of our model in the limit as deadline T goes to

infinity. Section 4 extends our baseline model to a setting in which players have partial

control over offers. Section 5 concludes. All proofs are in the Appendix.

2 Model

2.1 The policy reform game

Two players, i = 1, 2, play the following policy reform game. Time is discrete, with an

infinite horizon, and indexed by t = 0, 1, 2, .... A policy is a pair

x = (x1, x2) ∈ X := {(y1, y2) ∈ R2
+ : y1 + y2 ≤ 1}.

In each of the first T < ∞ periods, players jointly decide whether to move policy from

the current-period status quo zt = (zt1, z
t
2) ∈ X to a new policy x drawn randomly from

a distribution Fzt with density fzt and full support over the set

X(zt) := {x ∈ X : xi ≥ zti for i = 1, 2}

of Pareto superior policies to zt. We assume that, for all z ∈ X and all x ∈ X(z),

fz(x) ∈ [f, f ] for some constants f > f > 0. After the new policy x is drawn, the two

players sequentially decide whether or not to accept it. If both players accept it, then

the policy in place in period t becomes the new policy, so xt = x. Otherwise, the status

quo is implemented, so xt = zt. The next period’s status quo is the previous period
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policy, so zt+1 = xt with z0 = (0, 0). For all periods t ≥ T + 1 the players cannot change

policy, so xt = xT . We refer to the final reform period T as the deadline, and we will be

interested in studying the limiting case of T →∞.

Both players are expected utility maximizers and share a common discount factor

δ < 1. If xt = (xt1, x
t
2) ∈ X is the policy in place in period t, then player i earns a flow

payoff xti at time t. Player i’s payoff from a sequence of policies {xt}∞t=1 is thus

Ui
(
{xt}

)
= (1− δ)

∞∑
t=0

δtxti.

This describes the policy reform game with deadline T . We focus on the subgame

perfect equilibria (SPE) of this game.

Proposition 1. The policy reform game with deadline T has an SPE. All SPE of the

policy reform game with deadline T are payoff equivalent.

2.2 Recursive equilibrium characterization

For any z ∈ X and any x ∈ X(z), let

Pz(x) :=

(
x1 − z1

1− z1 − z2
,

x2 − z2
1− z1 − z2

)
(1)

Pz is a mapping that projects points in X(z) onto X. We make the following assumption

on the distributions Fzt from which policies are drawn.

Assumption 1. For every policy z ∈ X, the density fz satisfies

fz(x) = f(Pz(x)) ∀x ∈ X(z)

where f := f(0,0) is the density from which policies are drawn at the start of the game.

Assumption 1 states that, for any z ∈ X, the distribution Fz over X(z) from which

policies are drawn when the status quo is z is “identical” to the distribution F(0,0) over

X from which policies are drawn at the start of the game. We maintain this assumption

throughout the rest of the paper. Its main implication is that a subgame starting at

period t ≤ T with status quo policy z ∈ X is strategically equivalent to a game with

deadline T − t starting at policy z0 = (0, 0).
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To formalize this, for any deadline T , time t ≤ T and policy z ∈ X, let Vi(z, t;T )

be the continuation payoff that player i obtains under an SPE at a subgame starting at

period t when the status quo is zt = z. Let Wi(T ) = Vi((0, 0), 0;T ) be player i’s SPE

payoff at the start of a game. Then, we have:

Lemma 1. For all t ≤ T and all possible values of the status quo zt = z = (z1, z2) ∈ X,

the players’ equilibrium payoffs satisfy

Vi(z, t;T ) = zi + (1− z1 − z2)Wi(T − t) for i = 1, 2. (2)

When the status quo at time t is z, player i’s equilibrium payoff is equal to the flow

payoff zi, that the player is guaranteed to get forever (by the persistence of the status

quo), plus the payoff (1− z1 − z2)Wi(T − t) that the player obtains from bargaining for

T − t periods over the remaining surplus of size 1− z1 − z2.
We use Lemma 1 to provide a recursive characterization of the players’ equilibrium

payoffs. Note first that, at the last period T , players accept any policy in X(zT ), where

zT is the status quo policy. Consider next a period t < T at which the status quo policy

is z = (z1, z2) ∈ X. Then, player i approves a policy x = (x1, x2) ∈ X(z) only if

(1− δ)xi + δVi(x, t+ 1;T ) ≥ (1− δ)zi + δVi(z, t+ 1;T ). (3)

Let Wi = Wi(T − t − 1). Then using (2) in both sides of (3) and rearranging, player i

accepts policy x when the status quo is z only if xi ≥ `i,z(x−i|Wi), where

`i,z(x−i|Wi) := zi +
δWi

1− δWi

(x−i − z−i)

`i,z(x−i|Wi) is the line in (xi, x−i)-space with slope δWi/(1 − δWi) that passes through

the status quo z. Define

Ai,z(Wi) := {x ∈ X(z) : xi ≥ `i,z(x−i|Wi)} .

Then, for any pair of payoffs W = (W1,W2) and for any z ∈ X, the set

Az(W) := A1,z(W1) ∩ A2,z(W2) (4)

is the set of policy draws that are accepted by both players at period t < T when

the status quo policy is z and (W1(T − t − 1),W2(T − t − 1)) = (W1,W2). When 1 >
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δ(W1+W2), the line `1,z(x2|W1) has larger slope greater than `2,z(x1|W2) in (x1, x2)-space

and Az(W) is a cone with vertex z. For any pair of values W we let A(W) := A(0,0)(W)

be the cone with vertex (0, 0). Such a cone is depicted in Figure 2.

For any integer T > 0, let W(T ) = (W1(T ),W2(T )) be the players’ SPE payoffs in a

game with deadline T . By our arguments above, a policy draw is accepted at the initial

period if and only if it is in the set A(W(T−1)) with W(T−1) = (W1(T−1),W2(T−1)).

Therefore, player i’s payoff at the start of the game is

Wi(T ) = prob(x ∈ A(W(T − 1)))E[(1− δ)xi + δVi(x, 1;T )|x ∈ A(W(T − 1))]

+ prob(x /∈ A(W(T ))[(1− δ)0 + δVi((0, 0), 1;T )]

= prob(x ∈ A(W(T − 1)))E[xi − (x1 + x2)δWi(T − 1)|x ∈ A(W(T − 1))] + δWi(T − 1),

where the second line follows from equation (2).

