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Abstract

House price changes are positively autocorrelated over two to three years, a phenomenon
known as momentum. While several frictions that cause momentum have been identified, ex-
isting explanations cannot quantitatively explain the magnitude of momentum found in the
data. This paper introduces, empirically grounds, and quantitatively analyzes an amplification
mechanism that can generate substantial momentum from a broad class of small frictions. The
amplification is due to a concave demand curve in relative price, which implies that increasing
the quality-adjusted list price of a house priced above the market average rapidly reduces its
probability of sale, but cutting the price of a below-average priced home only slightly improves
its chance of selling. This creates a strategic complementarity that incentivizes sellers to set their
list price close to others’. Consequently, frictions that cause slight insensitivities to changes in
fundamentals lead to prolonged adjustments because sellers gradually adjust their price to stay
near the average. I provide new micro empirical evidence for the concavity of demand—which is
often used in macro models with strategic complementarities—by instrumenting a house’s rela-
tive list price with a proxy for the seller’s equity and nominal loss. I find significant concavity,
which I embed in an equilibrium housing search model. Quantitatively, the calibrated model
amplifies frictions that cause momentum by a factor of two to three.
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1 Introduction

A puzzling and prominent feature of housing markets is that aggregate price changes are highly
positively autocorrelated, with a one percent annual price change correlated with a 0.30 to 0.75
percent change in the subsequent year (Case and Shiller, 1989).1 This price momentum lasts for
two to three years before prices mean revert, a time horizon far greater than most other asset
markets. Substantial momentum is surprising both because most pricing frictions dissipate quickly
and because predictable price changes should be arbitraged away by households, either by altering
their bidding and bargaining or by re-timing their purchase or sale. Indeed, while several papers
have explained momentum by introducing frictions into models of housing markets, these frictions
need to be unpalatably large to quantitatively explain house price momentum.

This paper introduces, empirically grounds, and quantitatively analyzes an amplification mech-
anism for a variety of underlying frictions that can generate substantial momentum without the
need for implausibly-large frictions. The mechanism relies on a strategic complementarity among
list-price-setting sellers that makes the optimal list price for a house depend positively on the prices
set by others. Strategic complementarities of this sort are frequently used in macroeconomic models,
but there is limited empirical evidence of their importance or strength. In analyzing momentum
in the housing market, I provide direct micro empirical evidence for a prominent strategic com-
plementarity in the macroeconomics literature and, using a calibrated equilibrium search model,
demonstrate that its ability to amplify underlying frictions is quantitatively significant.

The propagation mechanism I introduce relies on two components: costly search and a demand
curve that is concave in relative price. Search is inherent to housing because no two houses are alike
and idiosyncratic taste can only be learned through costly inspection. Concave demand in relative
price implies that the probability a house sells is more sensitive to list price for houses priced above
the market average than below the market average. While concave demand may arise in housing
markets for several reasons, I focus on the manner in which asking prices direct buyer search. The
intuition is summarized by an advice column for sellers: “Put yourself in the shoes of buyers who
are scanning the real estate ads...trying to decide which houses to visit in person. If your house is
overpriced, that will be an immediate turnoff. The buyer will probably clue in pretty quickly to
the fact that other houses look like better bargains and move on.”2 In other words, the probability
that a house is visited by buyers decreases rapidly as a home’s list price rises relative to the market
average. This generates a concave demand curve in relative price because at high relative prices
buyers are on the margin of looking and purchasing, while at low relative prices they are mostly on
the margin of purchasing.

Concave demand incentivizes list-price-setting sellers—who have market power due to search
frictions—to set their list prices close to the mean list price. Intuitively, raising a house’s relative list
price reduces the probability of sale and profit dramatically, while lowering its relative price increases

1See also Cutler et al. (1991), Head et al. (2014), and Glaeser et al. (2014).
2“Settling On The Right List Price for Your House,” Ilona Bray, http://www.nolo.com/legal-encyclopedia/listing-

house-what-price-should-set-32336-2.html.
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the probability of sale slightly and leaves money on the table. In a rational expectations equilibrium
with identical sellers, all sellers change their prices simultaneously and no gradual adjustment arises
from the incentive to be close to the mean. However, modest frictions that generate differential
insensitivities of prices to changes in fundamentals cause protracted price adjustments because
sellers optimally adjust their list price gradually so their price does not stray too far from the
market average. Importantly, this strategic complementarity amplifies any friction that generates
heterogeneity in the speed of adjustment, a class that includes most of the frictions proposed by
the literature, such as staggered pricing, backward-looking expectations, learning, and the gradual
spread of sentiment. This paper is focused on the degree of amplification, and is agnostic as to
which particular friction is at work in practice.

To evaluate the concavity of the effect of unilaterally changing a house’s relative quality-adjusted
price on its probability of sale, I turn to micro data on listings for the San Francisco Bay, Los Angeles,
and San Diego metropolitan areas from 2008 to 2013. I address bias caused by unobserved quality
by instrumenting a house’s relative list price with the amount of local price appreciation since the
seller purchased. Sellers with less appreciation since purchase set a higher price for two reasons.
First, sellers often use the equity they extract from their current home to make a down payment on
their next home (Stein, 1995; Genesove and Mayer, 1997). When the amount of extracted equity
is low, sellers are on a down payment constraint, each dollar of equity extracted can be leveraged
heavily, and the seller’s marginal utility of cash on hand is high. Conversely, with higher equity
extraction, the down payment constraint is less likely to be binding, each dollar extracted is not
leveraged to the same extent, and the seller’s marginal utility of cash on hand is lower. Given
their higher marginal utility of cash on hand, sellers extracting less equity set a higher list price.
Second, home sellers exhibit nominal loss aversion (Genesove and Mayer, 2001). Local appreciation
since purchase is a noisy proxy for the exact appreciation of any given house, so there is a negative
relationship between appreciation since purchase and both the probability and size of a nominal
loss and hence the list price a seller sets. Because I compare listings within a ZIP code and quarter,
the supply-side variation based on appreciation since purchased identifies the curvature of demand
if unobserved quality is independent of when a seller purchased their home.

The instrumental variable estimates reveal a statistically and economically significant concave
demand curve that is highly robust to various controls, sample restrictions, and proxies for unob-
served quality and date of purchase. My findings about the concavity of demand are also robust to
other sources of relative price variation that are independent of appreciation since purchase.

To assess the strength of this propagation mechanism, I embed concave demand in a Diamond-
Mortensen-Pissarides equilibrium search model and consider two separate frictions cited by the
literature to assess the amplification mechanism’s ability magnify frictions. First, I consider stag-
gered pricing whereby overlapping groups of sellers set prices that are fixed for multiple periods
(Taylor, 1980). Concave demand induces sellers to only partially adjust their prices when they
have the opportunity to do so, and repeated partial adjustment manifests itself as momentum.
Second, I introduce a small fraction of backward-looking rule-of-thumb sellers as in Campbell and
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Mankiw (1989) and Gali and Gertler (1999). Backward-looking expectations are frequently dis-
cussed as a potential cause of momentum (e.g., Case and Shiller, 1987; Case et al. 2012), but some
observers have voiced skepticism about widespread non-rationality in housing markets given the
financial importance of housing transactions for most households. With a strategic complemen-
tarity, far fewer backward-looking sellers are needed to explain momentum because the majority
of forward-looking sellers adjust their prices gradually so they do not deviate too much from the
backward-looking sellers (Haltiwanger and Waldman, 1989; Fehr and Tyran, 2005). This, in turn,
causes the backward-looking sellers to observe more gradual price growth and change their price by
less, creating a two-way feedback that amplifies momentum.

