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Abstract

An agent chooses among projects with random outcomes. His payoff is increasing
in the outcome and in an observer’s expectation of the outcome. With some probabil-
ity, the agent will be able to disclose some information about the true outcome to the
observer. We show that choice is inefficient in general. We illustrate this point with a
characterization of the inefficiencies that result when the agent can perfectly disclose the
outcome with some probability and can disclose nothing otherwise as in Dye (1985a).
In this case, the agent favors riskier projects even with lower expected returns. On the
other hand, if information can also be disclosed by a challenger who prefers lower beliefs
of the observer, the chosen project is excessively risky when the agent has better access
to information, excessively risk—averse when the challenger has better access, and effi-
cient otherwise. We also characterize the agent’s worst—case equilibrium payoff. We give
examples of alternative disclosure technologies illustrating other forms the inefficiencies
can take.



1 Introduction

Consider an agent who makes productive decisions and also decisions about how much to
disclose about the outcomes of these choices. The productive decisions are not observed
directly and the outcome is only observed after some delay. The agent’s payoff depends
on the outcome of the productive decisions but also on the beliefs of an observer regarding
the outcome prior to its observation. We give several examples of this situation below.

Intuitively, the agent’s control of information flows gives him an incentive to deviate
from efficient productive decisions. For example, he may engage in excessive risk-taking.
After all, he can (at least to some extent for some period of time) hide bad outcomes
and disclose only good ones. This creates an option value which encourages risk-taking.
More broadly, he has an incentive to make production choices that are more likely to
give him an opportunity to disclose information that makes him look good even if these
choices are less likely to generate good outcomes.

We show that this incentive harms the agent in the sense that he would be better off
if he had no control over information. The reason is that the agent has an incentive to
try to choose a project that makes the outcome look better than it is. In equilibrium,
though, the observer cannot be fooled, so the agent simply hurts himself.

To illustrate these effects of strategic disclosure, we model disclosure as in Dye (1985a):
with some probability the agent can disclose the exact realization and otherwise cannot
disclose anything. We show that under these conditions, the agent would be better off if
he could not affect disclosure. More specifically, with any disclosure process under which
the probability that information is disclosed is independent of the information being
disclosed, the payoff to the agent is the expected value of the project with the highest
expected value.! We refer to this payoff as the first best. In contrast, when the agent
has control of disclosure, he has an incentive to engage in excess risk taking, leading to a
utility loss relative to the first best which can be “large” in a sense to be made precise.

We now give examples of this setting.

First, consider the manager of a firm. His actions determine a probability distribution
over the firm’s profits. In the short run, he can choose to release privately observed
information about profits. The observer is the stock market whose beliefs about the
firm’s profits determine the stock price of the firm. The manager’s payoff is a convex
combination of the short—run and long-run stock price, where the latter is the realized
profits — the true value of the firm. Note that the manager’s utility function can be
identical to that of the firm’s current stockholders, so the inefficiency we identify is

IFor example, if all information that can be disclosed is disclosed, then the disclosure process satisfies
this assumption.



not due to the textbook moral hazard problem (e.g., Mas-Colell, Whinston, and Green
(1995), Chapter 14). Here the first—best project is the one which maximizes the expected
value of the firm.

Second, suppose the agent is an incumbent politician and the observer is a represen-
tative voter. The productive activity chosen by the incumbent is a policy which affects
the utility of the voter. Before the outcome of the policy is observed, the incumbent
comes up for reelection. As part of his campaign, he may release information regarding
the progress of his policies. The probability the voter retains the incumbent is strictly
increasing in the voter’s beliefs about the utility he will receive from the incumbent’s
policy choice. One can think of this as retrospective voting or can assume that if the
incumbent is not reelected, his policy will be replaced by that of a challenger. The in-
cumbent desires to be reelected and also cares about the true utility of the voters. In this
setting, the first-best project is that which maximizes the expected utility of the voters.

Third, an entrepreneur chooses a project which he may need to sell part of to a
venture capitalist at the interim stage. The funding he receives is increasing in the beliefs
of potential buyers about the value of the project. He may have private information he
could disclose at the interim stage regarding how well the project is progressing. Again,
the first-best project is the one with the highest expected value.?

Fourth, consider a firm with multiple divisions, each of which could potentially head
up a prestigious project. The agent is the first division to have an opportunity to lead
and the observer is senior management. The agent has to decide among several ways to
try to achieve success on the project, where each method corresponds to a probability
distribution over profits from the project. The agent may have private information about
the progress of the project that he could disclose at the interim stage. If senior manage-
ment believes the project has not been handled sufficiently well at the interim stage, it
transfers control to another division.

In some of these settings, it is natural to consider a challenger to the agent who might
also have access to information he can disclose. For example, in the case of an incumbent
politician, it is natural to suppose that a challenger running against him might be able
to disclose information about the incumbent’s policies. Similarly, in the example of a
firm deciding whether to retain the current project manager or opt for an alternative,
the alternative manager might have information about what is happening which he could
disclose.

Again using the Dye evidence structure, we will show that in the extreme case where
all disclosure is by the challenger, the agent has an incentive to behave in a risk—averse
manner. In effect, the option value lies entirely with his opponent, so he wishes to

2We thank David Kreps for this example.



minimize risk to reduce the value of this (negative) option. When both the agent and the
challenger can disclose, the effect of disclosure on action choice depends on which is more
likely to obtain evidence he can disclose. If the agent has more access to information in
this sense than the challenger, excessively risky decisions are made, while if the challenger
has more access, then excessively risk—averse choices result. Only when information is
exactly balanced are production decisions first-best.?

While it is an empirical question whether these effects are large in reality, we show
that they can be quite large by characterizing the worst possible equilibrium payoff for the
agent relative to the first—best payoff. For example, we show that there are parameters
for which there is an equilibrium where the agent’s payoff is arbitrarily close to 50% of
the first-best payoff, but it is impossible for his payoff to be lower than this. (We also
characterize the case with a challenger.) As we show, one advantage of characterizing
worst—case payoffs is that this minimum has more intuitive comparative static properties
than a characterization of equilibria for fixed parameters.

In the next section, we illustrate the basic ideas with a simple example. In Section 3,
we give an overview of the most general version of the Dye model we study. As we show
in Section 6, the analysis of the general version can be reduced to the special cases where
only the agent has access to information to disclose and where only the challenger has
such access. In light of this and the fact that these special cases are simpler, we begin with
them in Sections 4 and 5 respectively. In Section 7, we discuss two alternative models,
illustrating how the nature of the inefficiencies depends on the disclosure technology.
Specifically, we show that if projects differ in the extent to which they yield disclosable
evidence, then there is a bias in favor of more transparent projects (those more likely to
yield evidence). In a model where projects yield outcomes in more than one dimension,
we show that there is a “hitting—for—the—fences” bias: the agent will choose projects
that are more likely to succeed in the dimension on which all projects are least likely to
succeed. Finally, Section 8 concludes.

The remainder of this introduction is a brief survey of the related literature. There
is a large literature on disclosure, beginning with Grossman (1981) and Milgrom (1981).
These papers established a key result which is useful for some of what follows. They con-
sider a model where an agent wishes to persuade an observer, but only through disclosure
— the agent cannot affect the underlying distribution over outcomes. They assume the
agent is known to have information and show that “unraveling” leads to the conclusion
that the unique equilibrium is for the agent to always disclose his information. Roughly,
the reasoning is that the agent with the best possible information will disclose, rather than
pool with any lower types. Hence the agent with the second—best possible information
cannot pool with the better information and so will also disclose, etc. Subsequent im-

3Given the continuity of the model, if information is “close” to balanced, then production decisions
are “close” to the first best.



portant contributions including Verrecchia (1983), Dye (1985a), Jung and Kwon (1988),
Fishman and Hagerty (1990), Okuno—Fujiwara, Postlewaite, and Suzumura (1990), Shin
(1994, 2003), Lipman and Seppi (1995), Glazer and Rubinstein (2004, 2006), Forges and
Koessler (2005, 2008), Archarya, DeMarzo, and Kremer (2011), and Guttman, Kremer,
and Skrzypacz (2014) add features to the model which block this unraveling result and
explore the implications. To explore the effect of disclosure on productive activities by
the agent, we also need a model of disclosure in which unraveling does not occur. We
primarily focus on the approach initially developed by Dye (1985a) and Jung and Kwon
(1988) for this purpose.

While the literature on disclosure is large, relatively little attention has been paid to
the interaction of disclosure and production decisions and the papers that do consider
this take very different approaches from ours.* Some papers consider “real effects” of
disclosure through its effect on the discloser’s competitors (Verrecchia (1983) or Dye
(1985b)) or effects that work through how disclosure affects the informativeness of stock
prices (Diamond and Verrecchia (1991), Bond and Goldstein (2015), or Gao and Liang
(2013)). In Dye and Sridhar (2002), disclosure generates information for the manager
through the market’s response to the disclosure. Wen (2013) considers a model where a
firm can only disclose if it invests, so that it may undertake unprofitable investments in
order to have the opportunity to disclose. While these factors have effects on the firm’s
productive decisions, they are very different effects than the incentive issues we study.

There are at least two other literatures where an agent’s productive decisions have
informational consequences that influence those decisions. First, in the career concerns
literature initiated by Holmstrom (1999), an agent whose abilities are unknown to the
market (and possibly to himself) chooses actions whose outcomes are observed by the
market and used to form beliefs about his abilities. See Chen (2015) for a recent con-
tribution to and summary of this literature. Second, there are several papers following
Stein (1989) in assuming that the manager may have an incentive to divert future cash
flows to the present in order to mislead the market about the long—run value of the firm.
In this setting, the nature of mandatory disclosure rules (e.g., the frequency of disclosure
and the kind of information which must be disclosed) have welfare implications through
the effect on the manager’s diversion of cash flows or other investment distortions. See,
for example, Kanodia and Mukherji (1996), Kanodia, Sapra, and Venugopalan (2004),
Edmans, Heinle, and Huang (2013), Gigler, Kanodia, Sapra, and Venugopalan (2013), or
the broader overview in Kanodia and Sapra (2015).°

4Numerous papers in the accounting literature have observed that the Dye disclosure model makes
the firm’s payoff convex in cash flows, but, to the best of our knowledge, none have noted the implications
of this for risk—taking incentives. See, for example, Ostaszewski and Gietzmann (2007).

5These papers can be seen as part of a broader literature on moral hazard in corporate finance and
accounting. As in our paper, the manager, even if he represents the interests of current shareholders,
has an incentive to take actions to try to “fool” the market or other investors but, of course, is correctly
interpreted in equilibrium. As a result, he is worse off than if he could have committed to efficient choices



In both of these literatures, the inefficiencies demonstrated are related to the ineffi-
ciency we study in that all are generated by an agent’s concern both for the true outcome
of his decisions but also the perceptions of an observer. The agent’s desire to influence
the latter causes him to take actions which would be suboptimal if he cared only about
the former. The key difference between these papers and our work is that we focus on
how the agent’s control of disclosure affects his incentives. In the career concerns and
short—termism literatures, the manager/agent cannot control information except through
his productive actions.® In our model, the agent controls both factors and the key is the
interaction between them.