Define the operator Φ = (Φ1,Φ2) : X → X, where for every payoff pair W =

(W1,W2) ∈ X and for i = 1, 2,

Φi(W) := prob(x ∈ A(W))E[xi − (x1 + x2)δWi|x ∈ A(W)] + δWi, (5)

Let Φt(W) denote the t-th iteration of operator Φ over the pair W = (W1,W2).

Proposition 2. In a policy reform game with deadline T ,

(i) the players’ equilibrium payoffs satisfy W(T ) = ΦT+1((0, 0)), and

(ii) the set of policies that are accepted by both players in any period t ≤ T is Azt(W(T−
t−1)) where zt is the status quo policy in period t and W(T−t−1) are the players’

equilibrium payoffs in the policy reform game with deadline T − t− 1.

Figure 2 plots the acceptance region A(W) at the initial period of the game. As the

figure shows, policies that constitute a Pareto improvement over the initial policy (0, 0)

and that lie outside A(W) are rejected, leading to inefficient outcomes.

The commitment problem lies at the heart of these inefficiencies. To see why, suppose

that in period 0 policy x > (0, 0) in Figure 2 is drawn. Policy x Pareto dominates the

initial policy, but if x were to be implemented, then starting in period 1 the set of

policies Ax(W) that both players accept would be the area inside the dashed lines in

Figure 2. These policies are significantly worse for player 2 than the policies that could

be implemented in the future if the status quo (0, 0) remains in place. So player 2
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Figure 2: Acceptance region A(W).

strictly prefers to maintain policy (0, 0) than to implement x. Player 2 would approve

policy x if player 1 could commit to accepting policies that are beneficial for player 2 in

the future, bringing the trajectory of policy reform back towards the center. However,

player 2 rightly anticipates that player 1 would not accept such policies in the future if

policy x were to be implemented today.

3 Infinite horizon limit

Throughout this section, we study the properties of the equilibrium in the limit as T

approaches ∞.

Definition 1. We say that the equilibrium is convergent if the sequence {W(T )} =

{ΦT (0)} converges as T →∞. Otherwise, we say that the equilibrium is cycling.

Section 3.1 studies conditions under which equilibrium is convergent. Section 3.2 dis-

cusses some properties of convergent equilibria. Finally, Section 3.3 provides conditions

under which equilibrium is cycling.
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3.1 Conditions for convergence

The iterative characterization of equilibrium payoffs in Proposition 2 suggests that if the

sequence of payoffs {W(T )} converges in T , then the limit is a fixed point of Φ. This is

confirmed by the following lemma.

Lemma 2. (i) Φ has a fixed point, and

(ii) if the sequence of payoffs {W(T )} converges to W, then W is a fixed point of Φ.

Our next result presents sufficient conditions for equilibrium to be convergent. In

particular, it shows that equilibrium is convergent whenever players are patient enough.

Proposition 3. There exists a threshold δ < 1 such that if δ > δ the equilibrium is

convergent.

Symmetric distributions. We now study conditions under which payoffs converge

for the special case where F is symmetric about the 45◦ line, i.e. when its density f

satisfies f(x1, x2) = f(x2, x1) for all (x1, x2) ∈ X.

We start by noting that, when F is symmetric, both players get the same equilibrium

payoffs: for all T , W(T ) = (W1(T ),W2(T )) is such that W1(T ) = W2(T ) =: W (T ). A

formal proof of this statement is given in Lemma A.2 in the Appendix.

For all T let Ŵ (T ) = 2W (T ) be the sum of the players’ equilibrium payoffs in a

game with deadline T . With a slight abuse of notation, let A(Ŵ ) be the acceptance

region when W = (Ŵ/2, Ŵ /2). We define the operator Ψ : [0, 1]→ [0, 1] as follows: for

all Ŵ ,

Ψ(Ŵ ) := Φ1((Ŵ/2, Ŵ /2)) + Φ2((Ŵ/2, Ŵ /2))

= prob(x ∈ A(Ŵ ))E[x1 + x2|x ∈ A(Ŵ )](1− δŴ ) + δŴ (6)

It then follows from Proposition 2 that when F is symmetric, Ŵ (T ) = ΨT+1(0).

Our next result provides a sufficient condition for equilibrium to be convergent in

the especial case in which F is symmetric.

Proposition 4. Suppose F is symmetric. Then, if Ψ′(Ŵ ) > −1 for all Ŵ ∈ [0, 1], the

equilibrium is convergent.
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To get a better sense as to when the condition in Proposition 4 holds, define H(Ŵ ) :=

prob(x ∈ A(Ŵ ))E[x1 + x2|x ∈ A(Ŵ )], so

Ψ′(Ŵ ) = δ(1−H(Ŵ )) +H ′(Ŵ )(1− δŴ ).

Note that H ′(Ŵ ) < 0, and that the magnitude of this derivative depends on how much

mass the distribution F puts on the boundary of the acceptance set: |H ′(Ŵ )| is large

when F puts significant mass on the boundary of A(Ŵ ). Since δ(1 − H(Ŵ )) ≥ 0, the

condition in Proposition 4 holds whenever the distribution F is sufficiently “dispersed.”

Example 1. Assume F is a uniform distribution over X. In this case, for any Ŵ ∈ [0, 1],

Ψ(Ŵ ) = δŴ +
2

3
(1− δŴ )2.

Note that Ψ′(Ŵ ) = 1
3
(−1 + 4δŴ ) > −1, so by Proposition 4 the equilibrium is conver-

gent. Payoffs W(T ) = (W1(T ),W2(T )) converge to W = (W1,W2), where for i = 1, 2,

Wi =
1

8δ2
(3 + δ −

√
9 + 6δ − 15δ2).

We note that, as δ → 1, equilibrium payoffs W converge to (1/2, 1/2).

3.2 Properties of convergent equilibria

In this section, we assume that the equilibrium is convergent, so W(T ) converges to

some W = Φ(W). We derive several properties of the limiting equilibrium.

We start by noting that, when W(T ) converges to some W = (W1,W2) ∈ X,

each acceptance set Axτ (W) is a cone with vertex xτ , defined by two lines with slopes

δW1/(1 − δW1) and (1 − δW2)/δW2 that pass through the vertex (see Figure 2). This

means that in the infinite horizon limit, the lines defining all of the acceptance cones are

parallel, so the acceptance cones are nested.

Lemma 3. (nested acceptance cones) Let {xt}∞t=0 be a sequence of equilibrium policies.

Then,

Ax0(W) ⊇ Ax1(W) ⊇ Ax2(W) ⊇ ...