I calibrate the parameters of the model that control the shape of the demand curve to match
the micro empirical estimates and the remainder of the model to match steady state and time series
moments. I find that a two-month staggered pricing friction without concavity is amplified into four
to six months of gradual adjustment, and between a half and a third as many backward-looking
sellers are needed to explain the amount of momentum in the data with concavity relative to without
concavity. I conclude that concave demand amplifies underlying frictions by a factor of between
two and three.

The amplification mechanism adapts two ideas from the macro literature on goods price stick-
iness to frictional asset search. First, the concave demand curve is similar to “kinked” demand
curves (Stiglitz, 1979) which, since the pioneering work of Ball and Romer (1990) has been fre-
quently cited as a potential source of real rigidities. In particular, a “smoothed-out kink” extension
of Dixit-Stiglitz preferences proposed by Kimball (1995) is frequently used to tractably introduce
real rigidities through strategic complementarity in price setting. Second, the repeated partial price
adjustment caused by the strategic complementarity is akin to Taylor’s (1980) “contract multiplier.”
A lively literature has debated the importance of strategic complementarities and kinked demand
in particular for propagating goods price stickiness by analyzing calibrated models, by assessing
whether the ramifications of strategic complementarities are borne out in micro data (Klenow and
Willis, 2006), by examining exchange-rate pass through for imported goods (e.g., Gopinath and
Itshoki, 2010; Nakamura and Zerom, 2010), and by estimating the response of firms’ pricing to
their own costs and the prices of their competitors, instrumenting costs prices with exchange rates
(Amiti et al., 2016). My analysis of housing markets adds to this literature by directly estimating
a concave demand curve and assessing its ability to amplify frictions in a calibrated model.

The remainder of the paper proceeds as follows. Section 2 provides facts about momentum and
describes why existing explanations cannot quantitatively explain momentum. Section 3 analyzes
micro data to assess whether housing demand curves are concave. Section 4 presents the model.
Section 5 calibrates the model to the micro estimates and assesses the degree to which strategic
complementarity amplifies momentum. Section 6 concludes.
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2 Momentum: Facts and Explanations

Since the pioneering work of Case and Shiller (1989), price momentum has been considered one of
the most puzzling features of housing markets. While other financial markets exhibit momentum,
the housing market is unusual for the 8 to 14 quarter horizon over which it persists.3

House price momentum has consistently been found across cities, countries, time periods, and
price index measurement methodologies (Cho, 1996; Titman et al., 2014). Figure 1 shows two
nation-wide measures of momentum for the CoreLogic repeat-sales house price index for 1976 to
2013 and a third measure for the same index across 103 cities.4 Panel A shows that autocorrelations
are positive for 11 quarterly lags of the quarterly change in the price index adjusted for inflation and
seasonality. Panel B shows an impulse response in log levels to an initial one percent price shock
estimated from an AR(5). In response to the shock, prices gradually rise for two to three years before
mean reverting. Finally, panel C shows a histogram of AR(1) coefficients estimated separately for
103 metropolitan area repeat-sales house price indices from CoreLogic using a regression of the
annual change in log price on a one-year lag of itself as in Case and Shiller (1989):

�t,t�4 ln p = �0 + �1�t�4,t�8 ln p+ ". (1)

�1 is positive for all 103 cities, and the median city has an annual AR1 coefficient of 0.60.5 Appendix
B replicates these facts for a number of countries, price series, and measures of autocorrelation and
consistently finds two to three years of momentum.

Momentum is a puzzle because forward-looking models have a strong arbitrage force that elim-
inates momentum, even with short sale constraints. In Walrasian models, this works through
potential buyers and sellers re-timing their transactions, while in search models it works through
the outside options of buyers and sellers. Construction also serves as an arbitrage force. Further-
more, momentum cannot be empirically explained by serially correlated changes in fundamentals.
Case and Shiller (1989) argue that momentum cannot be explained by autocorrelation in interest
rates, rents, or taxes, and Capozza et al. (2004) find significant momentum after accounting for six
comprehensive measures of fundamentals in a vector error correction model. Pulling together the
empirical and theoretical arguments, Glaeser et al. (2014) estimate a dynamic spatial equilibrium
model and find that “there is no reasonable parameter set” consistent with short-run momentum.

In recent years, a number of frictions have been added to models of the housing market to
explain momentum. These frictions fall into four main categories.

First, gradual learning about market conditions by sellers can create momentum. Anenberg
(2014) structurally estimates a partial equilibrium model with learning and finds an annual AR(1)
coefficient of 0.165, which is about a quarter of the median city in the CoreLogic data. The inability

3See Cutler et al. (1991) and Moskowitz et al. (2012) for analyses of time series momentum for different assets.
4As discussed in Appendix B, price indices that measure the median price of transacted homes display momentum

over roughly two years as opposed to three years for repeat-sales indices. Appendix B also shows that there is no
evidence of an asymmetry in falling markets relative to rising markets, although the test for asymmetry has limited
statistical power.

5This paper does not attempt to explain the variation in momentum across MSAs.
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Figure 1: Momentum in Housing Prices
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chosen using a number of lag selection criteria, and the results are robust to altering the number of lags. Both are estimated

using the CoreLogic national repeat-sales house price index from 1976-2013 collapsed to a quarterly level, adjusted for inflation

using the CPI, and seasonally adjusted. Panel C shows a histogram of annual AR(1) coefficients of annual house price changes

as in regression (1) estimated separately on 103 CBSA division repeat-sales house price indices provided by CoreLogic. The

local HPIs are adjusted for inflation using the CPI. The 103 CBSAs and their time coverage, which ranges from 1976-2013 to

1995-2013, are listed in Appendix A.

of learning to explain the amount of momentum in the data reflects the fact that Bayesian learning
about buyer valuations happens relatively quickly. One would need to dramatically slow down
learning with an extreme parameterization to generate three years of momentum.

Second, Head et al. (2014) demonstrate that search frictions can generate momentum by making
the adjustment of market tightness gradual in response to shocks to fundamentals. In a boom in
their model, most sellers sell but only some buyers buy, so the number of searching buyers “builds
up” as buyers persistently enter, which causes market tightness to rise over time as more houses are
rented out to accommodate the growing mass of buyers and fewer houses are listed for sale. Head
et al. calibrate their model and obtain only 40 percent of the autocorrelation in the data over one
year and no momentum over two years. Over 85 percent of the price impulse response occurs in
the first quarter after a shock in contrast to the impulse response in Figure 1, in which under 25
percent occurs in the first quarter.

Third, a behavioral finance literature hypothesizes that investors initially under-react to news
due to behavioral biases (Barberis et al., 1998, Hong and Stein, 1999) or loss aversion (Frazzini,

5



2006) and then “chase returns” due to extrapolative expectations about price appreciation. Both
extrapolative expectations and loss aversion are considered to be important forces in the housing
market (Case and Shiller, 1987; Genesove and Mayer, 2001). Recently, Glaeser and Nathanson
(2016) have provided a behavioral theory of momentum in which agents neglect to account for the
fact that previous buyers were learning from prices and instead take past prices as direct measures
of demand. Their calibrated model can match quantitatively explain momentum when all agents
are behavioral and observe prices with a somewhat-long six-month lag. Momentum is dampened
to a third of the observed amount when half of sellers are fully rational, and recent survey and
experimental evidence suggest that under half of agents expectations appear to be substantially
extrapolative (Kuchler and Zafar, 2016; Armona et al. 2016).