A different approach to incentive effects associated with strategic disclosure is taken
by Beyer and Guttmann (2012) who consider a model in which disclosure interacts with
investment and financing decisions. Their paper is primarily focused on the signaling
effects stemming from private information about the exogenous quality of investment
opportunities. Thus both the nature and source of the inefficiency are very different
from what we consider.

2 Illustrative Example

We begin with an illustrative example to highlight the intuition of our results. This
example is for a special case of the environment, where the agent has no challenger and
cares only about the observer’s beliefs. We explain the model in more detail in the next
section, stating here only what is needed for the example. Specifically, we analyze the
perfect Bayesian equilibria of a three—stage game. In the first stage, the agent chooses
a project to undertake where a project corresponds to a lottery over outcomes in R, .
In the second stage, with probability ¢;, the agent receives evidence revealing the exact
realization from the project. If he receives evidence, he can either disclose it or withhold
it. (If he has no evidence, he cannot show anything.)

The observer does not see the project chosen by the agent or whether he has evidence;
the observer sees only the evidence, if any, which is presented. In the third stage, the
observer forms a belief b about the outcome of the project which equals the expectation
of the outcome conditional on all public information. Thus if evidence was presented
in the second stage, the observer’s belief must equal the outcome shown. The agent’s
payoffs equal the observer’s belief, b.

Consider the following example. Assume ¢; € (0, 1), so the agent may or may not
have information. Also, assume that there are only two projects, F' and G, where GG is a

in the first place. See, for example, the risk shifting problem discussed in Jensen and Meckling (1976).
SRodina (2016) considers the case where the principal can control the information.



degenerate distribution yielding x = 4 with probability 1 and F' gives 0 with probability
1/2 and 6 with probability 1/2. Recall that the agent’s ex ante payoff is the expectation
of the observer’s belief b. In equilibrium, the observer will make correct inferences about
the outcome of the project given what is or is not disclosed, so the expectation of the
observer’s belief must equal the expectation of x under the project chosen by the agent.
Hence if we have an equilibrium in which F' is chosen, then the agent’s ex ante payoff
must be 3, while if we have an equilibrium in which G is chosen, the agent’s ex ante
payoff must be 4. In this sense, GG is the best project for the agent. For this reason, we
say G is the first-best project and that 4 is the agent’s first-best payoft.

Despite the fact that the agent would like to commit to G, it is not an equilibrium
for him to choose it. To see this, suppose the observer expects the agent to choose this
project. Then if the agent discloses nothing, the observer believes this is only because
the agent did not receive any information (an event with positive probability in the
hypothetical equilibrium as ¢; < 1) and so believes x = 4. Given this, suppose the
agent deviates to project F'. Since the project choice is not seen by the observer, the
observer’s beliefs cannot change in response. If the outcome of project F' is observed
by the agent to be 0, he can simply not disclose this and the observer will continue to
believe that x = 4. If the outcome is observed to be 6, the agent can disclose this,
changing the observer’s belief to # = 6. Hence the agent’s payoff to deviating is a
convex combination of 4 and 6 and hence is strictly larger than 4. (Specifically, it is
(1 —q1)(4) + @[(1/2)(4) + (1/2)(6)] > 4.) So it is not an equilibrium for the agent to
choose project G. One can show that if 0 < ¢; < 1/2, then the unique equilibrium in this
example is for the agent to choose project F.” Thus the agent is worse off than in the
first—best. His inability to commit leads him to deviate from projects that are efficient
but not “showy” enough. Since such deviations are anticipated in equilibrium, he ends
up choosing an inefficient project and suffering the consequences.

In this example, the agent’s expected payoff as a proportion of his first-best payoff
is 3/4. An implication of Theorem 3 is that, for all ¢; and all sets of feasible projects,
the agent’s equilibrium payoff must be at least half the first—best utility and that this
bound can be essentially achieved (that is, we can find parameters for which there is an
equilibrium payoff as close as we want to this bound).

3 Model

In this section, we present the most general version of the model we consider and explain
the basic structure of equilibria. In the following sections, we discuss the inefficiencies of
the equilibria.

If ¢; € (1/2,1), the unique equilibrium is mixed.



Now the game has three players — the agent, the challenger, and the observer. As
in the example, there are three stages. In the first stage, the agent chooses a project
to undertake. Each project corresponds to a lottery over outcomes. The set of feasible
lotteries is denoted F where each F' € F is a (cumulative) distribution function over R,.
For simplicity, we assume the supports of the feasible distributions are bounded from
below by 0 and from above by z. That is, we assume that there exists < oo such that
F(z) =1 for all F € F. We assume the set F is finite with at least two elements.®

In the second stage, there is a random determination of whether the agent or chal-
lenger has evidence demonstrating the outcome of the project. As in Dye (1985a), we
assume that evidence, if it exists, proves exactly what the outcome of the project is —
there is no “partial” evidence. In the conclusion, we comment briefly on how the results
change when partial evidence is possible. Let ¢; denote the probability that the agent
has evidence and ¢» the probability that the challenger has evidence. We assume that the
events that the agent has evidence and that the challenger has evidence are independent
of one another and that both are independent of the project chosen by the agent and
its realization.” If a player has evidence, then he can either present it, demonstrating
conclusively the outcome of the project, or he can withhold it. If he has no evidence, he
cannot show anything. The decisions by the agent and challenger regarding whether to
show their evidence (if they have any) are made simultaneously.!® Neither the agent nor
the challenger sees whether the other has evidence. The observer does not see the project
chosen by the agent nor whether he or the challenger has evidence — the observer sees
only the evidence, if any, which is presented and by whom.

In the third stage, the observer forms a belief b about the outcome of the project which
equals the expectation of x conditional on all public information.!! Thus if evidence was
presented in the second stage, the observer’s belief must equal the outcome shown since
evidence is conclusive.

Finally, the outcome of the project is realized and observed. The payoffs are as
follows. Let x be the realization of the project and b the observer’s belief in the third
stage. The agent’s payoff is ax + (1 — «)b where « € [0, 1]. The challenger’s payoff is —b.
Because the challenger cannot affect x, the results would be the same if we assumed the

8The assumption that F is finite is a simple way to ensure equilibrium existence. Also, it is not
difficult to allow for unbounded supports as long as all relevant expectations exist.
9As shown in Section 6, our results do not rely on the first of these independence assumptions. We

use it only for notational convenience. We relax the other independence assumption in Section 7.1.

10As will be clear from the analysis, the results also hold if the players move sequentially.

HFor expositional simplicity, we do not explicitly model the payoffs of the observer as they are ir-
relevant for the equilibrium analysis. Among other formulations, one could assume that the observer
chooses an action b and has payoff —(x — b)?. Obviously, the observer would then choose b equal to the
conditional expected value of z. The examples in the introduction suggest various other payoff functions
for the observer.



challenger’s payoff is fz + (1 — 8)(=b) for B € [0,1), for example.

Note that the game is completely specified by a feasible set of projects F and the
values of «, q;, and ¢o. For this reason, we sometimes write an instance of this game as
a tuple (F,a, q1, q2). Throughout, we consider perfect Bayesian equilibria.!?

In the remainder of this section, we do the following. First, we discuss the benchmark
case where the information seen by the observer cannot be affected by the agent or
challenger — where it is entirely exogenous. As we will show, this case generates the
first—best outcome. Second, we discuss the structure of equilibria in this game more
generally. This sets up our detailed discussion of the inefficiencies of equilibria in the
following sections.

3.1 Benchmark

First, we consider the benchmark case where the information seen by the observer is not
strategically determined. In other words, suppose the observer sees the realization of the
project at stage 2 with probability ¢ € [0,1] and that the agent and challenger cannot
affect whether the observer sees this information.

Except for the degenerate case where o = ¢ = 0, the optimal project choice by the
agent is any project F' which maximizes the expectation of x with respect to F', denoted
Ep(x). We refer to such a project F' as a first-best project.

To see why the agent chooses a first—best project when disclosure is not strategic, fix
an equilibrium. Let Z denote the belief of the observer if he does not see any evidence.
Then if the agent chooses project F, his expected payoff is

aEp(z) 4+ (1 —a)[¢Er(z) + (1 — q)2].

Obviously, if « = ¢ = 0, then the agent’s payoff is Z, regardless of the F' he chooses,
so he is indifferent over all projects. Otherwise, his payoff is maximized at any project
F which maximizes Ep(x). To be more precise, choosing any such F' strictly dominates
choosing any project with a strictly lower expectation.

As the example in Section 2 showed, equilibria are typically not first—best when
disclosure is chosen by the agent strategically. If the observer expects the agent to
choose a first—best project, he may have an incentive to deviate to a less efficient project

128pecifically, we use what Mas-Colell, Whinston, and Green (1995) refer to as weak perfect Bayesian
equilibrium. Our results do not depend on the weakness of the requirements of weak perfect Bayesian
equilibrium for off equilibrium beliefs. In particular, our results continue to hold if we assume all projects
have full support so that there are no zero probability events.



which has a better chance of a very good outcome, preventing his choice of the first—best
from being an equilibrium. Of course, in equilibrium, his choice is anticipated, so he ends
up worse off.

3.2 Equilibrium

Now we turn to the general structure of equilibria in this model. So suppose we have an
equilibrium where the agent uses a mixed strategy o where o(F) is the probability the
agent chooses project F'. Again, let & denote the belief of the observer if he is not shown
any evidence at stage 2. If ¢; and g9 are both strictly less than 1, then this information
set must have a strictly positive probability of being reached.

Given z, it is easy to determine the optimal disclosure strategies for the agent and
the challenger. First, suppose the agent obtains proof that the outcome is x where
x > z. In this case, the agent will disclose the outcome in any equilibrium, regardless
of the strategy of the challenger. Clearly, if the probability the challenger would reveal
this information is less than 1, then the agent is strictly better off revealing than not
revealing. So suppose the challenger reveals this information with probability 1 — that
is, g2 = 1 and the challenger’s strategy given x is to disclose it. Since the challenger would
not want to reveal this information, the only way this could be optimal for the challenger
is if the agent is also disclosing it, rendering the challenger indifferent between disclosing
and not. Hence, either way, the agent must disclose this information with probability 1.
Similar reasoning shows that if the challenger obtains proof that the outcome is x where
x < &, then the challenger discloses this with probability 1.

So suppose the agent obtains proof that the outcome is z < . Similar reasoning to
the above shows that he hides this information in equilibrium except in the trivial case
where g = 1. When ¢, = 1, the challenger will necessarily also have this information.
From the above, we know the challenger will disclose it. Hence in this case, the agent
is indifferent between disclosing and not. In short, if the agent’s disclosure decision
matters, then he does not disclose in this situation. For simplicity, we simply focus on
the equilibrium where the agent never discloses when < Z. Similar reasoning shows
that we can also assume without loss of generality that the challenger never discloses
when x > 7.