Lemma 3 implies that there exist policies that are acceptable at some period t, but

become no longer acceptable at period t + 1 despite also being Pareto improvements
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relative to the t + 1 status quo policy zt+1.6 Players don’t implement some policy

reforms that they would have previously accepted.

Long-run outcomes. The game essentially ends when players implement a policy

x ∈ X on the Pareto frontier: if policy x ∈ X with x1 + x2 = 1 is implemented at time

t, then xτ = x for all periods τ ≥ t. We therefore call a policy x on the Pareto frontier

a long-run outcome of the game. The game’s unique equilibrium induces a distribution

G over long-run outcomes; i.e., over points on the frontier. For any subgame starting

with status-quo policy z ∈ X, the continuation equilibrium at that subgame induces

a distribution Gz over long-run outcomes. The next result summarizes some notable

features of convergent equilibria, including that the distribution over long run outcomes

changes along the path of play, and exhibits path dependence.

Proposition 5. Suppose the equilibrium is convergent. Then,

(i) (long run distribution) for any z ∈ X, the support of distribution Gz is suppGz =

{y ∈ X : y1 + y2 = 1} ∩ Az(W);

(ii) (path dependence) Gz 6= Gz′ for all z′ 6= z;

(iii) (gradual certainty) For every sequence of equilibrium policies {xτ}∞τ=0, suppGxτ+1 ⊆
suppGxτ , with strict inclusion whenever xτ+1 6= xτ .

In the first period, any policy x on the Pareto frontier with x1 ∈ [δW1, 1− δW2] lies

in the support of G = G(0,0). As play progresses and the players implement policies that

are closer to the Pareto frontier, the support of the long-run distribution shrinks. Figure

1 shows the support of Gx1 for some policy x1 on the path of play.

Patient players and the Raiffa path. We now study equilibrium behavior when

players become arbitrarily patient; i.e., when δ → 1. We note that, by Proposition 3,

the equilibrium is convergent whenever δ is larger than some threshold δ.

For each δ ∈ (δ, 1), we let Wδ = (W δ
1 ,W

δ
2 ) denote the players’ limiting payoffs as

T → ∞ in a game with discount factor δ. We let Gδ denote the distribution over long

run outcomes in the limiting equilibrium with discount factor δ.

Proposition 6. Fix a sequence {δn} → 1, and a corresponding sequence of equilibrium

payoffs {Wδn}. Then,

6Formally, there exist policies x > xτ such that x ∈ Axt(W)\Axτ (W) for τ > t.
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(i) (generalized Raiffa path) lim
n→∞

A(Wδn) = {x ∈ X : x1/x2 = W ∗
1 /W

∗
2 };

(ii) (determinism) Gδn converges to a dirac measure on (W ∗
1 ,W

∗
2 ) := lim

n→∞
(W δn

1 ,W δn
2 );

(iii) (efficiency) lim
n→∞

W δn
1 +W δn

2 = 1.

Moreover, if F is symmetric, W ∗
1 = W ∗

2 = 1/2.

Proposition 6(i) says that, as δ → 1, the set of policies that both players find accept-

able converges to the line segment connecting (0, 0) and the point (W ∗
1 ,W

∗
2 ). Intuitively,

the cost in terms of forgone future payoff of implementing a policy that is more benefi-

cial to your opponent increases with δ. In the limit, the only policies that both players

accept are those that give both players a payoff on this line segment. This implies that,

as players become arbitrarily patient, there is no path dependence. Proposition 6(ii)

says that as δ → 1 the path of play approaches deterministically a particular long run

outcome, namely the players’ equilibrium payoff split. Lastly, Proposition 6(iii) shows

that the inefficiency of delay vanishes as players become infinitely patient. This occurs

in spite of the fact that, as δ → 1, the acceptance region A(Wδ) converges to a straight

line, and so the probability of changing the policy in any given period goes to zero.

In general, the long-run agreement (W ∗
1 ,W

∗
2 ) depends on the distribution F . Propo-

sition 6 establishes that in the special case in which the distribution is symmetric, both

players obtain the same payoff, so (W ∗
1 ,W

∗
2 ) = (1/2, 1/2).

As a result, when F is symmetric, the path of play that our model induces in the

limit as δ → 1 is closely related to the sequential bargaining solution proposed by Raiffa

(1953). Indeed, in our framework, Raiffa’s sequential bargaining solution is the segment

with slope 1 that connects the origin with the point (1/2, 1/2) on the Pareto frontier.7

3.3 Cycling equilibrium

We now turn to cycling equilibria. We start by providing intuition as to why the equilib-

rium may be cycling. Players in our model trade off implementing a Pareto improving

policy today against the benefit of waiting to see if they can move policy in a more

preferred direction tomorrow. At the deadline T , there is no benefit to waiting so the

players accept any policy in X(zT ). In the second to last period, however, players are less

7More generally, Raiffa’s bargaining solution is the segment connecting the disagreement payoff with
the Pareto frontier, and passing through the utopia payoff vector; i.e., the payoff vector that would result
if each player obtained her preferred outcome. In our environment, the utopia payoff vector is (1, 1).
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accommodating, since they anticipate that the set of acceptable policies tomorrow will

depend on the policy they implement today. Graphically, the acceptance cone becomes

smaller (narrower) at period T − 1.

Consider next period T − 2. If the probability of changing the policy next period

is sufficiently small (i.e., if distribution F places little mass on the acceptance cone

tomorrow), players know that they are unlikely to enact a reform in the next period,

and, in all likelihood, will have to wait until the final period to change policy. Since

waiting for two periods is more costly than waiting only one period, players are more

accommodating in period T − 2 than in period T − 1.

The arguments above suggests that payoffs W(T ) may cycle for small values of T .

We now provide conditions for the equilibrium to be cycling in the limit as T →∞.

For simplicity, we focus on the case in which the distribution F is symmetric. Recall

from the discussion in Section 3.1 that when F is symmetric, the players have the same

equilibrium payoffs and the sum of these payoffs is the (T + 1)-th iteration over 0 of the

operator Ψ defined in equation (6).

Proposition 7. If F is symmetric then Ψ has a unique fixed point Ŵ ∗. If, in addition,

(i) Ψ(Ŵ ) 6= Ŵ ∗ for all Ŵ 6= Ŵ ∗, and

(ii) there exists ε > 0 such that Ψ′(Ŵ ) ≤ −1 for all Ŵ ∈ [Ŵ ∗ − ε, Ŵ ∗ + ε],

then the equilibrium is cycling.