Fourth, Burnside et al. (2015) show that in a model with belief heterogeneity, momentum
could result from optimism and pessimism that gradually spreads through social interactions, akin
to epidemiological models of the spread of disease. In their model, agents with tighter priors are
more likely to convert others to their beliefs, and in order to generate sufficient momentum, the
relative confidence of optimists and pessimists must be extremely close so that the relative number
of optimists grows gradually over the course of a decade instead of suddenly in an “epidemic.” This
tight parameter restriction could be relaxed with the amplification mechanism presented here.6

For all four types of frictions, the degree of friction necessary to match the amount of momentum
in the data is unpalatably large. This paper introduces a strategic complementarity in pricing that
amplifies the effect of any friction that generates heterogeneity in beliefs, a class that includes learn-
ing, backward-looking sellers, and gradually spreading beliefs, among others. With the additional
momentum provided by the strategic complementarity, the frictions identified by the literature are
able to quantitatively explain momentum with substantially more reasonable parameterizations.

3 The Concavity of Demand in the Housing Market

I propose an amplification channel for momentum based on search and a concave demand curve in
relative price. Search is a natural assumption for housing markets, but the relevance of concave
demand requires further explanation.

A literature in macroeconomics argues that strategic complementarities among goods producers
can amplify small pricing frictions into substantial price sluggishness by incentivizing firms to set
prices close to one another. Because momentum is similar to price stickiness in goods markets, I
hypothesize that a similar strategic complementarity may amplify house price momentum. There
are several reasons why concave demand may arise in housing markets. First, buyers may avoid
visiting homes that appear to be overpriced. Second, buyers may infer that underpriced homes are
lemons. Third, a house’s relative list price may be a signal of seller type, such as an unwillingness

6Burnside et al. obtain such a parameter restriction through a simulated method of moments procedure. Their
data implies that the change in the number of optimists is growing at a decreasing rate between 7 and 10 years
after the start of the boom (assumed to be 1996), which implies a very gradual spread of optimism. This estimation
strategy does not provide any direct evidence inconsistent with the strategic complementarity presented here because
their model with a strategic complementarity in price setting could fit the same data with a faster spread of optimism.
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to negotiate (Albrecht et al., 2016). Fourth, homes with high list prices may be less likely to sell
quickly and may consequently be more exposed to the tail risk of becoming a “stale” listing that sits
on the market without selling (Taylor, 1999). Fifth, buyers may infer that underpriced homes have
a higher effective price than their list price because their price is likely to be increased in a bidding
war (Han and Strange, 2016). Sixth, the law of one price—which would create a step-function
demand curve—may be smoothed into a concave demand curve by uncertainty about what a house
is worth.

Nonetheless, concrete evidence is needed for the existence of concave demand in housing markets
before it is adopted as an explanation for momentum. Consequently, this section assesses whether
demand is concave by analyzing micro data on listings matched to sales outcomes for the San
Francisco Bay, Los Angeles, and San Diego metropolitan areas from April 2008 to February 2013.7

3.1 Empirical Approach

3.1.1 Econometric Model

To keep the analysis transparent, the unit of observation is a listing associated with an initial log
list price, p, and the outcome of interest is a summary statistic of the time to sale distribution, d.
In the main text, d is an indicator for whether the house sells within 13 weeks, with a withdrawal
counting as a non-sale, and I vary the horizon and use time to sale for d in robustness checks. The
data consist of homes, denoted with a subscript h, from markets defined by a location ` (a ZIP code
in the data) and time period t (a quarter in the data).

The relevant demand curve for list-price-setting sellers is the effect of unilaterally changing a
house’s quality-adjusted list price relative to the average list price in the area on its probability of
sale. To simplify notation, I combine the average list price in location ` at time t and the quality-
adjustment for house h into a single “target” list price for house h, p̃h`t. p̃h`t has two additive
components: the average log list price in location ` at time t, represented by a fixed effect ⇠`t, and
quality qh`t that is only partially observable to the econometrician:

p̃h`t = ⇠`t + qh`t. (2)

I model the probability of sale dh`t as being a potentially nonlinear function of ph`t � p̃h`t net of
a market-specific effect and an error term:

dh`t = g (ph`t � p̃h`t) +  `t + "h`t. (3)

The demand curve in relative price g (·) is assumed to be invariant across markets defined by a
location and time net of an additive fixed effect  `t that represents local market conditions. "h`t is
an error term that represents luck in finding a buyer and is assumed to be independent of ph`t�p̃h`t.8

7These areas were selected because both the listings and transactions data providers are based in California, so
the matched dataset for these areas is of high quality and spans a longer time period.

8Traditionally, endogeneity concerns stem from the correlation of the error term "
h`t

with price. This source of
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I call ph`t� p̃h`t the seller’s log relative markup, as it represents the “markup” a seller is asking over
the quality-adjusted average list price for a house in location ` at time t.

If qh`t were observable, one could directly estimate (3), but quality qh`t almost certainly has
an important unobserved component that is likely positively correlated with price, leading to an
estimated demand curve that is less elastic than the true demand curve. To surmount this challenge,
I use a non-linear instrumental variable approach that traces out the demand curve using plausibly
exogenous supply-side variation in seller pricing behavior. I also use an “OLS” approach that assumes
away unobserved quality to assess how the instrument affects the measured shape of g (·).

Formally, I model quality as a linear function of observed measures of quality Xh`t and quality
unobserved by the econometrician uh`t:

qh`t = �Xh`t + uh`t. (4)

Combining (2) and (4), the reference price p̃h`t can be written as:

p̃h`t = ⇠`t + �Xh`t + uh`t. (5)

I use two observed measures of quality Xh`t in my baseline specification and introduce other measures
and more flexible functional forms for Xh`t in robustness tests. First, I use a repeat-sales predicted
price p̂repeath`t = log

⇣

Ph`⌧
�
`t

�
`⌧

⌘

, where Ph`⌧ is the price at the previous sale date ⌧ and �`t is a ZIP
code-level repeat-sales house price index index. Second, I use a hedonic predicted price p̂hedonict ,
which is the sum of the static value of a house’s hedonic characteristics and a date of sale fixed
effect, both estimated within a ZIP code. The construction of both indices follows standard practice
and is detailed in Appendix A.

Unobserved quality uh`t introduces two difficulties in identifying g (·). First, there is an endo-
geneity problem as unobserved quality and price are likely positively correlated. Second, unobserved
quality creates a measurement error problem because the true p̃h`t is not observable. Both of these
problems may lead to bias in the estimated g (·).

I identify g (·) in the presence of unobserved quality by introducing an instrumental variable zh`t

which is described in the next section that generates supply-side variation in ph`t � p̃h`t and that is
independent of unobserved quality. To allow for nonlinearity in the first stage, I let zh`t affect price
through a flexible function f (·). Then g (·) is identified if:

Condition 1.
zh`t ? (uh`t, "h`t)

and

ph`t = f (zh`t) + p̃h`t = f (zh`t) + ⇠`t + �Xh`t + uh`t. (6)

bias is absent here as the effect of demand shocks on average price levels is absorbed into ⇠
`t

and the effect of prices
on aggregate demand is absorbed into  

`t

.
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The first half of Condition 1 is an exclusion restriction that requires zh`t have no direct effect
on the outcome, either through fortune in finding a buyer "h`t or through unobserved quality uh`t.
I discuss this assumption when I introduce the instrument in subsection 3.1.2. The second part of
Condition 1 requires that zh`t is the only reason for variation in ph`t � p̃h`t, which is effectively a
no measurement error assumption. I discuss this assumption and the robustness of my results to
measurement error in subsection 3.1.3.