One can show that the equilibrium is entirely unaffected by the disclosure choices
when x = z, so for simplicity we assume both the agent and challenger disclose in this
situation.!3

13Tt is obvious that a player’s choice when he observes © = & is irrelevant if this is a measure zero
event. However, even with discrete distributions, this remains true. First, obviously, a player’s payoff is
unaffected by what he does when indifferent. Second, if either the agent or challenger is indifferent, the



In light of this, we can write the agent’s payoff as a function of the project F' and &
as

Va(F,z) =aEp(z) + (1 — «) {(1 —q1)(1 = @)+ ¢ (1 — ¢)Ep max{z, &} (1)
+ ¢2(1 — q1)Ep min{z, 2} + CthEF(x)]-

We can complete the characterization of equilibria as follows. First, given z, we have

Va(F,z) = max Va(G, &) for all F' such that o(F) > 0.

That is, the agent’s mixed strategy is optimal given the disclosure behavior described
above and the observer’s choice of z.

Second, given o, £ must be the expectation of x conditional on no evidence being
presented and given the disclosure strategies and the observer’s belief that the project
was chosen according to distribution o. The most convenient way to state this is to use
the law of iterated expectations to write it as

Z o(F)Ep(z) = Z o(F) [(1 —q)(1 = @)+ ¢(1 — ¢@)Epmax{z, &} (2)

FeF FEF
+¢2(1 — q1)Ep min{x, 2} + C]lQQEF(SC)]-

The left-hand side is the expectation of x given the mixed strategy used by the agent in
selecting a project. The right-hand side is the expectation of the observer’s expectation
of x given the disclosure strategies and the agent’s mixed strategy for selecting a project.

Substituting from equation (2) into equation (1) yields the conclusion that the agent’s
equilibrium expected payoff is 3 per 0 (F)Ep(x). Thus the agent’s payoff in any equilib-
rium must be weakly below the first—best payoft.

Also, if « = ¢4 = ¢2 = 0, then V4(F,2) = Z. In this case, the agent’s actions do
not affect his payoff, so he is indifferent over all projects. Henceforth, we refer to a
game (F,«,q1,q2) with a = ¢ = q2 = 0 as degenerate and call the game nondegenerate
otherwise.

4 Agent Only

In this section, we focus on the case where the challenger is effectively not present.
Specifically, we consider the model of the previous section for the special case where

other is as well, so the agent’s choice doesn’t affect the challenger or conversely. Finally, the indifferent
player’s choice does not affect the observer’s posterior beliefs since this is a matter of whether we include
a term equal to the average in the average or not — it cannot affect the calculation.

10



g2 = 0. This is of interest in part because there is no obvious counterpart of the challenger
in some natural examples which otherwise fit the model well. Also, as we will see in
Section 6, the general model can be reduced either to this special case or the special case
discussed in the next section where only the challenger may have information.

When ¢ = 0, equation (1) defining V4(F, Z) reduces to
Va(F,2) = aEp(z) + (1 — a)[(1 — ¢1) + ¢1 Er max{z, 2}]. (3)

Thus the agent chooses the project F' to maximize Ep[az + (1 — a)q max{z, z}| for a
certain value of z. If & were exogenous and we simply considered az+ (1 —«)q; max{z, &}
to be the agent’s von Neumann—Morgenstern utility function, we would conclude that
the agent is risk loving since this is a convex function of = (as long as (1 — a)q; > 0).
The results we show below build on this observation, making more precise the way this
incentive to take risks is manifested in the agent’s equilibrium choices.

To clarify the sense in which the agent’s choices are risk seeking, we first recall some
standard concepts.

Definition 1. Given two distributions F' and G over Ry, G dominates F in the sense
of second—order stochastic dominance, denoted G SOSD F, if for all z > 0,

/OZF(J})d:CZ/OZG(SU)dZ’.

We say that F is riskier than G if G SOSD F and Ep(z) = Eg(z).

It is well-known that if G SOSD F', then every risk averse agent prefers G to F. If
F is riskier than G, then every risk-loving agent prefers F' to G and every risk neutral
agent is indifferent between the two.

Our first result on risk taking uses a stronger notion of riskier.

Definition 2. Given two distributions F' and G over [a,b], G strongly dominates F' in
the sense of second—order stochastic dominance, denoted G SSOSD F, if for all z € (a,b),

/OZF(:E)d:E>/OZG(x)dx.

We say that F is strongly riskier than G if G SSOSD F and Er(z) = Eg(z).

14The reason that the mean condition has to be added for the second two comparisons is that if G
SOSD F, then the mean of G must be weakly larger than the mean of F. Clearly, if it is strictly larger,
then G could be better than F even for a risk—loving agent.

11



One can show that if F' is strongly riskier than G, then for every continuous and
increasing utility function u with uniformly bounded directional derivatives, F' yields
strictly higher expected utility than G if the agent is risk loving and not risk neutral,
while G yields strictly higher expected utility than F' if the agent is risk averse and not
risk neutral.

Theorem 1. Suppose g = 0. Suppose there are distributions F,G € F such that F
is strongly riskier than G. Then if a < 1 and ¢ € (0,1), there is no pure—strategy
equilibrium in which the agent chooses G.'°

Proof. Suppose to the contrary that it is a pure equilibrium for the agent to choose G.
Then the payoff to G must exceed the payoff to F. Using equation (3), this implies
aEg(z) + (1 — o) Eg max{z, 2} > aEp(z) + (1 — @)1 Ep max{x, #}.

Since F' is strongly riskier than G, they have the same mean. Hence, given o < 1 and
q1 > 0, this reduces to
E¢max {z,2} > Epmax {z,2}.

Note that -
Epmax{z, &} = F(2)& + / z dF(z).

Integration by parts shows that

/j F(x)dz = F(i)i — / v dF(z) = F(2)& — Bp(z) + /;q:dF(:c),

0

S0 )
Er max{z, i} = Ep(z) +/ F(z)dzx.
0

Hence we must have

E(z) +/jG(m) dr > Ep(z) +/O£F(x) dz.

Again, since F' is strongly riskier than G, we have Eg(z) = Ep(z) implying

/OjG(x)dxz/oﬁF(x)dx.

Since F is strongly riskier than G, this implies that & ¢ (a,b). Hence, in particular,
either 7 is strictly outside the support of GG or is either the upper or lower bound of the
support.

15This result also holds in a model of project choice with disclosure modeled as in Verrecchia (1983)
if the cost of disclosure is small enough.
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From equation (2), Z must satisfy
E¢(z) = (1 — q1)% + @1 E¢ max{z, }.

If z is less than or equal to the lower bound of the support of G, then this equation
says Eg(z) = (1 — ¢1)% + ¢1Eg(z). Hence, given the assumption that ¢; < 1, we obtain
& = Eg(x), a contradiction unless G is degenerate at &. If & is greater than or equal
to the upper bound of the support of G, then this equation says Eg(z) = Z, again a
contradiction unless GG is degenerate at .

So suppose G is degenerate at z. Since F' # G, F' cannot be degenerate at . Since
Er(z) = Eg(x), & must be in the interior of the support of F. But then & € (a,b), a
contradiction. ||

Our next result uses weaker hypotheses — comparing distributions using riskiness
rather than strong riskiness, allowing mixed equilibria, and not imposing parameter
restrictions other than non-degeneracy on a and ¢;. Consequently, the conclusion is
weaker as well. Specifically, we show that if there are two distributions in F which can
be compared in terms of riskiness, the agent never chooses the less risky of the two if
the difference is ever relevant. To understand this result, note that the agent’s objective
function is piecewise linear, not strictly convex. Hence there are certain comparisons of
lotteries where the difference in risk is irrelevant to the agent. To make this last part of
the statement precise requires another definition.

Definition 3. F is equilibrium-indifferent to G if for every equilibrium in which G
recewves positive probability, there is another equilibrium in which the agent’s mixed strat-
eqy 1s unchanged except the probability he played G previously is now moved to F', the
observer’s strategy is unchanged, and the agent’s expected payoff is unchanged.

It is not hard to show that if F' is equilibrium-indifferent to G, then AF + (1 — \)G
is also equilibrium—indifferent to G for all A € (0,1). In other words, if F' is equilibrium—
indifferent to GG, then the agent makes no distinction between F' and G whatsoever and
the observer’s beliefs also make no distinction.

Theorem 2. Suppose g = 0. Suppose there are distributions F,G € F such that F' is
riskier than G. Then for any equilibrium of any nondegenerate game, either the agent
puts zero probability on G or else F' is equilibrium—indifferent to G.

Proof. Fix distributions F' and G with F' riskier than G. Fix an equilibrium in which G
is in the support of the agent’s mixed strategy and define z to be the observer’s response
if no evidence is presented in the equilibrium. Since G is given positive probability, we
must have

aEq(z) + (1 — o) Eg max{z, 2} > aEp(z) + (1 — @)1 Ep max{x, #}. (4)

13



Since the function ax + (1 — ) max{z, &} is convex in z, F riskier than G implies that
(4) must hold with equality.

Since the game is nondegenerate, either « > 0 or ¢; > 0 or both. Hence if (1—a))q; = 0,
we must have o > 0 so the agent maximizes Ep(x) and the result follows. So for the
remainder, assume (1 — «)g; > 0. Hence the equality in (4) and the fact that F riskier
than G implies E¢(z) = Ep(x) implies

E¢max{z, 2} = Ep max{z, 2}.

Change the agent’s strategy by switching the probability he plays G to playing F'. If &
does not change, his new strategy is still a best reply. From equation (2), the appropriate
Z can be defined by

(1—q)i+q Y, o(F)Epmax{z,2} = Y o(F)Ep(z).
F'eF F'eF

Since Ep(z) = E¢(z) and Ep max{z, 2} = Eq max{z, 2}, we see that & does not change.
Hence this is an equilibrium. Clearly, the agent obtains the same expected payoff. So F
is equilibrium-indifferent to G. ||

Theorems 1 and 2 compare distributions with the same means, but it is easy to see
that, in general, the agent will accept a lower mean in order to obtain more risk.

As an extreme illustration, we generalize the example of Section 2 as follows. Suppose
a = 0 and let G be a degenerate distribution yielding x* with probability 1. There is a
pure strategy equilibrium in which the agent chooses G if and only if there is no other
feasible distribution that has any chance of producing a larger outcome. That is, this
is an equilibrium iff there is no F' € F with F(z*) < 1. The conclusion that G is an
equilibrium if F(z*) = 1 for all F' € F is obvious, so consider the converse. Suppose we
have an equilibrium in which the agent chooses G but F(z*) < 1. Because the agent is
expected to choose GG, we have T = x*. But then the agent could deviate to F' and with
some (perhaps very small probability) will be able to show a better outcome than z*,
yielding a payoff strictly above x*. If he cannot, he shows nothing and receives payoff
x*. Hence his expected payoff must be strictly larger than z*, a contradiction. Note that
the mean of x under F' could be arbitrarily smaller than the mean under G.