Under the conditions in Proposition 7, the players’ equilibrium payoffs Ŵ (τ)/2 cycle

around Ŵ ∗/2. Note that, in the symmetric case, the acceptance region Az(Ŵ ) is a

cone with vertex z and lines with slopes 1−δŴ/2

δŴ/2
and δŴ/2

1−δŴ/2
. Therefore, the fact that

payoffs Ŵ (τ)/2 cycle around Ŵ ∗/2 implies that there will be an alternation between

periods of high likelihood of agreement and periods of low likelihood of agreement; i.e.,

the equilibrium features reform cycles.

We stress that these reform cycles in our model are not the result of structural

changes in the environment, but rather a result of self-fulfilling changes in the players’

expectations of how the game will be played in the future. In the context of policy reform,

such cycles were observed by historians such as Schlesinger (1949), who emphasizes that

the cycles we observe in the reform process frequently cannot be explained by changes

in the fundamentals. Smith (1985) summarizes their view, writing that
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“Even the advocates of the cycle of reform model have been hard pressed to

identify the dynamic that drives the cycle. The most common explanation is

organic, that society, like an animal, has a natural alteration between periods

of rest and action...”

4 Strategic search

Our model, with random proposals, is intended to capture complexities in the environ-

ment that make it difficult for players to gauge the payoff consequences of their proposals.

In this section, we present a natural extension of our framework in which players have

some ability to influence the direction in which they will search for new policies.

From a bargaining perspective, our baseline model can be interpreted as a bargaining

model in which the proposer has no control over the offer that is generated. In this sense,

our model lies at the opposite extreme of the standard approach to bargaining theory

(e.g. Rubinstein (1982) and Baron and Ferejohn (1989)) in which proposers have full

control over the proposals that are considered. The extension we present in this section

bridges the gap between the traditional approach and our baseline model by allowing

proposers to have partial control over the payoff consequences of the offers they put on

the table. We briefly describe the model here. A formal treatment of this extension

appears in Appendix B.

Two players, i = 1, 2, play the following game. Time is discrete and indexed by

t = 0, 1, 2, .... The set of policies is X, and players have the same preferences over

policies as in our baseline model. At each period t = 0, 1, ..., T , player i = 1, 2 is

recognized with probability 1/2. The recognized player chooses a distribution F from a

finite set of distributions Fzt , where zt is the status quo policy. We assume that each

distribution F ∈ Fz has support in X(z) and density f such that, for all x ∈ X(z),

f(x) ∈ [f, f ] for some f > f > 0.

After the new policy x is drawn, the two players sequentially decide whether or not

to accept it. If both players accept it, then the policy in place in period t becomes the

new policy, so xt = x. Otherwise, the status quo is implemented, so xt = zt. The status

quo at time t + 1 is the previous period policy, so zt+1 = xt. For all periods t ≥ T + 1

the players cannot change policy, so xt = xT . As in our baseline model, for any deadline

T , this game has an essentially unique equilibrium which can be found by backward

induction.
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We make the following assumptions about the sets of distributions Fx. First, we

assume that, for all x,y ∈ X, card(Fx) = card(Fy); i.e., all the sets Fx have the

same cardinality. Second, for all x ∈ X and all Fx ∈ Fx with density fx, there exists

F ∈ F = F(0,0) with density f such that fx(y) = f(Px(y)) for all y ∈ X(x). Note that

this assumption is a generalization of Assumption 1 to the current environment.

In Appendix B we show that this extended model retains the key features of our

baseline model.

5 Conclusion

We have developed a model of policy reform built on the assumption that players have

imperfect control over the proposals that are considered.

Our model suggests a new source of inefficient gridlock in the reform process, namely

the difficulty in finding moderate policies that are acceptable to both of the players

that are involved. In our model, the reform process is path dependent and may be

cyclical as the players alternate between periods in which they are accommodating and

stubborn. Inefficiency is driven by the commitment problem, and cycling is driven by

an alternating pattern of changes in the players’ self-fulfilling expectations about the

likelihood of enacting a reform.

Our model provides an answer to the question of how two bargaining players approach

the Pareto frontier. Our answer is that they do so in steps, while ensuring that these

steps fit within the set of trajectories that ensure long-run moderation. We show that

as the players become infinitely forward looking, the only acceptable trajectory is the

one hypothesized by Raiffa under which the players are guaranteed to reach an equal

division of the surplus.
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Appendix

A Proofs

A.1 Proofs for Section 2

Proof of Proposition 1. In the subgame starting in period T , it is optimal for both

players to accept any policy in X(zT ). Moreover, the policy that is drawn will remain

in place in all future periods so the payoff to each player i at this subgame is

Vi(z
T , T ;T ) = EzT [xi] (7)

where EzT [·] is the expectation operator under the distribution FzT .

At any subgame starting in period T − 1 with status quo policy zT−1, it is optimal

for player i to accept a policy x ∈ X(zT−1) if

(1− δ)xi + δVi(x, T ;T ) ≥ (1− δ)zT−1i + δVi(z
T−1, T ;T ) (8)

So the set of policies that are acceptable to both players is

AzT−1 := {x ∈ X(zT−1) : (8) holds for both i = 1, 2}

This defines the payoff that each player i gets at such a subgame, which is

Vi(z
T−1, T − 1;T ) = prob(x ∈ AzT−1)EzT−1 [(1− δ)xi + δVi(x, T ;T ) |x ∈ AzT−1 ]

+ prob(x /∈ AzT−1)
[
(1− δ)zT−1i + δVi(x

T−1, T ;T )
]

Repeating these arguments for all t < T establishes existence of a SPE, and uniqueness

of SPE payoffs. �

Proof of Lemma 1. Recall that for all z ∈ X, Ez[·] is the expectation operator under

distribution Fz. Let E[·] be the expectation operator under distribution F(0,0) = F . We

prove the result by induction.
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Consider first a subgame starting at period t = T with status quo zT = z ∈ X. Note

that

Vi(z, T ;T ) = Ez[xi] = zi + (1− z1 − z2)E[xi],

where the first equality follows from equation (7) and the second equality follows from

Assumption 1.

Now, consider the policy reform game with deadline T = 0. By equation (7), player

i’s equilibrium payoffs satisfy Wi(0) = E[xi]. Hence,

Vi(z, T ;T ) = zi + (1− zi − zj)Wi(0)

which establishes the basis case.