Under Condition 1, ph`t � p̃h`t = f (zh`t), and g (·) can be estimated by a two-step procedure
that estimates equation (6) by OLS as a first stage and then uses the predicted f (zh`t) as ph`t� p̃h`t

to estimate equation (3) as a second stage by OLS. Both equations weighted by the inverse standard
deviation of the error in the repeat-sales index to account for the reduced precision of the predicted
prices in areas with fewer transactions, and I use a quintic polynomial for f (·). I show that neither
of these assumptions matters for my results in robustness tests.

I assess the degree of concavity in two ways. First, I use a quadratic g (·) and test whether
the quadratic term is statistically distinguishable from zero. To account for spatial correlation, I
calculate standard errors by block bootstrapping the entire procedure and clustering on 35 units
defined by the first three digits of the ZIP code (ZIP-3). The bootstrapped 95 percent confidence
interval is my preferred test for concavity. Second, to visualize the data, I construct a binned scatter
plot, which approximates g (·) using indicator variables for the 25 equally-sized bins of ph`t � p̃h`t,

as detailed in Appendix C. I also overlay a third-order polynomial fit with pointwise 95 percent
confidence bands.

3.1.2 Instrument

Due to search frictions, home sellers face a trade-off between selling at a higher price and selling
faster. Sellers with a higher marginal utility of cash on hand will choose a higher list price and longer
time on the market. My instrument takes advantage of two sources of variation in the marginal
utility of cash on hand that are plausibly independent of unobserved quality.

The first source of variation is that sellers who extract less equity upon sale on average have
a higher marginal utility of cash on hand. This is the case because many sellers many sellers use
the equity they extract from sale for the down payment on their next home (Stein, 1995). At low
levels of equity extraction, households are on a down payment constraint, and each dollar of equity
extracted is used towards the next down payment and leveraged, making the marginal utility of
cash on hand is high. By contrast, sellers extracting significant equity have enough cash on hand
that they no longer face a binding down payment constraint. Because they do not leverage up each
additional dollar of equity they extract, their marginal utility of cash on hand is lower. The presence
of a binding down payment constraint depends on an individual seller’s liquid asset position and
their access to credit, but on average sellers that extract more equity have a less binding down
payment constraint, lower marginal utility of cash on hand, and set lower list prices.

The second source of variation is loss aversion. Using data on condominiums in Boston in the
1990s, Genesove and Mayer (2001) show that sellers experiencing a nominal loss set higher list
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prices, attain a higher selling price, and take longer to sell.
I use one instrument to capture the effect of both of these sources of variation: the log of

appreciation in the ZIP repeat-sales house price index since purchase zh`t = log

⇣

�
`t

�
`⌧

⌘

, where � is
the repeat-sales house price index, t is the period of listing, and ⌧ is the period of previous sale. For
loss aversion, zh`t is a proxy for whether the seller is facing a nominal loss and how large the loss
will be because it measures average appreciation in the local area rather than the appreciation of
any particular house. For equity extraction, financing and refinancing decisions make the equity of
sellers endogenous. zh`t is isomorphic to equity if all homeowners take out an identical mortgage and
do not refinance and is thus an instrument for the exogenous component of equity. I am agnostic
as to the importance of each source of variation in the first stage relationship.

For the instrument to be relevant, f (zh`t) must be have a significant effect on ph`t in the first
stage equation (6). I show below that the first stage is strong and has the predicted effect of lowering
the list price when appreciation since purchase is high.9 Importantly, it is smooth and monotonic,
so nonlinearity in f (zh`t) does not drive the results on g (·).

The exclusion restriction for the instrument to be valid is zh`t ? (uh`t, "h`t) in Condition 1,
which requires that appreciation since purchase zh`t have no direct effect on the probability of sale
dh`t, either through the error term "h`t or through unobserved quality uh`t. If this is the case, zh`t
only affects probability of sale through the relative markup ph`t� p̃h`t. Because I use ZIP ⇥ quarter
of listing fixed effects ⇠`t, the variation in zh`t comes from sellers who sell at the same time in the
same market but purchase at different points in the cycle. Condition 1 can thus be interpreted as
requiring that unobserved quality be independent of when the seller purchased.

This assumption is difficult to test because I only have a few years of listings data, so flexibly
controlling for when a seller bought weakens the effect of the instrument on price in equation (6)
and widens the confidence intervals to the point that any curvature is not statistically significant.
Nonetheless, I evaluate the identification assumption in five ways in robustness tests in Appendix C.
First, I include observable measures of quality in Xh`t. Second, I show that the observable measures
of quality are either uncorrelated with the date of purchase (bedrooms and bathrooms) or roughly
linear in date of purchase (age, rooms, lot size) and do not appear to vary systematically with the
housing cycle. This implies that any unobservables sorted in the same way as these observables
would be captured by a linear time trend. This motivates my third test, which includes a linear
time trend in date of purchase or time since purchase. Fourth, I limit the sample to sellers who
purchased prior to 2004 and again include a linear time trend, eliminating variation from sellers who
purchased near the peak of the bubble or during the bust. In all of these tests, the results remain
robust, although standard errors widen with smaller sample sizes. Fifth, I show that the shape of

9In the first stage regression, appreciation since purchase enters both through z
h`t

= log

⇣
�`t
�`⌧

⌘
and through X

h`t

,

which includes p̂repeat
h`t

= log

⇣
P
h`⌧

�`t
�`⌧

⌘
= log (P

h`⌧

) + z
h`t

. The coefficient on log (P
h`⌧

) and z
h`⌧

entering through
p̂repeat
h`t

are restricted to be the same. f (z
h`t

) is identified in the first stage through the differential coefficient on z
h`t

and log (P
h`⌧

). I address concerns that the identification of f (z
h`t

) is coming from introducing p̂repeat
h`t

linearly but
z
h`t

nonlinearly in the first stage by introducing p̂repeat
h`t

with a polynomial of the same order as f (·) in robustness
tests, and the results are virtually unchanged.
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the estimated demand curve is similar for IV and OLS, which assumes away unobserved quality,
although OLS results in a far more inelastic demand curve due to bias created by the positive
correlation of price with unobserved quality. If in spite of these robustness tests, homes with very
low appreciation since purchase are of substantially lower unobserved quality despite their higher
average list price, my identification strategy would overestimate the amount of curvature in the
data.10

To make the exclusion restriction more plausible, I focus on sellers for whom the exogenous
variation is cleanest and consequently exclude four groups from the main analysis sample. I relax
these exclusions in robustness tests. First, I drop houses sold by banks after a foreclosure (often
called REO sales), as the equity of the foreclosed-upon homeowner should not affect the bank’s
list price. Second, many individuals who have had negative appreciation since purchase are not
the claimant on the residual equity in their homes—their mortgage lender is. For these individuals,
appreciation since purchase is directly related to their degree of negative equity, which in turn affects
the foreclosure and short sale processes of the mortgage lender or servicer. Because I am interested
in time to sale as determined by the market rather than how long a mortgage servicer takes to
approve a sale, I exclude these individuals based on two proxies for equity detailed when I describe
the data in the next subsection. Second, investors who purchase, improve, and flip homes typically
have a low appreciation in their ZIP code since purchase but improve the quality of the house in
unobservable ways, violating the exclusion restriction. To minimize the effect of investors, I exclude
sellers who previously purchased with all cash, a hallmark of investors. Third, I drop sellers who
experience extreme price drops since purchase (over 20 percent) as these are unusual sellers who
only have positive equity if they took out a very unusual initial mortgage.