While the mean of F', the distribution to which the agent deviates, can be arbitrarily
smaller than the mean of G, this does not say that the agent’s payoff loss in equilibrium
is arbitrarily large. Since F' may not itself be an equilibrium choice by the agent, such
a conclusion would not follow from the observation above. Below, we give tight lower
bounds on the ratio of the agent’s equilibrium payoff to his best feasible payoff which
show that the equilibrium payoff loss is not, in fact, arbitrarily large. For example, one
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simple implication of this result is that, except in the degenerate case where o = ¢; = 0,
the agent’s equilibrium payoff must always be at least half of his first—best payoff.

The more general result characterizes the ratio of the worst equilibrium payoff for the
agent to the first—best payoff.' More precisely, given a game (F, , q1, q2), let

UMB(F) = max Ep(x).

So UFB is the first-best payoff for the agent. Let U(F, a, q1,q2) denote the set of equi-
librium payoffs for the agent in the game. We will give a function R(«, q1,¢g2) with the
following properties. First, for every F, for every U € U(F, a, q1, q2),

U Z R(O{, q1, QQ)UFB(]:)

That is, R(a, q1, o) is a lower bound on the proportion of the first—best payoff that can
be obtained in equilibrium — i.e., on U/U*? for any equilibrium for any feasible set F.

Second, this bound is tight in the sense that for every ¢ > 0, there exists F and
UeU(F,a,q,q) such that

U< R(o,q1, @)U B(F) + <.

We therefore sometimes refer to R as the “worst—case payoft” for the agent.

In this section, we focus on games with g = 0, so we only characterize the function
for this special case here, giving the more general characterization later.

Specifically, we have the following result.'”
Theorem 3. For any nondegenerate game,

_ a+(1—a)q
at+(1-a)u@2—q)

Also, R(0,0,0) = 0. Hence for a > 0,

R(O[7 qi1, O)

1+ o
in R 0)= — Y=
Jin (ar, q1,0) 5

16This is essentially the inverse of what is sometimes called the Price of Anarchy. See, for example,
Koutsoupias and Papadimitriou (1999), who coined the term, or Roughgarden (2005).

1"The exact statements of the lower bounds in Theorems 3 and 5 exploit our normalization that
the outcome from any project is non—negative. However, it is straightforward to adapt these bounds
to the more general case where there is some (not necessarily positive) lower bound for all supports.
Specifically, suppose z is a lower bound for all supports. When x = 0, our theorems characterize a
function R such that U > RUP and this bound is tight. When z # 0, what we are establishing is that
U > RUPB + (1 — R)z and that this bound is tight. Note that this implies that if z | —oo, then the
outcome can be arbitrarily worse than the first—best. We thank Bruno Strulovici for raising this issue.
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We offer several comments on this result. First, there is a discontinuity in the function
R at the degenerate case where @ = ¢q; = ¢o = 0. To see this, note from the charac-
terization of the minimum over ¢; that R(a,q;,0) > 1/2 if « > 0, but R(0,0,0) = 0.
To understand this discontinuity, note that when ¢; = g2 = 0, there is no information
that will be revealed to the observer at stage 2. When a = 0, the only thing the agent
cares about is the observer’s belief. Since no information will be revealed to the observer,
the agent cannot do anything to affect the only thing he cares about. In particular, for
any F € F, it is an equilibrium for the agent to choose F' since no deviation from this
F will change his expected payoff. Consequently, our remaining remarks focus on the
nondegenerate case.

Second, it is easy to see that R(«,q;,0) is increasing in o and equals 1 at o = 1.
Hence, as one would expect, if a = 1, we obtain the first-best. In this case, the agent
does not care about the observer’s belief, only the true realization of x, and so is led to
maximize it (in expectation).

Third, it is not hard to show that R(a,q;,0) is not monotonic in ¢; except when
a = 0 or (trivially) a = 1. Specifically, given any «, the value of ¢; which minimizes the
bound is ¢; = v/a/[1 + /a], which is interior for any a € (0,1).

This non-monotonicity stems from the fact that when a > 0, we obtain the first-best
at both ¢ = 0 and at ¢y = 1. That is, R(«,0,0) = R(«a,1,0) = 1 for all & > 0. When
q1 = 0, the agent cannot influence the observer’s beliefs and so cares only about the
true value of . Hence he chooses the project which maximizes its expectation. When
q1 = 1, he is known to always have information. So the standard unraveling argument
implies that he must reveal the information always. Hence he cannot be strategic about
disclosure and therefore will again maximize the expected value of x.

Figure 1 illustrates Theorem 3. It shows R(a,q1,0) as a function of ¢; for various
values of a.

The proof of Theorem 3 is a little tedious and so is relegated to the Appendix. To
provide some intuition, we prove a simpler result here, namely, that for & = 0, the agent’s
payoff must be at least half the first—best in any nondegenerate game. That is, we prove
the last statement of the theorem for o = 0.

So fix any feasible set of projects F and any ¢; € (0,1]. Fix any equilibrium mixed
strategy o for the agent and any project F' in the support of ¢ which has the lowest
expected value of x across projects in the support. Fix the z of the equilibrium. Let G
be any first-best project. It is not hard to show from equation (3) that ¢; > 0, F' in the
support of o, and the optimality of o imply

Er max{z, i} > Eg max{x, 1}
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Figure 1: “Worst Case” as a Function of ¢;.
or
+/ x)dr > Eqg(x +/ dx.
Since F(z) <1 and G(x ) > 0, this requires
Er(x) + 2 > Eg(z). (5)

From equation (2),
S o(FNEp(z) = (1—q)i+q Y. o(F)Ep max{z,i}.
F'eF F'eF
Since Ep max{x, 2} > Ep(x), we see that
Z O'(F/)EF/<CC') 2 Z.
F'eF
Also, by our assumption that F' is one of the projects with the lowest mean in the support,
we have
> o(FEp(z) > Ep(z).
F'eF
Hence equation (5) implies

2> o(F)Ep(z) > Ep(z) + & > Eg(z).
F'eF



So the agent’s payoff 3" pcro(F')Ep (x) must be at least half of the first—best payoff, as
claimed.

To show that this bound is approximately achievable, consider the following example.
Let @ = 0. Suppose F = {F,G} where F is a discrete distribution putting probability
1 —pon0and p on 1/p for some p € (0,1), so Ep(z) = 1. Let G be a degenerate
distribution giving probability 1 to x = x*. We construct an equilibrium where F' is
chosen by the agent, so the agent’s equilibrium payoff, U, is 1. We focus on the case
where * > 1, so UYB = x*. If the observer expects the agent to choose F' with probability
1, then by equation (2), & solves

l-q)z+qa[l-pi+1=1

S0
l—q
L—=aqp
This is an equilibrium iff Eq max{z, 2} < Ep max{z, 2} or

T =

max{z*, 2} < (1 —p)z+1
1—p)(1— 2 q —
_ (1 —p)( ) 1= 41— P

1 —qip l—qp

It is easy to see that £ < 1 while, by assumption, * > 1. So we have an equilibrium iff

92— g —
* < q1 —p

X .
1—aqp

Let z* equal the right—hand side. Then we have an equilibrium where the agent’s payoff
is 1, but the first—best payoff is z*. By taking ¢; and p arbitrarily close to 0, we can make
x* arbitrarily close to 2, so the agent’s payoff is arbitrarily close to half the first—best
payoff.

The implication of Theorem 3 that the worst—case payoffs are increasing as the agent
cares more about the true x and less about the observer’s belief b is intuitive, but it is
important to note that this result does not carry over to equilibrium payoffs in general.
In Appendix C, we give an example which illustrates several senses in which equilibrium
payoffs can decrease as « increases for fixed F. In the example, there is a mixed strategy
equilibrium with payoffs that are decreasing in «. Also, this equilibrium is the worst
equilibrium for the agent for some parameters, showing that the worst equilibrium payoft
for a fixed F can decrease with . Finally, the payoff in the worst pure strategy equilib-
rium is also decreasing in « for a certain range, showing that this result is not an artifact
related to mixed—strategy equilibria.
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5 Challenger Only

In this section, we consider the case where ¢; = 0 and ¢ may be strictly positive. In this
case, the agent’s payoff as a function of z and his chosen project F' is

Va(F,z) = aEp(z) + (1 — a) [(1 — ¢2)2 + ¢oErp min{z, 2}].

Analogously to our discussion in Section 4, we see that given z, it is as if the agent has a
von Neumann-Morgenstern utility function of ax + (1 — a)go min{x, z}. If (1 —a)gs > 0,
this function is concave, so the agent’s choices are effectively risk averse. This gives the
following analog to Theorem 2.18

Theorem 4. Suppose q = 0. Suppose there are distributions F,G € F such that F' is
riskier than G. Then for any equilibrium of any nondegenerate game, either the agent
puts zero probability on F or else G is equilibrium—indifferent to F'.

Proof. The proof parallels the proof of Theorem 2 with min replacing max and concave
replacing convex. |

We can also characterize R for this case.!® More specifically, we have the following
analog to Theorem 3:

Theorem 5. For all nondegenerate games, we have

(0%

R(a,0,q) = at(l-a)p

Hence for a > 0,
in R(a,0 =
nin F(0,0,02) = o
and for qa > 0,
min R(a,0,q) = 0.

a€(0,1]

Figure 2 illustrates this result. It shows R(a,0,¢2) as a function of ¢y for the same
values of « as used in Figure 1.

Theorem 5 has some features in common with Theorem 3. In particular, both results
show that the outcome must be first-best when o« = 1 or when o > 0 and there is
zero probability of disclosure (i.e., g = 0). In both cases, the worst case improves as «
increases.

181t is straightforward to give an analog for Theorem 1 as well.
19While the proofs of Theorems 2 and 4 are essentially identical, those of Theorems 3 and 5 are not.
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Figure 2: “Worst Case” as a Function of gs.

On the other hand, this result also shows several differences from Theorem 3. First,
while there is a discontinuity, it is somewhat different from the discontinuity noted pre-
viously. To be specific, in the previous section, we showed that for ¢; > 0,

1 1
= > —
R(O,th) 2_q1 = 9
while R(0,0,0) = 0. Here we see that
R(0,0,¢2) =0

for all go. Hence the function R(0, ¢y, 0) is discontinuous in ¢; at ¢ = 0 but the function
R(0,0, ¢2) is not discontinuous in g3 at g = 0. On the other hand, there is a discontinuity
at (0,0,0) since R(«,0,0) =1 for all a > 0.