For the induction step, suppose that (2) holds for all t such that T − t = 0, 1, ..., n−1

and for all z ∈ X. Fix a subgame starting at period t̃ with T − t̃ = n and with status

quo zt̃ = z ∈ X. Let Az(t̃) be the set of policies that both players accept at period t̃

when zt̃ = z; that is,

Az(t̃) =
{
x ∈ X(z) : (1− δ)xi + δVi(x, t̃+ 1;T ) ≥ (1− δ)zi + δVi(z, t̃+ 1;T ) for i = 1, 2

}
=
{
x ∈ X(z) : (xi − zi) ≥ (x1 + x2 − z1 + z2)δWi(T − t̃− 1) for i = 1, 2

}
,

where the second line follows since, by the induction hypothesis, (2) holds for t = t̃+ 1.

Note then that

Vi(z, t̃;T ) = prob(x ∈ Az(t̃))Ez

[
(1− δ)xi + δVi(x, t̃+ 1;T )

∣∣x ∈ Az(t̃)
]

+ prob(x /∈ Az(t̃))
(
(1− δ)zi + δVi(z, t̃+ 1;T )

)
= prob(x ∈ Az(t̃))Ez

[
xi + (1− x1 − x2)δWi(T − t̃− 1)

∣∣z ∈ Az(t̃)
]

+ prob(x /∈ Az(t̃))
(
zi + (1− z1 − z2)δWi(T − t̃− 1)

)
= prob(x ∈ Az(t̃))Ez

[
(xi − zi) + (z1 + z2 − x1 − x2)δWi(T − t̃− 1)

∣∣x ∈ Az(t̃)
]

+ zi + (1− z1 − z2)δWi(T − t̃− 1) (9)

where the second equality follows since, by the induction hypothesis, (2) holds for t =

t̃+ 1, and the last inequality follows since prob(x /∈ Az(t̃)) = 1− prob(x ∈ Az(t̃)).

19



Consider next a game with deadline T − t̃. Let Ã be the set of policies that both

players accept at the first period of the game:

Ã =
{
x ∈ X : (1− δ)xi + δVi(x, 1;T − t̃) ≥ δVi((0, 0), 1;T − t̃) for i = 1, 2

}
=
{
x ∈ X : xi ≥ (x1 + x2)δWi(T − t̃− 1) for i = 1, 2

}
,

where the second line follows since, by the induction hypothesis, for all Vi(x, 1;T − t̃) =

xi + (1− xi − xj)Wi(T − t̃) for all x. Player i’s payoff in this game is equal to

Wi(T − t̃) = prob(x ∈ Ã)E
[
(1− δ)xi + δVi(x, 1;T − t̃)

∣∣∣x ∈ Ã]+ prob(x /∈ Ã)δVi((0, 0), 1;T − t̃)

= prob(x ∈ Ã)E
[
xi − (x1 + x2)δWi(T − t̃− 1)

∣∣∣x ∈ Ã]+ δWi(T − t̃− 1)

(10)

Assumption 1 implies that

prob(x ∈ Az(t̃))Ez

[
xi − zi + (z1 + z2 − x1 − x2)δWi(T − t̃− 1)

∣∣x ∈ Az(t̃)
]

=(1− z1 − z2)prob(x ∈ Ã)E
[
xi − (x1 + x2)δWi(T − t̃− 1)

∣∣∣x ∈ Ã] .
Combining this with (9) and (10),

Vi(z, t̃;T ) = zi + (1− z1 − z2)Wi(T − t̃).

which establishes the result. �

Proof of Proposition 2. (i) The proof is by induction. Consider the game with

deadline T = 0. Since it is optimal for both players to accept any policy x ∈ X that is

drawn, player i’s payoff in this game satisfies Wi(T ) = E[xi] = Φi((0, 0)).

Suppose next that Wi(τ) = Φτ+1
i ((0, 0)) for all τ = 0, ..., T − 1, and consider game

with deadline T . The set of policies that both players accept in the initial period are

given by

Ã = {x ∈ X : (1− δ)xi + δVi(x, 1;T ) ≥ δVi((0, 0), 1;T ) for i = 1, 2}

= {x ∈ X : xi ≥ (x1 + x2)δWi(T − 1) for i = 1, 2} ,
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where the second line follows from Lemma 1. Player i’s payoff Wi(T ) satisfies

Wi(T ) = prob(x ∈ Ã)E
[
(1− δ)xi + δVi(x, 1;T )

∣∣∣x ∈ Ã]+ prob(x /∈ Ã)δVi((0, 0), 1;T )

= prob(x ∈ Ã)E
[
xi − (x1 + x2)δWi(T − 1)

∣∣∣x ∈ Ã]+ δWi(T − 1) (11)

where the equality follows after using Lemma 1. By the induction hypothesis, W(T −
1) = ΦT ((0, 0)), and so Ã = A(ΦT ((0, 0))). Using this in (11), it follows that Wi(T ) =

Φ(ΦT ((0, 0))) = ΦT+1((0, 0)).

(ii) Fix a period t ≤ T and a policy z ∈ X, and consider a subgame starting at

period t with status quo policy zt = z. At such a subgame, player i finds it optimal to

accept policies x ∈ X(z) satisfying

(1− δ)xi + δVi(x, t+ 1;T ) ≥ (1− δ)zi + δVi(z, t+ 1;T )

or, using equation (2) in Lemma 1, policies that satisfy

xi − zi ≥ (x1 + x2 − z1 − z2)δWi(T − t− 1). (12)

The set of policies that both players accept at period t when the status quo is zt = z is

therefore the set of policies x ∈ X(z) for which (12) is satisfied for both i = 1, 2. This

is precisely the set Az(W(T − t− 1)) of policies defined in (4). �

Proof of Lemma 2. (i) Φ is continuous and maps X onto itself, so by Brouwer’s

fixed point theorem, it has a fixed point.

(ii) If {W(T )} converges to W, then Proposition 2(i) implies that

W = lim
T→∞

ΦT ((0, 0)) = Φ
(

lim
T→∞

ΦT−1((0, 0))
)

= Φ(W),

so W is a fixed-point of Φ. �

For every δ < 1, let Aδ(W) and Φδ be, respectively, the acceptance sets and the

operator defined in equation (5) when the discount factor is δ. Let Wδ = (W δ
1 ,W

δ
2 ) be
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a fixed point of Φδ: for i, j = 1, 2, i 6= j,

W δ
i = δW δ

i + prob(x ∈ Aδ(Wδ))E[xi − (xi + xj)δW
δ
i |x ∈ Aδ(Wδ)]

⇐⇒ W δ
i =

prob(x ∈ Aδ(Wδ))E[xi|x ∈ A(Wδ)]

1− δ + δprob(x ∈ Aδ(Wδ))E[xi + xj|x ∈ Aδ(Wδ)]
.