3.1.3 Measurement Error

The second part of Condition 1 requires that zh`t is the only reason for variation in ph`t � p̃h`t.
This is a strong assumption because there may be components of liquidity that are unobserved or
other reasons that homeowners list their house at a price different from p̃h`t, such as heterogeneity in
discount rates. If the second part of Condition 1 did not hold, the estimates would be biased because
the true ph`t � p̃h`t would equal f (zh`t) + ⇣h`t, and the unobserved measurement error ⇣h`t enters
g (·) nonlinearly. This is an issue because the measurement error induced by unobserved quality
is non-classical. In (6), unobserved quality is a residual that is independent of observed quality
�Xh`t, and so the measurement error induced by uh`t is Berkson measurement error, in which the
measurement error is independent of the observed component, rather than classical measurement
error, in which the measurement error is independent of the truth p̃h`t. An instrument such as
zh`t can address classical measurement error in a non-linear setting, but it cannot address Berkson
measurement error, which is why an additional assumption is necessary.

10One potential concern is that sellers with higher appreciation since purchase improve their house in unobservable
ways with their home equity. However, this would create a positive first stage relationship between price and
appreciation since purchase while I find a strong negative relationship.
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I use two strategies to show that the bias created by measurement error does not cause significant
spurious concavity. First, I prove that if the measurement error created by other sources of variation
in the relative markup ph`t � p̃h`t is independent of the variation induced by the instrument, the
measurement error would not cause spurious concavity. Intuitively, noise in ph`t � p̃h`t would cause
the observed probability of sale at each observed ph`t � p̃h`t to be an average of the probabilities
of sale at true ph`t � p̃h`ts that are on average evenly scrambled. Consequently, the curvature of a
monotonically-decreasing demand curve is preserved. An analytical result can be obtained if the
true g (·) is a polynomial regression function as in Hausman et al. (1991):

Lemma 1. Consider the econometric model described by (3) and (5) and suppose that:

zh`t ? (uh`t, "h`t) , (7)

ph`t = f (zh`t) + ⇣h`t + p̃h`t, (8)

⇣h`t ? f (zh`t), and the true regression function g (·) is a third-order polynomial. Then estimating
g (·) assuming that ph`t = f (zh`t) + p̃h`t yields the true coefficients of the second- and third-order
terms in g (·). If g (·) is a second-order polynomial, the same procedure yields the true coefficients
of the first- and second-order terms.

Proof. See Appendix C.

While a special case, Lemma 1 makes clear that the bias in the estimated concavity is minimal if
⇣h`t ? f (zh`t).

Second, while spurious concavity is a possibility if the measurement error created by other
sources of variation in the relative markup were correlated with the instrument, the amount of
concavity generated would be far smaller than the concavity I observe in the data. Appendix C
presents Monte Carlo simulations that show that if the instrument captures most of the variation
in the relative markup ph`t � p̃h`t at low levels of appreciation since purchase but very little of the
variation at high levels of appreciation since purchase, spurious concavity arises because the slope of
g (·) is attenuated for low relative markups but not high relative markups. However, to spuriously
generate a statistically-significant amount of concavity, one would need a perfect instrument at low
levels of appreciation since purchase and all of the variation in price at high levels of appreciation
since purchase to be measurement error. Because this is implausible, I conclude that spurious
concavity due to measurement error is not driving my findings.

3.2 Data

I combine data on listings with data on housing characteristics and transactions. The details of
data construction can be found in Appendix A. The listings data come from Altos Research, which
every Friday records a snapshot of homes listed for sale on multiple listing services (MLS) from
several publicly available web sites and records the address, MLS identifier, and list price. The
housing characteristics and transactions data come from DataQuick, which collects and digitizes
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public records from county register of deeds and assessor offices. This data provides a rich one-
time snapshot of housing characteristics from 2013 along with a detailed transaction history of
each property from 1988 to August 2013 that includes transaction prices, loans, buyer and seller
names and characteristics, and seller distress. I limit my analysis to non-partial transactions of
single-family existing homes as categorized by DataQuick.

I match the listings data to a unique DataQuick property ID. To account for homes being de-
listed and re-listed, listings are counted as contiguous if the same house is re-listed within 90 days
and there is not an intervening foreclosure. If a matched home sells within 12 months of the final
listing date, it is counted as a sale, and otherwise it is a withdrawal. The matched data includes
78 percent of single-family transactions in the Los Angeles area and 68 percent in the San Diego
and San Francisco Bay areas. It does not account for all transactions due to three factors: a small
fraction of homes (under 10%) are not listed on the MLS, some homes that are listed in the MLS
contain typos or incomplete addresses that preclude matching to the transactions data, and Altos
Research’s coverage is incomplete in a few peripheral parts of each metropolitan area.

I limit the data to homes listed between April 2008 and February 2013.11 I drop cases in which
a home has been rebuilt or significantly improved since the transaction, the transaction price is
below $10,000, or a previous sale occurred within 90 days. I exclude ZIP codes with fewer than 500
repeat sales between 1988 and 2013 because my empirical approach requires that I estimate a local
house price index. These restrictions eliminate approximately five percent of listings.

As discussed above, the instrumental variables analysis omits REO sales, investors who previ-
ously purchased with all cash, individuals who experience extreme price declines, and individuals
with substantial negative equity. I create two different IV samples that identify listings in which
the seller has substantial negative equity in two different ways. First, I create a proxy for the equity
of all sellers at listing using DataQuick data on the history of mortgage liens against each property
along with the loan amount, loan type (fixed or adjustable rate), and an estimate of the interest
rate based on loan and property characteristics. The data does not indicate when mortgages are
prepaid and omits several features the payment schedule. Consequently, I follow DeFusco (2015)
and create a “debt history” for each listed property that estimates the outstanding mortgage debt
by making assumptions about unobserved mortgage characteristics and when liens are paid off as
detailed in Appendix A. Because the resulting proxy for seller equity is noisy, in the first IV sample
I exclude sellers with less than -10 percent estimated equity, and I vary this cutoff in robustness
tests. I create a second IV sample by excluding listings in which DataQuick has flagged the sale
as a likely short sale or withdrawn listings that are subsequently foreclosed upon in the next two
years.

11The Altos data begins in October 2007 and ends in May 2013. I allow a six month burn-in so I can properly
identify new listings, although the results are not substantially changed by including October 2007 to March 2008
listings. I drop listings that are still active on May 17, 2013, the last day for which I have data. I also drop listings
that begin less than 90 days before the listing data ends so I can properly identify whether a home is re-listed within
90 days and whether a home is sold within six months. The Altos data for San Diego is missing addresses until
August 2008, so listings that begin prior to that date are dropped. The match rate for the San Francisco Bay area
falls substantially beginning in June 2012, so I drop Bay area listings that begin subsequent to that point.

13



Table 1: Summary Statistics For Listings Micro Data

Sample All Prior Trans IV IV2 All Prior Trans IV IV2

Only houses that sold? No No No No Yes Yes Yes Yes

Transaction 72.30% 74.60% 68.70% 62.70% 100% 100% 100% 100%

Prior Transaction 62.70% 100% 100% 100% 64.70% 100% 100% 100%

REO 22.40% 27.80% 0% 0% 28.70% 35.60% 0% 0%

Short Sale or 19.40% 23.60% 13.50% 0% 19.80% 24.30% 15.90% 0.00%

Subsequent Foreclosure

Estimated Equity < -10% 30.90% 49.30% 100% 88.40% 31% 47.90% 100.00% 94.20%

Initial List Price $644,556 $595,137 $859,648 $861,254 $580,150 $548,132 $824,239 $845,253

Transaction Price $532,838 $501,588 $758,803 $781,091

Weeks on Market 15.32 16.46 14.01 12.86

Sold Within 13 Wks 44.30% 42.90% 44.80% 42.90% 61.20% 57.50% 0.652 0.685

Beds 3.283 3.239 3.337 3.328 3.264 3.229 3.327 3.322

Baths 2.185 2.126 2.331 2.316 2.141 2.102 2.31 2.308

Square Feet 1,811 1,732 1,969 1,953 1,759 1,702 1943.6 1944.1

N 663,976 416,373 140,344 137,238 480,258 310,758 96,400 86,033

Notes: Each column shows summary statistics for a different sample of listings. The four samples used are the full sample

of listings matched to a transaction, houses with an observed prior transaction (or if the observed prior transaction is not

counted as a sales pair, for instance because there is evidence the house was substantially renovated), and the first and second

IV samples. The first set of four columns provides summary statistics for all listed homes regardless of whether they sell The

second four columns limits the summary statistics to houses that sell. The data covers listings between April 2008 and February

2013 in the San Francisco Bay, Los Angeles, and San Diego areas as described in Appendix A. REOs are sales of foreclosed

homes and foreclosure auctions. Short sales and subsequent foreclosures include cases in which the transaction price is less than

the amount outstanding on the loan and withdrawals that are subsequently foreclosed on in the next two years. The estimation

procedure for equity is described in Appendix A, and a -10 percent threshold is chosen because the equity measure is somewhat

noisy.