Second, this result implies that the worst case over & when ¢; > 0 and ¢y = 0 is better
than the worst case when ¢; = 0 and ¢ > 0. In other words,

in R 0) > min R(a,0
nin (@, q1,0) min, (, 0, g2)

for ¢y > 0 and g, > 0. The left-hand side is 1/2, while the right-hand side is 0. Since the
lower bound is zero and payoffs are non—negative, this implies that in the case where only
the challenger can disclose, the agent could be arbitrarily worse off than at the first—best.
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Third, recall that for « € (0,1), the worst—case payoff in Theorem 3 was first decreas-
ing, then increasing in ¢;, equalling the first-best at both ¢; = 0 and ¢; = 1. Here the
worst case is always decreasing in ¢s. In particular, we obtain the first—best at g = 0
but not at g = 1. This may seem unintuitive since at ¢ = 1, the challenger is known to
have information and therefore the standard unraveling argument would seem to suggest
he must reveal it. Hence, one expects, it is as if the observer always saw the true x and
so the outcome would seem to necessarily be first—best.

To understand why we do not necessarily obtain the first best at ¢ = 1, consider
the following example. Suppose go = 1 and that F = {F,G} where F' gives 1 with
probability 1/2 and 3 with probability 1/2, while G gives 0 with probability 1/2 and 100
with probability 1/2. Obviously, G is the first-best project. But there is an equilibrium
in which the agent chooses F' if « is not too large. To see this, consider the case where
a = 0. Suppose F'is the project the observer expects the agent to choose. Then if the
challenger presents no evidence, the observer believes the outcome to have been 3 since
this is the worst possible outcome for the challenger under F'. Because of this, the agent
has no incentive to deviate to GG. If he does deviates and the outcome is 0, the challenger
can show this and the agent is hurt. If the outcome is 100, the challenger can hide this
and the observer thinks the outcome was 3. Thus the agent’s expected payoff to the
deviation is (1/2)(0) 4 (1/2)(3) < 2, so the agent prefers F'. For small enough @ > 0, the
same conclusion will follow.

Intuitively, it is true that if the challenger always learns the outcome of the project,
we get unraveling and all information is revealed along the equilibrium path — i.e., when
the agent chooses the equilibrium project. On the other hand, we do not necessarily get
unraveling if the agent deviates to an unexpected project and this fact is what creates
the possibility of inefficient equilibria.

On the other hand, the efficient outcome is also an equilibrium if ¢y = 1.2
Theorem 6. For any «, if g1 = 0 and g = 1, then there is an equilibrium in which the
agent chooses the first-best project.

Suppose the agent is expected to choose F' where Ep(z) > Eg(z) for all G € F. Let
x* denote the supremum of the support of F' and set £ = z*. That is, assume that if the
challenger does not reveal z, the observer believes the realization is the largest possible
value under F'. It is easy to see that this is what unraveling implies given that the agent
chooses F'. So this is an equilibrium as long as the agent has no incentive to deviate to a
different project. By choosing F', the agent’s payoff is Ex(x). If he deviates to any other

20Tt is also worth noting that the efficient outcome is the only equilibrium when ¢o = 1 if all projects
have the same support. We thank Georgy Egorov for pointing this out.
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feasible project G, his expected payoftf is
aEg(z) + (1 — a)Egmin{z, 2"} < Eg(z) < Ep(z).

So the agent has no incentive to deviate.

6 Agent and Challenger

Now we consider the case where both the agent and the challenger may have information
to disclose in the second stage. The following result shows that the analysis reduces to
either the case where only the agent has evidence or the case where only the challenger
has evidence, depending on whether ¢; or ¢, is larger.

Theorem 7. Fiz (F,o,q1,q2). If 1 > qo, then the set of equilibria is the same as for
the game (F, &, q1,0) where
d=a+(1—a)gp
and
P
“ l—qy

If ¢1 < qo, then the set of equilibria is the same as for the game (F,&,0,Gy) where

d=a+(1—a)q

and
~ 92— q

Gs = .
? I—q

Corollary 1. For any nondegenerate game with q1 = qo, the outcome is first—best.

To see why Theorem 7 implies the corollary, suppose we have a nondegenerate game,
so it is mot the case that a = ¢ = ¢ = 0. By Theorem 7, if ¢; = ¢o, the outcome is the
same in the game with & = o+ (1 — a)g2 > 0 and ¢; = ¢» = 0. As shown in Theorem 3,
the outcome must be first—best in this case.

Proof of Theorem 7. Fix (F,«, q1,q2) and an equilibrium. Let & be the observer’s belief
if no evidence is presented. First, assume ¢; > ¢». Recall that the agent chooses F' to
maximize

aEp(z) + (1 — ) [(1 —q1)(1 = @)+ ¢(1 — 1) Ep min{z, }
+ (1 — go)Ep max{z, &} + (11(]2EF(37>]-
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Note that
Er min{z, 2} + Er max{z, 2} = Er [min{z, 2} + max{z, #}] = Ep(z) + .

Hence
Erpmin{z, 2} = Ep(x) + & — Ep max{x, }. (6)

Substituting, we can rewrite the agent’s payoff as
[+ (1= a)g]Ep(z) + (1 - a) [(1 — q1)& + (¢ — g2) Ep max{z, 2}]. (7)
Let @ =a+ (1 —a)g,sol—da=(1—a)(l—qg). We can rewrite the above as

l—q % q1 — 42
(I-a)l-g) (1-a)(l-g)

Let ¢1 = (g1 — ¢2)/(1 —q2), 50 1 = G1 = (1 — q1) /(1 — ¢2) Then this is

aEp(z) 4+ (1 —a)(1 — «) Ermax{z,z}| .

aEp(z) + (1 — &)[(1 - ¢)& + ¢ Ep max{z, #}].

This is exactly the agent’s payoff when the observer’s inference in response to no evi-
dence is Z in the game (F, &, q;,0). Hence the agent’s best response to z in the game
(F,a,q1,qo) is the same as in the game (F, &, 1, 0).

To see that the observer’s belief given a mixed strategy by the agent also does not
change, note that we can rewrite equation (2) as

> o(F)Ep(w) = Y o(F){aBr(z) + (1 - a)[(1 - @)1 - ¢2)2

FeF FeF
+ q1(1 — QQ)EF max{x, i‘} + QQ(l — ql)EF min{x, Z%} + Ch(]QEF(.%‘)]}.

We can rewrite the term in brackets in the same way we rewrote the agent’s payoff above
to obtain

FZ;U(F)EF(JJ) — Fz;a(F){@EF(x) +(1—&)[(1 — G1)& + G Ep max{z, 2}]},

which is the same equation that would define Z given o in the game (F, &, ¢,0).
A similar substitution and rearrangement shows the result for ¢o > ¢;. |

This result also holds for arbitrary correlation between the event that the agent
receives evidence and the event that the challenger does. To see this, let p, be the
probability that both have evidence, p; the probability that only the agent has evidence,
po the probability that only the challenger has evidence, and p, the probability that
neither has evidence. So we now reinterpret ¢; to be the marginal probability that the
agent has evidence — that is, ¢ = p; + p, — and reinterpret ¢» analogously. It is easy to
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see that our argument that the challenger will reveal any x he observes with x < & and
that the agent will reveal any x > & does not rely on any correlation assumption. Hence
the agent’s payoff as a function of F' and Z is now
aEr(z) + (1 —a) [pniﬁ + poEr min{z, 2} + p1Ep max{z, 2} +prF(93)]-
If we again substitute from equation (6), we obtain
aBEp(z) + (1 — ) [(po + p2)Er (@) + (pn + p2)T + (p1 — po)Er max{z, 2}].

But ps +py, = g2, pn +p2 =1 —py —p1 = 1 — q1, and p; — p2 = ¢1 — ¢2. Substituting these
expressions, we can rearrange to obtain equation (7) and complete the proof exactly as
above.

We can use Theorem 7 to extend Theorems 3 and 5 to this setting. To see this, note
that the former theorem tells us that the worst possible payoff for the agent in (F, «, g1, 0)
is the first-best payoff times

at(l-a)n
at+(l-a)q(2—aq)
Reinterpret this as our “translation” of a game (F,a,q1,q2) where ¢ > go. In other
words, we can treat this lower bound as
a+(1—a)¢
a+(1—-—a)q@2—a¢)
where & = o+ (1 — a)ge and ¢1 = (g1 — ¢2)/(1 — ¢2). We can substitute in and rearrange
to obtain a lower bound as a function of («, ¢, ¢2) when ¢; > ¢y of
(1-g)la+ (1 -a)g]
at+(1-a)q2-q)— ¢
Similar reasoning gives a lower bound when ¢ > ¢; of
at+(l—a)q
a+(1—a)g

These bounds reinforce the message of Theorem 7 in that both expressions equal 1
when ¢; = o if either a > 0 or ¢; > 0. Thus for any nondegenerate game, we obtain the
first-best when ¢; = ¢».

It is intuitive and not hard to see that the properties of R discussed earlier for the
cases ¢ = 0 and ¢ = 0 hold in general. Specifically, the worst—case payoff is increasing
in @ and hence is minimal at « = 0. If ¢o > ¢, then it is decreasing in g, while if
¢1 > @2, it is non—monotonic in ¢;. In addition, we now can see that if ¢; > ¢;, then R is
continuously increasing in g; up to the first best when ¢; = ¢;. That is, making the less
informed player more equally informed is beneficial. Hence the worst case is that the less
informed player has no information at all.
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7 Alternatives

The simple model explored above shows that the ability of the agent to control the flow
of information can give him incentives to take actions which create positive appearances
even if these conflict with creating positive outcomes. Since he cannot systematically
fool the observer, these incentives end up hurting the agent. In particular, with the
Dye model of disclosure, the agent has an incentive to take excessive risk since he can
(temporarily) hide bad outcomes. To the extent that hostile forces control the flow of
information, the agent has the opposite incentive, namely to avoid risk to an excessive
degree.

In this section, we use two examples of alternative forms of disclosure to show how
the nature of the inefficency created by the agent’s control of information depends on
the technology of disclosure. First, we show the bias created when projects vary in
the probability that they generate disclosable evidence. Second, we illustrates how the
inefficiencies change with the possibility of a particular form of partial disclosure, rather
than the all-or-nothing disclosure of Dye. As these examples indicate, the inefficiency
generated by strategic disclosure can take many forms.

7.1 Varying Transparency Across Projects

In this section, we consider a variation on our model where the challenger never has
evidence and the probability the agent has evidence depends on the project he selects.
Here we denote a project by the pair (F,qr) where F' is a probability distribution over
outcomes x and gr is the probability the agent receives evidence he can disclose. In this
case, the inefficency is a distortion toward projects that are more transparent in the sense
of being more likely to yield disclosable information.

In particular, if two nondegenerate projects are identical except that one has a larger
probability that the agent receives evidence, then the project with the smaller probability
of receiving evidence must have zero probability in any equilibrium, a result analogous
to Theorems 1 and 2. We also give worst—case results analogous to Theorem 3.