Then,

W δ
1 +W δ

2 =
prob(x ∈ Aδ(Wδ))E[x1 + x2|x ∈ Aδ(Wδ)]

1− δ + δprob(x ∈ Aδ(Wδ))E[x1 + x2|x ∈ Aδ(Wδ)]
. (13)

Lemma A.1. Fix a sequence of discount factors {δn} → 1, and let Wδn = (W δn
1 ,W δn

2 ) ∈
X be a sequence such that Wδn = Φδn(Wδn) for all n. Then, limn→∞(W δn

1 +W δn
2 ) = 1.

Proof. Towards a contradiction, suppose this is not true. Hence, there exists a sequence

{δn} → 1 and a positive number η > 0 such that W δn
1 +W δn

2 < 1−η for all n. Note that

this implies that Aδn(Wδn) has a non-empty interior for all n. Since the distribution F

has density f such that f(x) ≥ f > 0 for all x, there exists a constant K > 0 such that

prob(x ∈ Aδn(Wδn)) > K for all n. It follows that

lim
n→∞

W δn
1 +W δn

2 = lim
n→∞

prob(x ∈ Aδn(Wδn))E[x1 + x2|x ∈ Aδn(Wδn)]

1− δn + δnprob(x ∈ Aδn(Wδn))E[x1 + x2|x ∈ Aδn(Wδn)]
= 1,

a contradiction. Hence, it must be that W δn
1 +W δn

2 → 1 as δn → 1. �

Proof of Proposition 3. We start by showing that, for any δ < 1, there exists

V δ < 1 with δV δ → 1 as δ → 1 such that, for all W = (W1,W2) with W1 + W2 < V δ,

Φ1(W) + Φ2(W) > W1 +W2. Note that this property implies that, for any fixed point

Wδ = (W δ
1 ,W

δ
2 ) of Φδ, it must be that V δ ≤ W δ

1 +W δ
2 .8

To see why such a V δ exists, pick g ∈ (0, f) with g < 1 and note that for any W ∈ X,

Φδ
1(W) + Φδ

2(W) = δ(W1 +W2) + prob(x ∈ Aδ(W))E[x1 + x2|x ∈ Aδ(W)](1− δ(W1 +W2))

≥ δ(W1 +W2) +
1

3
f(1− δ(W1 +W2))

2

> δ(W1 +W2) +
1

3
g(1− δ(W1 +W2))

2, (14)

8If V δ > W δ
1 +W δ

2 , then Φδ1(Wδ) + Φδ2(Wδ) > W δ
1 +W δ

2 , contradicting the fact that Wδ is a fixed
point of Φδ.
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where the first inequality follows since f(x) ≥ f > 0 for all x.9 Equation (14) implies

that Φδ
1(W) + Φδ

2(W) > W1 +W2 for all W when

1

3
g

(1− δ(W1 +W2))
2

1− δ
> W1 +W2.

Let V δ be the smallest solution to 1
3
g (1−δV δ)2

1−δ = V δ; i.e.,

V δ =
3(1− δ)

2gδ2

(
1 +

2gδ

3(1− δ)
−

√
1 +

4gδ

3(1− δ)

)
.

It follows that Φ1(W) + Φ2(W) > W1 + W2 for all W with W1 + W2 < V δ. Note that

V δ < 1 for δ < 1, and that δV δ → 1 as δ → 1.

We show next that there exists δ < 1 such that, for all δ > δ and for all W =

(W1,W2) ∈ X with W1 + W2 ≥ V δ, (Φδ)T (W) converges to a fixed point of Φδ as

T →∞. Towards establishing this, note that for i, j = 1, 2, i 6= j,

∂Φδ
i (W)

∂Wi

= δ − δ
∫
x∈Aδ(W)

(x1 + x2)f(x)dx ∈
[
δ − f

3
δ(1− δ(W1 +W2)), δ

]
∂Φδ

i (W)

∂Wj

= −
∫ 1−δWj

0

δx2i f

(
xi,

δWjxi
1− δWj

)
dxi

1− δ(W1 +W2)

(1− δWj)3
∈
[
−f

3
δ(1− δ(W1 +W2)), 0

]
,

where we used the assumption that f(x) ≤ f for all x ∈ X. Since δV δ → 1 as δ → 1,

there exists δ < 1 such that, for all δ > δ and all W ∈ X with W1 + W2 ≥ δV δ, and

δ− 2f
3
δ(1−δ(W1+W2)) ≥ 0. Note that, for all δ > δ and all W ∈ X with W1+W2 ≥ δV δ

∂Φδ
i (W)

∂Wi

+
∂Φδ

i (W)

∂Wj

∈ (−δ, δ). (15)

Fix δ > δ, and let Y δ := {W ∈ X : W1 + W2 ≥ δV δ}. Let || · || be the sup-norm

on R2. By equation (15), for all W,W′ ∈ Y δ and for i = 1, 2, |Φi(W) − Φi(W
′)| ≤

δ × ||W −W′||. Hence, for all W,W′ ∈ Y δ, ||Φ(W) − Φ(W′)|| ≤ δ × ||W −W′||.

9For all W ∈ X,

prob(x ∈ Aδ(W))E[x1 + x2|x ∈ Aδ(W)] =

∫
x∈Aδ(W)

(x1 + x2)f(x)dx

≥f
∫
x∈Aδ(W)

(x1 + x2)dx =
1

3
f(1− δ(W1 +W2)).
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Moreover, Φ(W) ∈ Y δ for all W ∈ Y δ.10 Note that this implies that, for all δ > δ and

for all W ∈ Y δ, (Φδ)T (W) converges to a fixed point of Φδ as T →∞.

Lastly, we show that the equilibrium is convergent whenever δ > δ. Fix δ > δ. There

are two cases to consider: (i) Φδ(0) ∈ Y δ, and (ii) Φδ(0) /∈ Y δ. In case (i), for any

deadline T ≥ 0, W(T ) = (Φδ)T (Φδ(0)) converges to a fixed point of Φδ as T →∞.

Consider next case (ii). Since Φδ
1(W) + Φ2(W) > W1 + W2 for all W = (W1,W2)

with W1 + W2 < V δ, there exists t ≥ 1 such that Φδ
1((Φ

δ)t(0)) + Φ2((Φ
δ)t(0)) ≥ V δ.