The data set consists of 663,976 listings leading to 480,258 transactions. I focus on the 416,373
listings leading to 310,758 transactions with an observed prior transaction in the DataQuick property
history going back to 1988. The two IV samples are substantially smaller because of the large
number of REO sales and listings by negative equity sellers from 2007 to 2013. Roughly 28 percent
of listings with an observed prior transaction sample are REO sales, and dropping these leads to
approximately 300,000 listings. Another 34,000 sales by likely investors who initially purchased with
all cash. Of the remaining 266,000 listings, roughly 126,000 have estimated equity at listing under
-10% or appreciation since purchase under -20%, so the first IV sample consists of 140,344 listings
leading to 96,400 transactions. Roughly 129,000 of the 266,000 listings are flagged as a short sale by
DataQuick, subsequently foreclosed upon, or have appreciation since purchase under -20%, leading
to a second IV sample of 137,238 listings leading to 86,033 transactions. Table 1 provides summary
statistics for the subsamples that I use in the analysis.
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3.3 Results

Figure 2 shows first and second stage binned scatter plots for both IV samples: IV sample one
which excludes extreme negative equity sellers, and IV sample two which excludes short sales and
withdrawals that are subsequently foreclosed upon. The results are similar for both samples. As
shown in panel A, the first stage is strong, smooth, and monotonic. This is the variation that
identifies the shape of demand and is the x-axis of panel B. The first stage is strong with a joint F
statistic for the third order polynomial of the instrument in (6) of 206 in the baseline specification for
IV sample one. Panel B shows a clear concave relationship in the second stage, with very inelastic
demand for relatively low priced homes and elastic demand for relatively high priced homes. This
curvature is also visible in the cubic polynomial fit.

Table 2 shows regression results when g (·) is approximated by quadratic polynomial. Columns 3
and 5 show the IV results for each IV sample. In both cases, there is clear concavity: the quadratic
term is negative and highly significant, and the bootstrapped 95 percent confidence interval for the
quadratic term is bounded well away from zero.

As a point of comparison, Column 1 shows the OLS results that assume away unobserved quality
for the full set of sales with a observed prior transaction. The fixed effects are at the ZIP ⇥ quarter
⇥ REO seller ⇥ short seller level to prevent distressed sales from biasing the results. Columns 2 and
4 show similar OLS results for IV sample one and IV sample two. Reassuringly, concavity is not
unique to the IV specification. In all three samples, OLS displays clear and significant concavity,
and binned scatter plots in Appendix C show that most of the difference across samples is from
extreme quantiles that do not drive concavity in the IV specification. The expected bias is also
present: the demand curve is flatter because p̃h`t is positively correlated with ph`t due to omitted
unobserved quality. Finally, while there is slightly more concavity in the IV samples, the 95 percent
confidence intervals on the quadratic terms overlap. This suggests that the concavity found in the
IV samples is not due to sample selection.

At the mean price, the sample one estimates imply that raising one’s price by one percent
reduces the probability of sale within 13 weeks by approximately 2.7 percentage points on a base
of 48 percentage points, a reduction of 5.6 percent. This corresponds to a one percent price hike
increasing the time to sale by five to six days. By contrast, increasing the list price by five percent
reduces the probability of sale within 13 weeks by 21.5 percentage points, a reduction of 45 percent.
These figures are slightly smaller than those found by Carrillo (2012), who estimates a structural
search model of the steady state of the housing market with multiple dimensions of heterogeneity
using data from Charlottesville, Virginia from 2000 to 2002. Although we use very different empirical
approaches, in a counterfactual simulation, he finds that a one percent list price increase increases
time on the market by a week, while a five percent list price increase increases time on the market
by nearly a year. Carrillo also finds small reductions in time on the market from underpricing,
consistent with the nonlinear relationship found here.

Appendix C shows the finding of concavity is highly robust. Across both samples, the results are
robust across geographies, time periods, and specifications, although in a handful of cases restricting
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Figure 2: Instrumental Variable Estimates of the Effect of List Price on Probability of Sale

IV Sample 1: Excluding Low Estimated Equity
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IV Sample 2: Excluding Short Sales and Subsequent Foreclosures
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Notes: For both samples, Panel B shows a binned scatter plot of the probability of sale within 13 weeks net of ZIP ⇥ first
quarter of listing fixed effects (with the average probability of sale within 13 weeks added in) against the estimated log relative
markup p� p̃. It also shows an overlaid cubic fit of the relationship, as in equation (3). To create the figure, a first stage
regression of the log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter of listing
level, and repeat sales and hedonic log predicted prices, as in (6), is estimated by OLS. The predicted value of the polynomial
of the instrument is used as the relative markup. The figure splits the data into 25 equally-sized bins of this estimated relative
markup and plots the mean of the estimated relative markup against the mean of the probability of sale within 13 weeks net
of fixed effects for each bin, as detailed in Appendix C. Before binning, the top and bottom 0.5 percent of the log sale price
residual and any observations fully absorbed by fixed effects are dropped. The entire procedure is weighted by the reciprocal
of the standard deviation of the prediction error in the repeat-sales house price index in the observation’s ZIP code from 1988
to 2013. IV sample 1 drops sales of foreclosures, sales of homes with less than negative 20 percent appreciation since purchase,
sales by investors who previously purchased with all cash, and homes with under -10 percent estimated equity. IV sample 2
does away with the estimated equity requirement and instead drops DataQuick determined short sales and withdrawn listings
that are foreclosed upon in the subsequent year. The grey bands indicate a pointwise 95-percent confidence interval for the
cubic fit created by block bootstrapping the entire procedure on 35 ZIP-3 clusters. Panel A shows the first stage relationship
between the instrument and log initial list price in equation (6) by residualizing the instrument and the log initial list price
against the two predicted prices and fixed effects, binning the data into 25 equally-sized bins of the instrument residual, and
plotting the mean of the instrument residual against the mean of the log initial list price residual for each bin. The first-stage
fit is overlaid. N = 140,344 observations for IV sample 1 and 137,238 observations for IV sample 2 prior to dropping unique
zip-quarter cells and winsorizing.
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Table 2: The Effect of List Price on Probability of Sale: Regression Results

Dependent Variable: Sell Within 13 Weeks
(1) (2) (3) (4) (5)

Estimator OLS OLS IV OLS IV
Sample IV Sample 1: IV Sample 2:

All With Prior Obs Excluding Prior Obs Excluding
Prior Obs REO, Investors, REO, Investors,

< -10 % Estimated Equity Short Sales
> 20% Depreciation > 20% Depreciation

Controls ZIP⇥ Quarter FE ZIP X Quarter FE ZIP X Quarter FE
Repeat and Hedonic Repeat and Hedonic Repeat and Hedonic