First, we show that when the agent cannot control disclosure, he chooses a first-best
project in any equilibrium. More specifically, suppose that if the agent chooses project
F, then the observer sees the outcome of the project at stage 2 with probability ¢z. Here
the agent’s project choice affects the information the observer sees, but the agent does
not have a separate disclosure decision. Thus it is not obvious whether the project’s
effect on observability gives the agent an incentive to choose inefficiently. We reestablish
our benchmark for this model by showing that it does not.
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To see this, fix a pure equilibrium in which the agent chooses project F' and fix any
other feasible project GG. In such an equilibrium, if the observer does not see the outcome
in stage 2, his expected value of x is Ep(x). Since F' is optimal and G is feasible, we
must have

Ep(z) > aEg(z) + (1 — @)(1 — go)Er(z) + (1 — @)gcEq (),

which implies Ep(x) > Eg(x). Hence the project chosen in any pure equilibrium must
be first best.

To extend this to mixed equilibria, fix such an equilibrium. Let F' be any project in
the support of the equilibrium mixed strategy and let G be any other feasible project. Let
2 denote the observer’s belief in stage 2 if he does not observe the outcome. Depending
on the other projects in the support of the mixed strategy, this could potentially be larger
or smaller than Er(z). Since F' has positive probability and G is feasible, we must have

aEp(z)+(1—a)(1—gp)z+(1—a)qrEr(z) > aEg(z)+(1—a)(1—qg)T+ (1 —a)qcEq(x),
implying
aEpr(z) 4+ (1 —a)qr (Ep(z) — &) > aEg(z) + (1 — a)qe (Eg(z) — 7).

Suppose Er(z) < . Since  is the expectation of x over the agent’s mixed strategy, there
must be some other project in the support with a higher mean than 2. Since GG could be
any project, suppose it is in the support and has a higher mean than . Then we have
E¢(z) > & > Ep(z) and Eg(x) — & > Ep(z) — &, contradicting the inequality above.
Hence every F' in the support of the equilibrium mixed strategy must have Ep(z) > Z.
Again, since 7 is an average across the projects chosen, this implies that for every F in the
support, we have Ep(z) = &. Together with the previous result, this implies that every
project in the support of the agent’s mixed strategy must be first best when disclosure
is nonstrategic.

We now characterize the inefficiencies due to strategic disclosure in this setting. In
particular, we show two results which are analogs for Theorems 2 and 3.

Theorem 8. Suppose there are feasible projects (F,qr) and (G,qc) where F' = G, F is
nondegenerate, and qc > qr. Then if a < 1, project (F, qr) is chosen with zero probability
mn any equilibrium.

Proof. Suppose to the contrary that there is an equilibrium in which (F, gr) is chosen
with strictly positive probability. Then we must have
aEp(z) 4+ (1 —a)(l —qr)Z + (1 — a)qrEr max{z, 2}
> aEg(z) + (1 —a)(1 —ge)z + (1 — a)gcEq max{x, T}
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where Z is the observer’s belief if the agent does not disclose any evidence. Since F' = G,
this implies
qr|Erp max{z, 2} — 2| > qg|Er max{z, z} — 7.

Since qg > qr, this requires £ > rp where Zp is the upper bound of the support of F.

Given this, the payoff to F' in equilibrium is aEgr(z) + (1 — )& < . The inequality
follows from & > Zp and is strict because F' is nondegenerate by assumption. But it is
easy to show that the agent’s equilibrium payoff is

> o(F")Ep(z) > &,

Fl

where o is the agent’s mixed strategy. Hence the agent’s equilibrium payoff strictly
exceeds the payoff to project (F,qr), a contradiction. |

Theorem 9. For any set of feasible projects, any « € [0,1], and any equilibrium, the
agent’s payoff is at least a times the first-best payoff. Furthermore, there exists a set
of feasible projects and an equilibrium such that the agent’s payoff equals a times the
first—best.

Proof. To show the bound, fix any set of feasible projects, any «, and any equilibrium.
Let U be the agent’s payoff in the equilibrium and let z be the belief in response to no
disclosure in the equilibrium. Let (F,gr) be any first-best project. Then

U>aEp(z)+ (1 — a)grEp max{z, 2} + (1 — @)(1 — qr)Z
> aEp(z)

where the second inequality uses the fact that x > 0 with probability 1. Hence U is at
least a times the first-best payoft.

To see that this is attainable, fix any y > 0 and any U € [ay,y). Let the feasible set
of projects consist of two projects, (F,0) and (G, 1) where F' yields y with probability 1
and G yields 2U with probability 1/2 and 0 otherwise. Clearly, (F,0) is the first-best
project. However, it is easy to see that it is an equilibrium for the agent to choose project
(G, 1). To see this, suppose it is the project the observer expects. Then & must satisfy

1 1
U=-2+=(20),
52 +52U)
so & = 0. Hence if the agent were to deviate to project (F,0), his payoff would be
ay + (1 — «)(0). Since U > ay, the agent has no incentive to deviate from (G, 1), so
this is an equilibrium. In particular, this construction gives an equilibrium even when
U = ay, showing there is an equilibrium with payoff equal to o times the first—best. |
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7.2 Hitting for the Fences

Our second example illustrates the inefficiencies from a particular form of partial disclo-
sure. As in Shin (2003), suppose the agent’s choice of a project affects two outcomes.
For example, if the agent is a political leader, then his choices may affect the economy
and also foreign affairs. We refer to the two outcomes as the outcomes on two different
issues. For simplicity, suppose that on each issue, the outcome is either a success or a
failure, where success corresponds to an outcome of 1 and failure to a 0. So the total
value of the projects is simply the number of successes achieved across issues, either 0,
1, or 2.

Suppose there are two possible projects, F' and G. Let f; denote the probability of
success on issue ¢ under project F' and define g; analogously. We assume these realizations
are independent across issues. Finally, suppose that one issue is harder than the other in
the sense that it has a lower probability of success regardless of the project. Specifically,
assume f; > fo and g1 > g9, so it is more difficult to succeed on issue 2.

The assumptions we adopt here on disclosure generalize those above. Specifically,
with probability ¢, the agent is able to disclose the outcome on a given issue, where
these events are independent across issues, independent of the outcome on the issue, and
independent of the agent’s project choice. Again, to keep things simple, we consider only
disclosure by the agent, not by a challenger. As in the other models we have discussed,
one can show that the agent chooses the first—best project if disclosure is nonstrategic
(in the sense that the observer sees the outcome on a given issue with probability g,
independent of the outcome on that issue).

When the agent controls disclosure, the bias we get in this setting is a hitting—for-the—
fences effect. More specifically, if the two projects are equally efficient in the sense that
they have the same expected total outcome, then in the unique equilibrium (subject to
refinement issues discussed below), the agent chooses whichever project gives the higher
chance of success on the harder issue. For concreteness, suppose f; > g1 > g2 > fo. Then
G has the better chance of success on issue 2, the harder issue, so our claim is that the
agent chooses GG in the unique equilibrium.

To see the intuition, note that in an equilibrium, the agent will disclose the outcome
on an issue if it is a success and he is able to disclose it. He will never disclose a failure
on an issue. Thus if he does not disclose anything on an issue, the observer knows that
either it was a failure or the agent cannot disclose it. If the agent does not disclose an
outcome on issue 1, the observer recognizes that success is relatively likely on issue 1
anyway, so, relative to issue 2, this is more likely to reflect an inability to disclose, not
unwillingness to do so. Thus the lack of disclosure is not as harmful to the agent on issue
1 than it is on issue 2. But this means he is more concerned about being able to show
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a success on issue 2 and hence will focus his efforts there. Then he will prefer project G
to project F since G gives the better chance of success on issue 2. Thus even if success
is extremely unlikely on issue 2 regardless of the project, the comparison on issue 2 still
determines the agent’s choice.

Intuitively, this effect looks like a form of favoring risk since focusing on issue 2
seems riskier in some sense. As we show below, our assumptions do imply that the
unique equilibrium has the agent choosing the riskier project. However, this selection of
the riskier project only occurs when one issue is harder than the other. If one issue is
harder under one project, but the other issue is harder under the other, then the agent
randomizes between projects, even if one is riskier than the other.

To formalize this intuition, we assume that F' and G have the same expected value
— that is, that f; + fo = g1 + g». Since the means are the same and the projects are
not identical, it must be true that one project has a strictly higher success probability on
issue 1 and the other has a strictly higher success probability on issue 2. Without loss of
generality, assume f; > ¢; and fy < go. Note for future use that equal means, f; > g1,
and g» > fo imply that we must have either

fi > max{g1, g2} > min{gi, g2} > fo

or
gs > max{fl, fg} > min{fl, f2} > g1.

While there can be multiple equilibrium specifications of the disclosure strategies,
there is one particularly natural specification on which we focus. Since failure on an
issue is the worst possible outcome, it is natural to expect that the agent will not disclose
any failures. Since success on an issue is the best possible outcome, similarly, it is
natural to expect the agent to disclose all successes. It is easy to see that this will form
an equilibrium. For any issue on which the observer is not shown an outcome, he infers
(correctly) that either the agent has nothing to disclose on that issue or the outcome was
a failure. This is worse for the agent than disclosing a success on that issue, so the agent
would disclose a success if he could. On the other hand, it is better for the agent than
disclosing a failure on that issue, so it is optimal for him to not disclose failures.

While this equilibrium seems very natural, there can be other equilibria. As noted
above, this example is related to Shin (2003). In his Appendix A, Shin shows that there
can be other equilibria in his model and hence the same is true here for similar reasons.
In our discussion, we consider only the “natural” equilibrium. More specifically, we define
an equilibrium to be natural if the agent discloses all available successes and no failures.

Theorem 10. Fiz any o € [0,1) and any ¢1 € (0,1). If fi > g1 > g2 > fa, the
unique natural equilibrium is for the agent to choose project G with probability 1. If
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g2 > fo > f1 > g1, the unique natural equilibrium is for the agent to choose project F
with probability 1. Finally, if f1 > g2 > g1 > fo orif go > f1 > fo > g1, there is a unique
natural equilibrium in which the agent chooses a nondegenerate mized strategy.

Note that if issue ¢ is always harder than issue j in the sense that f; > f; and g; > g;,
then we must be in one of the first two cases described in the theorem. Hence the agent
chooses the project with the greater probability of success on issue 7. In other words,
when one issue is always harder than the other, the agent “hits for the fences” in the
sense that he chooses the project with the better chance of success on the harder issue.

Proof. Fix a natural equilibrium. By definition, whether the agent discloses something
on a particular issue depends only on the outcome on that issue. Hence we can define z;
to be the observer’s expected outcome on issue ¢ given that the agent does not disclose
anything on issue ¢, independently of what, if anything, is disclosed on the other issue.