Hence, by our arguments above, (Φδ)t+s(0) converges to a fixed point of Φδ as s→∞,

and so the equilibrium is convergent. �

Lemma A.2. If F is symmetric then the players have the same equilibrium payoffs for

all deadlines, i.e. W1(T ) = W2(T ) =: W (T ) for all T ≥ 0.

Proof. If F is symmetric, then

W1(0) = Φ1((0, 0)) = E[x1] = E[x2] = Φ2((0, 0)) = W2(0)

Now suppose that W1(t) = W2(t) for all t = 0, ..., T − 1. Then, W1(T − 1) = W2(T − 1)

implies that the set A((W1(T − 1),W2(T − 1)) is symmetric, i.e. if x = (x1, x2) ∈
A((W1(T − 1),W2(T − 1)) then (x2, x1) ∈ A((W1(T − 1),W2(T − 1)). Then, we have

W1(T ) = Φ1(W(T − 1))

= prob(x ∈ A(W(T − 1))E[x1 − (x1 + x2)W1(T − 1)|x ∈ A(W(T − 1))] + δW1(T − 1)

= prob(x ∈ A(W(T − 1))E[x2 − (x1 + x2)W2(T − 1)|x ∈ A(W(T − 1))] + δW2(T − 1)

= Φ2(W(T − 1)) = W2(T ),

10Proof: Note that the function G(V ) = δV + 1
3g(1− δV )2 is increasing in V whenever δ − 2

3gδ(1−
δV ) ≥ 0. Then, since δ − 2

3δg(1 − δ(W1 + W2)) > δ − 2
3fδ(1 − δ(W1 + W2)) ≥ 0 for all δ ≥ δ and all

W ∈ Y δ, it follows that,

Φδ1(W) + Φδ2(W) ≥ δ(W1 +W2) +
1

3
g(1− δ(W1 +W2))2

≥ δV δ +
1

3
g(1− δV δ)2 = V δ,

for all δ ≥ δ and all W ∈ Y δ. Hence, for all δ ≥ δ and all W ∈ Y δ, Φ(W) ∈ Y δ.
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where the third equality follows since W1(T −1) = W2(T −1) and since F is symmetric.

�

Proof of Proposition 4. For any Ŵ ∈ [0, 1], define

H(Ŵ ) := prob(x ∈ A(Ŵ ))E[x1 + x2|x ∈ A(Ŵ )],

so that Ψ(Ŵ ) = δŴ +H(Ŵ )(1−δŴ ). Note that H ′(Ŵ ) ≤ 0: indeed, Ŵ ′′ > Ŵ ′ implies

that A(Ŵ ′′) ⊂ A(Ŵ ′), so for any Ŵ ′′ > Ŵ ′,

prob(x ∈ A(Ŵ ′′))E[x1 + x2|x ∈ A(Ŵ ′′)] ≤ prob(x ∈ A(Ŵ ′))E[x1 + x2|x ∈ A(Ŵ ′)].

It then follows that Ψ′(Ŵ ) = δ(1−H(Ŵ )) +H ′(Ŵ )(1− δŴ ) ≤ δ < 1 for all Ŵ ∈ [0, 1].

When Ψ′(Ŵ ) > −1 for all Ŵ ∈ [0, 1], |Ψ′(Ŵ )| < 1 for all Ŵ ∈ [0, 1]. This implies that

Ψ is a contraction, and the sequence {Ŵ (T )} converges to its unique fixed point. Hence,

the equilibrium is convergent. �

A.2 Proofs for Section 3.2

Proof of Lemma 3. Fix any τ ≥ t. Since xτ+1 ∈ Axτ (W) we have

xτ+1
i ≥ `i,xτ (x

τ+1
−i |Wi) = xτi +

δWi

1− δWi

(xτ+1
−i − xτ−i)

for both i = 1, 2. For any y = (y1, y2) ∈ Axτ+1(W), add y−iδWi/(1− δWi) to both sides

of the above inequality and rearrange to get

xτ+1
i +

δWi

1− δWi

(y−i − xτ+1
−i ) ≥ xτi +

δWi

1− δWi

(y−i − xτ−i)

This means that

`i,xτ+1(y−i|Wi) ≥ `i,xτ (y−i|Wi), i = 1, 2. (16)

Thus if y ∈ Axτ+1(W) then yi ≥ `i,xτ+1(y−i|W−i) for i = 1, 2, and by (16), yi ≥
`i,xτ (y−i|Wi) for i = 1, 2. This means that y ∈ Axτ (W), and thus Axτ+1(W) ⊆ Axτ (W).

�
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Proof of Proposition 5. For each z ∈ X, define LRz := Az(W)∩{y ∈ X : y1 + y2 =

1}. Since distribution Fz has full support and since LRz ⊆ Az(W), any point in LRz

can arise as a long term outcome; i.e., LRz ⊆ suppGz.

Consider next a subgame starting at period t with zt = z. By Lemma 3, xτ ∈ Az(W)

for all τ ≥ t. Since LRz = Az(W)∩{z ∈ X : y1 +y2 = 1}, any point on the frontier that

is not in LRz cannot arise as a long term outcome when zt = z. Hence, suppGz ⊆ LRz.

This establishes that suppGz = LRz, and it follows that Gz 6= Gz′ for z 6= z′. Lemma

3 then implies that along a realized equilibrium path {xτ}∞τ=t, we have suppGxτ+1 ⊆
suppGxτ . The inclusion is strict when xτ+1 6= xτ since LRxτ+1 6= LRxτ in this case. �

Proof of Proposition 6. Fix a sequence {δn} with δn → 1. For each n, let Wδn =

(W δn
1 ,W δn

2 ) be the players’ equilibrium payoffs in the limit as T → ∞ in a game with

discount factor δn. By Lemma 2, for each n, Wδn is a fixed point of Φδn . By Lemma

A.1, {Wδn} is such that limn→∞W
δn
1 +W δn

2 = 1. This establishes part (iii).

Consider next part (ii). By Proposition 5, for each n the support of the long-run

distribution Gδn is

A(W) ∩ {y ∈ X : y1 + y2 = 1} = {x ∈ X : x1 + x2 = 1 and x1 ∈ [δW δn
1 , 1− δW δn

2 ]}.

By part (iii), δn(W δn
1 + W δn

2 ) converges to 1 as n → ∞. Hence, [δnW
δn
1 , 1 − δnW

δn
2 ]

converges to a point W ∗
1 , and so Gδn converges to a dirac measure on (W ∗

1 ,W
∗
2 ).