Predicted Price, Predicted Price Predicted Price
Distress FE

Constant 0.461*** 0.496*** 0.480*** 0.475*** 0.461***
(0.005) (0.009) (0.008) (0.011) (0.009)

Linear -0.216*** -0.293*** -2.259*** -0.295*** -1.932***
(0.016) (0.021) (0.346) (0.034) (0.291)

Quadratic -0.634*** -1.062*** -40.955*** -0.802*** -29.208***
(0.088) (0.188) (10.271) (0.227) (7.206)

Quadratic [-0.832, [-1.518, [-69.168, [-1.319, [-48.241,
Bootstrapped 95% CI -0.498] -0.825] -28.758] -0.490] -20.496]

N 416,373 140,344 140,344 137,238 137,238
Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coefficients when g(·) in equation (3) is approximated
using a quadratic polynomial. This relationship represents the effect of the log relative markup on the probability of sale within
13 weeks. For IV, a first stage regression of log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x
first quarter of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (6), is estimated
by OLS. The predicted value of the polynomial of the instrument is used as the relative markup in equation (3), which is
estimated by OLS. For OLS, quality is assumed to be perfectly measured by the hedonic and repeat-sales predicted prices and
have no unobserved component. Consequently, the log list price is regressed on fixed effects and the predicted prices and uses
the residual as the estimated relative markup into equation (3), as described in Appendix C. Both procedures are weighted
by the reciprocal of the standard deviation of the prediction error in the repeat-sales house price index in the observation’s
ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent of the sample is winsorized on each end
of the distribution of the relative markup, and any observations fully absorbed by fixed effects are dropped. Standard errors
and the 95 percent confidence interval for the quadratic term are computed by block bootstrapping the entire procedure on
35 ZIP-3 clusters. For column 1, the full set of listings with a previous observed transaction are used. To prevent distressed
sales from biasing the results, the fixed effects are at the quarter of initial listing x ZIP x distress status level. Distress status
corresponds to three groups: normal sales, REOs (sales of foreclosed homes and foreclosure auctions), and short sales (cases
where the transaction price is less than the amount outstanding on the loan and withdrawals that are subsequently foreclosed on
in the next two years). IV sample 1 drops sales of foreclosures, sales of homes with more than a 20 negative appreciation since
purchase, sales by investors who previously purchased with all cash, and homes with under -10 percent estimated equity. IV
sample 2 does away with the estimated equity requirement and instead drops DataQuick determined short sales and withdrawn
listings that are foreclosed upon in the subsequent year. The number of observations listed is prior to dropping observations
that are unique to a ZIP-quarter cell and winsorizing.
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to a smaller sample leads to insignificant results. The results are also robust to time trends in date
of purchase, limiting the sample to sellers who purchased before the bubble, controlling for other
measures of quality and nearby foreclosures, using different functional forms for f (·) and for the
observables Xh`t, allowing for differential sorting by letting � vary across time and space, accounting
for the uniqueness of a house in its neighborhood, and accounting for different price tiers within ZIP
codes, and using alternate measures of whether a house sells quickly. Finally, the results are robust
to changing the criteria for inclusion in each IV sample and to using transaction prices rather than
list prices, which assuages concerns that bargaining or price wars undo the concavity in list price.
Appendix C also shows that concavity is clearly visible in the reduced-form relationship between
the instrument and probability of sale, providing further reassurance that the concavity is not being
driven by the first stage. The instrumental variable results thus provide evidence of demand concave
in relative price for these three MSAs from 2008 to 2013.12

4 A Search Model of House Price Momentum

This section introduces an equilibrium search model with concave demand which I calibrate to my
micro evidence to quantitatively assess how much concave demand can amplify small frictions that
create momentum. The model builds on search models of the housing market, such as Wheaton
(1990), Krainer (2001), Novy-Marx (2009), Piazzesi and Schneider (2009), Genesove and Han (2012),
Ngai and Tenreyro (2013), and Head et al. (2014). I first introduce a model of a metropolitan area
with a fixed population and housing stock, describe the housing market, and show how sellers set
list prices. I then add two frictions that create some initial momentum, staggered price setting and
backward-looking rule-of-thumb sellers, and define equilibrium. Table 3 summarizes the notation.

4.1 Setting

Time is discrete and all agents are risk neutral. Agents have a discount factor of �. There is a fixed
housing stock of mass one, no construction, and a fixed population of size N .13

There are four types of homogenous agents: a mass Bt of buyers, St of sellers, Ht of homeowners,
and Rt of renters. Buyers, sellers, and homeowners have flow utilities (inclusive of search costs) b, s,
and h and value functions V b

t , V s
t , and V h

t , respectively. Buyers and sellers are active in the housing
market, which is described in the next section. The rental market, which serves as a reservoir of
potential buyers, is unmodeled. Each agent can own only one home, which precludes short sales
and investor-owners. Sellers and buyers are homogenous but sellers may differ in their list prices.

Each period with probability �h and �rt , respectively, homeowners and renters receive shocks
that cause them to separate from their current house or apartment, as in Wheaton (1990). A

12Aside from the tail end of my sample, this period was a depressed market. The similarity between my results
and Carrillo’s provide some reassurance that the results I find are not specific to the time period, but I cannot rule
out that the nonlinearity would look different in a booming market.

13Construction is omitted for parsimony, as it would work against momentum with or without concavity, leaving
the relative amount of amplification roughly unchanged. See Head et al. (2014) for a model with construction.
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Table 3: Notation in the Model

Variable Description Note

Masses

N Total Population (Housing Stock Mass One)

B
t

Endogenous Mass of Buyers Value Fn V b

t

S
t

Endogenous Mass of Sellers Value Fn V s

t

R
t

Endogenous Mass of Renters

H
t

Endogenous Mass of Homeowners Value Fn V h

t

Flow Utilities

b Flow Utility of Buyer (Includes search cost)

s Flow Utility of Seller (includes search cost)

h Flow Utility of Homeowner

Moving Shock Probabilities

�h Prob Homeowner Gets Shock

�r
t

Prob Renter Gets Shock Exogenous Driving Process

Other Fixed Parameters

� Discount Factor

L Probability Seller Leaves Metro Area

V 0 PDV of Exiting Metro Area

Utilities

" Match-Specific One-Time Utility Benefit ⇠ F (")

�
h

Permanent House Quality Mean Zero

Stochastic Draws

⌘
h,t

Noise in �
h

in Binary Signal About Quality, ⇠ G (⌘)

IID Common to All Buyers in Period t

Parameters / Values

✓m
t

Market Tightness = B/S in Submarket m = {f, d} Endogenous

✓̃
t

Vector of ✓m s Endogenous

qm (✓m
t

) Prob. Seller Meets Buyer in m (Matching Fn) Endogenous

⇠m Constant in Matching Function in m

� Matching Function Elasticity in all ms

p
t

List Price Adjusted for Permanent Quality Endogenous

⌦
t

Distribution of Prices Endogenous

"⇤
t

Threshold " for Purchase Endogenous

µ Threshold for Binary Signal

Distribution Parameters

", "̄ Bounds of Dist of F ("), Uniform With Mass Point

� Size of Mass Point of Uniform Dist at "̄

� Generalized Normal Variance Parameter

⇣ Generalized Normal Shape Parameter
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renter who gets a shock enters the market as a homogenous buyer. A homeowner who gets a shock
leaves the MSA with probability L, in which case they become a seller and receive a net present
value of V 0 for leaving, and remains in the city with probability 1� L. If they remain in the city,
they simultaneously become a buyer and a homogenous seller. These two roles are assumed to be
quasi-independent so that the value functions do not interact and no structure is put on whether
agents buy or sell first, as in Ngai and Tenreyro (2013) and Guren and McQuade (2015). Because
the population is constant, every time a seller leaves the city they are replaced by a new renter.