The agent prefers F' to G iff

> [aEr(z;) + (1 — @) Ep max{xz;, 2;}] > Z[aEg(xi) + (1 — o)1 Eq max{x;, 2;}]

i

where we've already canceled the (1 — «)(1 — ¢;)Z; term from each side. Since the
means of the projects are the same and since (1 — a)g; > 0, this holds iff

> Epmax{z;, 2} > > BEgmax{z;,;}

or
H+A=f)ai+ fot+t (1= fo)Te > g1+ (1 —g1)21 + g2 + (1 — g2) 2o,
where we use the fact that 0 < z; < 1. Using equal means again, we can rewrite this as
G181 + gota > 121 + folz

or
(92 — f2)Z2 > (f1 — g91)21.

By equal means, go — fo = f1 — ¢1. By assumption, this is strictly positive. Hence the

agent weakly prefers F' to G iff 2o > ;.

Given this, when is it an equilibrium for the agent to choose F? When the agent
chooses F', z; is defined by

fi= 1 —q)@i +qlfi + (1= fi)ai]

SO
Lo fill —q1)
' L —qf;
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Since this is increasing in f;, we have To > 1 iff fo > fi;. Therefore, we have an
equilibrium in which the agent chooses F'iff go > fo > f1 > g1.

The analogous reasoning shows that it is an equilibrium for the agent to choose G iff
fi > g1 > g2 > fo. Clearly, these parameter conditions are mutually exclusive.

Finally, when is it an equilibrium for the agent to use a nondegenerate mixed strategy?
Suppose o is the probability on F. Let s7 = of; + (1 — 0)g;. Then the same reasoning
as above shows that

o _stl—a)

o l—qs?
For the agent to be indifferent between projects, we must have £; = 5 or s{ = sJ. That

is, we must have
ofi+(l—0o)g=0fo+(1-0)g
or
olfi—g+g9—fil=9-9

Recall that f; > g1 and go > f5, so the term multiplying o is strictly positive. Hence
o > 0iff go > g1. Note that o < 1iff f; > fo. This implies that we have a nondegenerate
mixed equilibrium iff either f; > ¢go > g1 > fa or g2 > f1 > fo > g1, completing the
proof. |

As noted above, if issue 2 is always harder than issue 1 in the sense that f; > f, and
g1 > g2, then we must have f; > g > g2 > fo and the agent “hits for the fences” in
the sense that he chooses project GG, the one with the better chance of success on the
harder issue. As noted, there is a relationship between this effect and a riskiness effect.
Specifically, with or without an assumption on whether one issue is always harder than
the other, we can compare F' and G in terms of riskiness. In particular, we prove the
following result in Appendix D.

Theorem 11. F' is riskier than G iff go > max{ fi1, fo} > min{f1, fo} > ¢1. G is riskier
than F' otherwise.

Comparing Theorems 10 and 11, we see that if issue 2 is the harder issue regardless of
the project, then G is the unique equilibrium and also is the riskier project. On the other
hand, if issue 2 is not always the harder issue, then G' can be the riskier project but not
the agent’s equilibrium choice. For example, if f; > g2 > g1 > fo, then G is the riskier
project by Theorem 11. But Theorem 10 shows that there is a unique mixed equilibrium
in this case. Hence in this setting of partial disclosure, the conclusion of Theorem 2 does
not hold.
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8 Discussion

We conclude with some brief comments on omitted factors that might be of interest
to explore further. One natural factor to consider is the possibility of “noise” in the
disclosure process. It is natural to wonder if our results are robust to the possibility that
the evidence disclosed by either the agent or challenger is a noisy signal of x rather than
the realization x itself.

To see why one might suspect nonrobustness, consider the model where only the
agent may have evidence and suppose that there are two projects, F' and G, where F
yields z = 2 with certainty and G gives x = 0 or x = 3, each with probability 1/2.
For any sufficiently small « and any ¢; € (0,1), in the model without noise, it is never
an equilibrium for the agent to choose F'. However, now suppose that the evidence the
agent might obtain in the disclosure stage is noisy. Specifically, suppose there is a set
of signals, say S, and that the distribution over signals received by the agent is a full
support distribution which depends on the true outcome. That is, if the true outcome is
x, then the distribution over signals is ¥ (- | ) and this distribution has full support on
S for any z. Then it is always an equilibrium for the agent to choose F. If the observer
expects the agent to choose I, then he expects x to equal 2 and his belief will not change
regardless of the signal the agent shows him, if any. Hence the agent has no incentive to
deviate.

On the other hand, it is easy to see that this example relies critically on the degeneracy
of the chosen project. In fact, if we assume that all projects have the same support (that
is, the same set of possible outcomes), then the discontinuity at zero noise disappears.
To see this, think of the observer as having a prior belief about the outcome given by the
project he expects the agent to choose. For any full support “prior,” sufficiently precise
signals will generate a posterior belief close to the true realization of the outcome. Thus if
all projects have the same support, the fact that the observer’s prior would be, in a sense,
wrong when the agent deviates will not prevent the observer from assigning probability
close to the 1 to the true outcome if the agent discloses a sufficiently precise signal.
Consequently, the set of equilibria for “small noise” and for “zero noise” will necessarily
be “close.”?! While our analysis is therefore robust with respect to small amounts of
noise under this full-support assumption, the introduction of noise may introduce new
issues and effects worth exploring.

Another direction to consider is to return to our discussion of transparency above and

21Tt is worth noting that we could also add noise to the model in way which obviously has no effect on
our results. Specifically, suppose that the realized outcome is the signal drawn in the disclosure phase
(whether this is observed or not) plus an independent, mean zero, random variable. In this case, the
best estimate of the outcome conditional on the disclosure of a signal realization of x is simply z, so
none of our analysis changes at all. We thank Andy Skrzypacz for pointing this out.
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consider the possibility that the agent can take actions which determine the probability
that he or the challenger receive evidence. There are a number of delicate modeling
questions here. Are the agent’s actions regarding transparency observable? If so, he may
have the ability to commit to a ¢;. In this case, at least if these actions are costless,
he would commit to ¢; = 1 and achieve the first-best outcome.?? If his actions aren’t
observable but are costless, he still has an incentive to choose q; = 1 since this ensures
he can disclose if he wishes to do so. On the other hand, if his actions are unobserved
and costly, things are more complex, particularly if the challenger can also choose actions
which affect his probability of receiving evidence.

Finally, given the severe inefficiency of equilibria in this environment, it is natural to
ask whether players would find ways to improve the outcomes by some richer incentive
devices. In some cases, this seems difficult or impossible — e.g., in the voting example.
There it seems that the best one can do is to give equal access to information to the
challenger and incumbent (something that presumably a free press can help maintain).
In other environments, contracting may help. For example, suppose the agent is the
manager of a firm and the observer is the stock market. Then it seems natural to expect
the firm’s stockholders to alter the agent’s compensation in order to induce more efficient
behavior. Intuitively, the model implies that inefficiency results in part from the fact that
the manager’s payoff is increasing in the “short run” stock price — i.e., the stock price
before the outcome of the project is revealed to all. If his payoff instead depended only on
the “long run” stock price — i.e., the realization of x — the outcome would be first—best.

As has been noted in the literature,?? there are good reasons for expecting managerial
compensation to depend positively on both short—run and long—run stock prices. First,
if the long run is indeed long, the manager requires compensation in the short run too.
Due to limited liability, it seems implausible that he can be forced to repay short—run
compensation if the realization of the project turns out to be poor in the long run. Second,
there is an issue as to whether stockholders can commit to not rewarding short-run stock
prices. To see the point, suppose that stockholders may need to sell their holdings in
the short run and hence care about the short-run stock price.?* If the manager has
positive news in the second period, then they would be better off at this point if he
would disclose it. Hence even if the original contract for the manager did not reward him
for a high short—run stock price, the stockholders would have an incentive to renegotiate
the contract after the project choice is made. Of course, if the manager anticipates this,
it is as if the original contract depended on the short—run price. Optimal contracting in
such an environment is a natural next step to consider.

22We thank David Kreps for pointing this out.

ZGee, for example, the discussion in Stein (1989) or Edmans, Heinle, and Huang (2013).

24This formulation is common in the literature. See, for example, Diamond and Verrecchia (1991) or
Gigler, Kanodia, Sapra, and Venugopalan (2013).
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Appendix

A  Proof of Theorem 3

Consider any game (F,«,q1,0). Since the conclusion that R(0,0,0) = 0 was shown in
the text, we focus here only on nondegenerate games so either a > 0 or ¢; > 0 (or both).

It is easy to see that R(1,¢1,0) = 1. If @ = 1, the agent’s payoff from choosing F' is
Er(z), independently of the strategy of the observer. Hence he must maximize this and
so his payoff must be the first-best. For the rest of this proof, assume a < 1.

It is also not hard to show that R(«,1,0) = 1. To see this, suppose ¢; = 1 but we
have an equilibrium in which the agent’s payoff is strictly below the first—best. Then
the agent could deviate to any first-best project and always disclose the outcome. Since
g1 = 1, this ensures the agent a payoff equal to the first-best, a contradiction. Since
equilibria always exist, we see that R(a,1,0) = 1. For the rest of this proof, we assume
¢ < 1.

For a fixed 7, the agent’s payoff to choosing F' is
aEp(z)+ (1 —a)[(1 — q1)T + ¢ Erp max{z, 2}]. (8)

As shown in the text, Ep max{z, %} = Ep(z) + [ F(z)dz, so we can rewrite this as

(a+ (1= @)a)Er(a) + (1~ )1~ )i + (1~ a)ar [ Fla)de

Fix an equilibrium mixed strategy for the agent o and the associated z. Let U =
Srero(F)Ep(z), so this is the agent’s expected payoff in the equilibrium. Let F' be
any project in the support of the agent’s mixed strategy such that Ep(z) < U and let G
be any other feasible project. Then we must have

(a-+ (1 - )a)Ba(x) + (1~ a)ay [ G(x) s
< (a+ (1= a)g)Er(z) + (1 — a)qn /O F() dz.

Since G(x) > 0, this implies

(a+(1—a)g)Eq(z) < (a+ (1 —a)q)Er(z)+ (1 —a)q /j F(x)d.
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Define z = [ F(x)dz/&. Tt is not hard to use equation (2) to show that ¢, < 1 implies
& > 0, so this is well-defined.?® Since F(z) € [0,1], we must have z € [0,1]. Then we
can rewrite this equation as

(a+ (1= a)g)Ec(z) < (a+ (1= a)g)Er(z) + (1 — a)g22. (9)

Since F' is in the support of the agent’s equilibrium mixed strategy, we must have
(a+ (1 —-a)p)Ep(z) + (1 —a)(l—-q)i+(1—-a)pzi=U,
SO

U—(a+(1—-a)q)Er(z)
A-a)l—q+za]

T =

Substituting into equation (9) gives

U—(a+(1—-a)q)Ep(z)
1 —q1+z2q:

(a+(1—-a)q)Eq(r) < (a+ (1 —a)q)Er(r) + 12 . (10)

Recall that U > Ep(z), so U > (a + (1 — a)q1)Er(z). Hence ¢ > 0 implies that the
right—hand side is weakly increasing in z. Hence

(@+ (1 —a)q)Ea(r) < (a+ (1 - a)q)Ep(z) + ¢ [U — (e + (1 — a)q1)Erp(2)]

[+ (1 —a)q]Ee(r) < Uq + Ep(z)(a+ (1 —a)g)(1 —q1).