Finally, recall that

Aδn(Wδn) =

{
x ∈ X : xi ≥

δnW
δn
i

1− δnW δn
i

x−i for i = 1, 2

}
.

Using part (iii), Aδn(Wδn) converges to {x ∈ X : x1/x2 = W ∗
1 /W

∗
2 }. �

Proof of Proposition 7. First we prove that if F is symmetric then the fixed point

of Ψ is unique. Operator Ψ is continuous and maps [0, 1] onto itself, so by Brouwer’s

fixed point theorem, it has a fixed point.

Let Ŵ be a fixed point of Ψ. Then, Ŵ satisfies

Ŵ =
prob(x ∈ A(Ŵ ))E[x1 + x2|x ∈ A(Ŵ )]

1− δ + δprob(x ∈ A(Ŵ ))E[x1 + x2|x ∈ A(Ŵ )]
. (17)
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Note that A(Ŵ ′′) ⊂ A(Ŵ ′) for any Ŵ ′′ > Ŵ ′. Therefore, for any Ŵ ′′ > Ŵ ′,

prob(x ∈ A(Ŵ ′′))E[x1 + x2|x ∈ A(Ŵ ′′)] ≤ prob(x ∈ A(Ŵ ′))E[x1 + x2|x ∈ A(Ŵ ′)].

Thus, the right side of (17) is decreasing in Ŵ , and so Ψ has a unique fixed point.

Next, the sum of the players’ equilibrium payoff in a game with deadline T is

Ŵ (T ) = ΨT+1(0). By standard results in dynamical systems (e.g., Theorem 4.2 in

De la Fuente (2000)), under conditions (i) and (ii) in the statement of the proposition

the sequence {Ŵ (T )} does not converge. So the equilibrium must be cycling. �

B Strategic search – not for publication

In this appendix we study the extension described in Section 4. We start by noting

that this game has an essentially unique SPE – this can be established using the same

arguments as in the proof of Proposition 1.

Fix a deadline T and a SPE σ∗. For every time t ≤ T and any z ∈ X, let Vi(z, t;T )

by player i’s SPE continuation payoff at period t in a game with deadline T when the

status quo policy at time t is z. Let Wi(T ) denote player i’s equilibrium payoff at the

start of the game.

Recall that we made the following assumptions on the sets of distributions Fx. First,

for all x,y ∈ X, card(Fx) = card(Fy); i.e., all the sets Fx have the same cardinality.

Second, for all x ∈ X and all Fx ∈ Fx with density fx, there exists F ∈ F = F(0,0) with

density f such that fx(y) = f(Px(y)) for all y ∈ X(x). Note that these assumptions

are a generalization of Assumption 1 to the current environment.

The following result generalizes Lemma 1 to the current environment. The proof is

identical to the proof of Lemma 1, and hence omitted (the proof relies on the assumptions

described above on the sets of distributions Fx).

Lemma B.1. For all t ≤ T and all zt = z = (z1, z2) ∈ X,

Vi(z, t;T ) = zi + (1− z1 − z2)Wi(T − t). (18)

Lemma B.1 can be used to obtain a recursive characterization of equilibrium payoffs.

Consider a period t ≤ T at which the status quo policy is z = (z1, z2) ∈ X. As in our
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baseline model, player i approves a policy x = (x1, x2) ∈ X(z) only if

(1− δ)xi + δVi(x, t+ 1;T ) ≥ (1− δ)zi + δVi(z, t+ 1;T )

xi + (1− x1 − x2)δWi(T − t− 1) ≥ zi − (1− x1 − x2)δWi(T − t− 1),

where we used Lemma B.1. Let Wi = Wi(T − t− 1). Then, at period t player i accepts

policy x when the status quo is z only if xi ∈ Ai,z(Wi) = {x ∈ X(z) : xi ≥ `i,z(x−i|Wi)},
where `i,z(x−i|Wi) is defined as in the main text. For any pair of payoffs W = (W1,W2)

and for any z ∈ X, the set Az(W) defined in the main text is the set of policy draws

that are accepted by both players at period t < T when the status quo policy is z and

(W1(T − t− 1),W2(T − t− 1)) = (W1,W2).

Consider a game with deadline T . Suppose player i = 1, 2 is recognized to choose

the distribution from which the policy will be drawn at the initial period. If player i

chooses distribution F ∈ F , she obtains payoffs equal to

probF (x ∈ A(W(T − 1)))EF [xi− (x1 + x2)δWi(T − 1)|x ∈ A(W(T − 1))] + δWi(T − 1).

For any W ∈ X and for i = 1, 2, let

F ∗W,i ∈ arg max
F∈F

probF (x ∈ A(W))EF [xi − (x1 + x2)Wi|x ∈ A(W)],

and let F ∗W := 1
2
F ∗W,1 + 1

2
F ∗W,2. Note that, when W(T − 1) = W, the initial period

policy is drawn from distribution F ∗W.

Define the operator Γ : X → X as follows: for i = 1, 2 and for all W ∈ X,

Γi(W) = probF ∗W(x ∈ A(W))EF ∗W [xi − (x1 + x2)δWi|x ∈ A(W)] + δWi.

For any integer t, let Γt denote the t-th iteration of operator Γ.

For any integer T , let W(T ) denote the players’ SPE payoffs in a game with deadline

T . The following result extends Proposition 2 to the current environment – the proof

uses the same arguments as the proof of Proposition 2, and hence we omit it.

Proposition B.1. In the equilibrium of the policy reform game with endogenous pro-

posals and deadline T ,

(i) the players’ equilibrium values satisfy W(T ) = ΓT+1((0, 0)), and
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(ii) the set of policies that are accepted by both players in any period t ≤ T is Azt(W(T−
t−1)) where zt is the status quo policy in period t and W(T−t−1) are the players’

equilibrium payoffs in the policy reform game with deadline T − t− 1.

This characterization of equilibrium payoffs can be used to generalize the main results

in the main text to the current environment. First, the equilibrium features inefficient

delays. Second, when the equilibrium is convergent, the acceptance regions are nested,

and the distribution over long-run outcomes that the equilibrium induces at a subgame

starting with status quo payoff z has support equal to {y ∈ X : y1 + y2 = 1} ∩ Az(W).

Therefore, the equilibrium also displays path-dependence. Lastly, it can be shown that

Proposition 6 continues to hold in this setting, so the equilibrium outcome also becomes

deterministic in the limit as δ → 1.
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