Since the term multiplying Er(z) is positive, the fact that Ep(2) < U implies
(@+ (1 =a)g)Ea(r) <Ulgp +(a+ (1 —-a)g)(d —aq)].
Hence, taking G to be a first—best project,

a+(1—a)q

U>yuts .
N a+(I-a)gu(2—q)

To show that this bound is tight, consider the following example. Suppose F =
{F,G}. Assume F' is a a distribution putting probability 1 — p on 0 and p on U/p, so
Er(z) = U, for some p € (0,1) and U > 0. Let G be a distribution putting probability

25To see this, suppose & = 0. Then equation (2) implies that either ¢; = 1 or Er(x) = 0 for all F in
the support of the agent’s mixed strategy. Since g1 < 1 by assumption, this implies U = 0. But this is
not possible. The agent can deviate to any project with a strictly positive mean (since there are at least
two projects, such a project must exist) and always show the outcome. Since either & > 0 or ¢; > 0 or
both, the agent would gain by such a deviation.
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1 on z* for some z* > U. Note that Ep(z) = U < z* = Eg(z), so U = z*. We
will characterize a situation where F' is a pure strategy equilibrium and show that this
establishes the bound. Note that if F' is chosen with probability 1 in equilibrium, then
we must have # < U < z*. Hence [} G(z)dz = 0 and [j F(z)dx = (1 — p)Z. Hence F
is optimal for the agent iff equation (9) holds at Eq(z) = 2*, Ep(z) = U, and z = 1 — p.
We can also solve for 2 exactly as above with z = 1 —p and Er(xz) = U. Therefore, from
equation (10), this is an equilibrium iff

@+ -ejq)e < U {O‘ +(1—a)g +ai(1—p) <11_—<;1((11__?o;2)ﬂ |

Tedious algebra leads to

U > o <(OK +1-a)g)d-—a+01 —P)Ch))
— \a+(l-a)g)d-g)+1-pa
Fix p and choose z* so that this holds with equality. (It is immediate that the resulting

x* is necessarily larger than U, as assumed.) For p arbitrarily close to 0, we obtain an
example where

U Ut ((a + (1a—+06$11;(?)—qlql) + Ch) -ur (04 Jro(é;r—((lﬁé)_cllo(é;qi 91)> '

Hence
a+(1—a)qp

a+(l-a)n2-q)
It is not hard to show that 1/R is concave in ¢; and that the first-order condition for
maximization of 1/R holds uniquely at

R(()é7 qi1, O) -

_ Ve
"1

Thus R is uniquely minimized at this ¢;. Substituting this value of ¢; into R and rear-

ranging yields
, 1+ o
R 0) =
Juin F(o, g1, 0) 5

as asserted. ||

B Proof of Theorem 5

Again, nondegeneracy implies that either a > 0 or ¢ > 0 or both. Just as in the proof
of Theorem 3, the result that we obtain the first—best when a = 1 is straightforward, so
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we assume throughout this proof that a < 1. The case of & = 0 is also straightforward.
To see this, suppose there is a distribution F' € F which is degenerate at 0. Suppose the
observer believes the agent chooses this distribution and the challenger never shows any
strictly positive . Then since o = 0, no deviation by the agent can achieve a strictly
positive payoff. No matter what the agent does, the observer’s belief is that x = 0, so
the agent’s payoff is zero. Hence this is an equilibrium, establishing that R(0,0,¢2) = 0
for any ¢o. Hence for the rest of this proof, we assume « € (0, 1).

Given that ¢; = 0, we can write the agent’s payoff given & and a choice of project F’
as

aEp(z) 4+ (1 —a)(l —q)T + (1 — a)@Er min{z, }.

Since Ep min{z, &} = [J[1 — F(x)] dz, we can rewrite this as

aEp(z) + (1 — )1 = g)3 + (1 — a)gs /ju _ F(z)] da.

So fix an equilibrium mixed strategy for the agent ¢ and the associated z. Again, let
U be the agent’s expected payoff — that is, U = Y ez o(F')Ep (z). Let F' be a project
in the support of the agent’s mixed strategy satisfying Er(z) < U and let G be any other
feasible project. Then we must have

T

aEe(z) + (1 — a)g /ju — G(z)]dz < aEp(z) + (1 — a)q2/0 1 — F(z)] da.
Since G(z) < 1, this implies
aEq(r) < aBp(z) + (1 — a)g /0 1= F(2)] da.

Define z = [¥[1 — F(z)]dz/&. One can use equation (2) and a > 0 to show that & > 0
so this is well-defined.?® As in the proof of Theorem 3, F'(z) € [0,1] implies z € [0, 1].
Then we can rewrite this equation as

aEq(z) < aEp(z) + (1 — a)gz. (11)

Because F'is in the support of the agent’s equilibrium mixed strategy, we must have

aBp(z) + (1 —a)(1 = )i + (1 — a)gzt = U,

26T see this, suppose # = 0. From equation (2), this implies that
Z o(FEp/ () = g2 Z o(F')Ep min{z,0} = 0.
FIeF FIEF

Hence the agent’s mixed strategy must put probability 1 on a degenerate distribution at 0 and so U = 0.
Since a > 0, the agent can deviate to any other project (which must have a strictly positive mean) and
be strictly better off even if the challenger never discloses anything.

37



SO
U — aEp(x)

(1—-a)(1—q+2q)

T =

Substituting into equation (11) gives

U — aEp(z)

aEq(z) < aBEr(x) + g2
o) < aBp(z) + {1_%“%

. (12)

By assumption, U > Ep(z), so U > aEgr(z). Hence the right-hand side is weakly
increasing in z, so this implies

aEq(z) < aEp(z) + ¢ [U — aEp(2)]

aEq(z) < U +a(l = ¢)Er(z) < Ulgz + a(l — g2)] = Ul + (1 — a)ge].

Hence, taking G to be a first—best project,

UZUFB

ren

To see that the bound is tight, let F' be a degenerate distribution at x* and suppose
we have an equilibrium where the agent chooses F'. Clearly, then, £ = U = x*. Let G
put probability 1 — p on 0 and p on y/p where y > z* for some p € (0,1). Note that
Eg(z) = y. Assume F and G are the only feasible projects. Then this is an equilibrium
if

ay + (1 —a)g[(1 —p)(0) +pi] < (a+ (1 - a)g)d.
Since £ = U, we can rewrite this as
ay <Ula+ (1 —a)(l —p)g].

Fix any p € (0,1) and choose y so that this holds with equality. Since the resulting y
satisfies y > U, we have UP = y. So this gives an example where

(0%

U — UFB
a+(1—a)(1—p)g

As p | 0, the right-hand side converges to a/[ac+ (1 — a)ge]. Hence we can get arbitrarily
close to the stated bound, so

(67

R(a,0,q2) = atr(l—a)p

The last two statements of the theorem follow directly. |
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C Comparative Statics Example

Suppose there are three feasible projects, Fj, Fy, and F3. Project F; gives a “high
outcome” h; with probability p; and a “low outcome” ¢; otherwise. The specific values
of h;, ¢;, and p; are given in the table below.

hi l; Di L

F 964 532 | 1 / 2| 748
F5 | 5904 / 70 |7 / 8| 738
E; 1737/2 171 4/5 729

In the table, p; = Ep (). Note that F} is the first—best project, Fy is second best,
and Fj3 worst. Simple calculations show the range of a’s for which it is a pure strategy
equilibrium for the agent to choose F; for each i. For each of the three projects, there
is a nonempty range of a’s where it is chosen in equilibrium. Similarly, for each pair of
projects, there is a nonempty range of a’s where that pair is the support of the agent’s
mixed strategy.

In the case where the agent randomizes between projects F} and F; or between Fi and
F3, the agent’s equilibrium payoff decreases with a. On the other hand, the equilibrium
payoff when the agent randomizes between Fy and Fj is increasing in «.

To see the intuition, consider the case where the agent randomizes between F; and
F5. As « increases, if  is fixed, the agent would switch to F) since he now cares more
about the outcome of the project and F} has the higher expected outcome. So & must
adjust to deter this deviation. Which way do we need to adjust  to make the agent
indifferent again? Note that F5 has a much higher chance of having a good outcome to
show than F}. Thus if Z declines, this pushes the agent toward F5. Hence the adjustment
that restores indifference is reducing . To reduce &, we must make the observer more
pessimistic about the outcome. This means we must reduce the probability that the
agent picks F, lowering the agent’s equilibrium payoff. Similarly, note that Fs gives its
high outcome with higher probability than Fi, so similar intuition applies here. On the
other hand, in comparing F» and F3, it is Fy, the better of the two projects, which has
the higher chance of the high outcome. Hence the opposite holds in this case.

The figure below shows the equilibrium payoffs as a function of . Note that, as
asserted, the equilibrium payoffs for two of the three mixed strategy equilibria are de-
creasing in «. Note also that the payoff to the worst equilibrium is decreasing in « for
a between 1/4 and 1/3. Finally, note that if we focus only on pure strategy equilib-
ria, the worst equilibrium payoff is decreasing in a as we move from the range where
a€[5/24,1/3] to a > 1/3.
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Figure 3: Equilibrium Payoffs
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D Proof of Theorem 11

Note that F' corresponds to the distribution that puts probability (1 — f1)(1 — f2) on 0,
fifoon 2, and f1 + fo — 2f1f2 on 1. We write the probability ' puts on 7 successes as
f (i) and analogously for G. So

/zF(x)da: > /ZG(:v)dx
0 0
for all z > 0 iff
f(0) = ¢(0)
and
2£(0) + f(1) > 29(0) + g(1).
The second inequality holds iff

f0) +1 = f(2) 2 g(0) +1—g(2)
Q=)A= fo) = fif2 = (1= g1)(1 = g2) — 9192

or
g1+ g2 > fi+ fo

which holds with equality by assumption. Hence F' is strictly riskier if f(0) > ¢(0), G is
strictly riskier if g(0) > ¢(0), and they are equally risky otherwise.

So F'is strictly riskier if

Il-fi—fot+tfife>1—g1— g2+ 0192

or fifs > g192 (again, using equal means). By equal means, g = f1 + fo — g1, so this
holds iff

fife>a(fi+ fo—a91)
iff
(fi=9)(f2—g1) > 0.
By assumption, f; > g1, so this holds iff fo > g;. Given equal means, this holds iff

g2 > max{ f1, fo} > min{fi, fo} > g1.

The case where G is strictly riskier is analogous. Note that it is impossible for the
distributions to be different but equally risky. I
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