I defer the laws of motion that formalize the system until after I have defined the probabilities
of purchase and sale. The value function of the homeowner is:

V h
t = h+ �Et

h

�h
h

V s
t+1 + LV 0

+ (1� L)V b
t+1

i

+

⇣

1� �h
⌘

V h
t+1

i

. (9)

4.2 The Housing Market

The search process occurs at the beginning of each period and unfolds in three stages. First, sellers
post list prices p̂t. Second, buyers observe a noisy binary signal about each house’s quality relative
to its price. Buyers direct their search either towards houses that appear reasonably-priced for
their quality or towards houses that appear to be overpriced for their quality, which defines two
sub-markets: follow the signal (submarket f) or do not follow the signal (submarket d). After
choosing a submarket, buyers search randomly within the submarket an stochastically find a house
to inspect. Third, matched buyers inspect the house and decide whether to purchase it.

At the inspection stage, buyers observe their idiosyncratic valuation for the house ", which
is match-specific, drawn from F (") at inspection, and realized as utility at purchase. They also
observe the house’s permanent quality �h, which is common to all buyers, mean-zero, gained by a
buyer at purchase, and lost by a seller at sale. I assume all sales occur at list price, or equivalently
that risk neutral buyers and sellers expect that the average sale price will be an affine function of
the list price. Letting pt ⌘ p̂t � �h be the quality-adjusted list price, the buyer purchases if his or
her surplus from doing so V h

t + "� pt � b� �V b
t is positive. This leads to a threshold rule to buy if

" > pt + b+ �V b
t+1 � V h

t ⌘ "⇤t (pt) and a probability of purchase given inspection of 1� F ("⇤t ).
The assumption that houses sell at list price is made for tractability.14 15 While clearly a

simplification, it is a reasonable approximation in two ways. First, for average and median prices it is
realistic: Appendix D shows that in the merged Altos-DataQuick micro data, the modal transaction
price is the list price, and the average and median differences between the list and transaction price
are less than 0.03 log points and do not vary much across years. Second, conditional on unobserved
quality, the difference between initial list and transaction prices does not vary with the initial list

14This assumption restricts what can occur in bargaining or a price war. Several papers have considered the role of
various types of bargaining in a framework with a list price in a steady state search model, including cases in which
the list price is a price ceiling (Chen and Rosenthal, 1996; Haurin et al., 2010), price wars are possible (Han and
Strange, 2016), and list price can signal seller type (Albrecht et al., 2016).

15An important feature of the housing market is that most price changes are decreases. Consequently, the difference
between the initial list price and the sale price fluctuates substantially over the cycle as homes that do not sell cut
their list price. I abstract from such duration dependence to maintain a tractable state space.
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price. To show this, Appendix D uses the IV procedure in Section 3 replacing dh`t with the difference
between list and transaction prices. There is no strong relationship between relative quality-adjusted
list prices and transaction prices, and if anything setting an average price results in a slightly higher
transaction price. Consequently, the list price is the best predictor of the transaction price from the
perspective of a list-price-setting seller. Since utility is linear, adding adding empirically-realistic
ex-post bargaining that maintains the mean transaction price as the list price would not alter the
seller’s list price setting incentives as shown in Appendix D.

At the signal stage, buyers observe a binary signal from their real estate agent or from adver-
tisements that reveals whether each house’s quality-adjusted price relative to the average quality-
adjusted price is above a threshold µ. However, quality �h (or equivalently the observation of the
average price) is subject to mean zero noise ⌘h,t ⇠ G (·), where G (·) is assumed to be a fixed distri-
bution.16 This noise, which represents how well a house is marketed in a given period, is common
to all buyers but independent and identically distributed across periods. The signal thus indicates
a house is reasonably priced if,

pt � E⌦
t

[pt]� ⌘h,t  µ,

where ⌦t is the cumulative distribution function of list prices and the notation E⌦
t

[·] represents an
expectation with respect to the distribution of prices ⌦t rather than an intertemporal expectation.
Consequently, a house with quality-adjusted price pt appears reasonably priced and is searched
by buyers in submarket f with probability 1 � G (pt � E⌦

t

[pt]� µ) and is searched by buyers in
submarket d with probability G (pt � E⌦

t

[pt]� µ). I assume that search is more efficient if buyers
follow the signal than if they do not because they have the help of a realtor or are looking at better-
marketed homes. In equilibrium, buyers follow a mixed strategy and randomize whether they search
submarket f or d so that the value of following the signal is equal to the value of not following it. I
consider an equilibrium in which all buyers choose the same symmetric strategy with a probability
of following the signal of �t.

After choosing a submarket, buyers search randomly within that sub-market and cannot direct
their search to any particular type of home within that market. The probability a house in submarket
m meets a buyer is determined according to a constant returns to scale matching function, qm (✓mt ),
where ✓mt is the ratio of buyers to sellers in submarket m = {f, d}. The probability a buyer meets
a seller is then qm (✓mt ) /✓mt . The matching function captures frictions in the search process that
prevent all reasonably-priced homes and all buyers from having an inspection each period. For
instance, buyers randomly allocating themselves across houses may miss a few houses, or there may
not be a mutually-agreeable time for a buyer to visit a house in a given period.

The mass of sellers in the f submarket is St times the weighted average probability that any
given seller is in the f submarket E⌦ [1�G (·)], and the mass of sellers in the d submarket is

16Because the signal reveals no information about the house’s permanent quality �
h

, posted price p̂
t

, or match
quality "

m

, the search and inspection stages are independent.
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similarly StE⌦ [G (·)]. Consequently, the market market tightness in the f and d submarkets is:

✓ft =

Bfollow
t

Sf
t

=

Bt�t
StE⌦

t

[1�G (pt � E⌦
t

[pt]� µ)]

✓dt =

Bdo not follow
t

Sd
t

=

Bt (1� �t)

StE⌦
t

[G (pt � E⌦
t

[pt]� µ)]
.

The probability a buyer who follows the signal buys a house is then:

Pr [Buy|Follow] =

qf
⇣

✓ft

⌘

✓ft

Z

1�G (pt � E⌦
t

[pt]� µ)

E⌦
t

[1�G (pt � E⌦
t

[pt]� µ)]
(1� F ("⇤t (pt))) d⌦t (pt)

=

qf
⇣

✓ft

⌘

�t✓t

Z

(1�G (pt � E⌦
t

[pt]� µ)) (1� F ("⇤t (pt))) d⌦t (pt)

=

1

�t✓t
E⌦

t

h

df
⇣

pt,⌦t, ˜✓t

⌘i

,

where ✓t = Bt/St is the aggregate market tightness, and

df
⇣

pt,⌦t, ˜✓t

⌘

= qf
⇣

qft

⌘

(1�G (pt � E⌦
t

[pt]� µ)) (1� F ("⇤t (pt))) , (10)

is the demand curve faced by a seller in the f submarket. Similarly, the probability a buyer buys if
they do not follow the signal is:

Pr [Buy|Do Not Follow] =

1

(1� �t) ✓t
E⌦

t

h

dd (pt,⌦t, ✓t,�t)
i

,

where,
dd

⇣

pt,⌦t, ˜✓t

⌘

= qd
⇣

✓dt

⌘

G (pt � E⌦
t

[pt]� µ) (1� F ("⇤t (pt))) , (11)

is the demand curve faced by a seller in the d submarket.
Note that the demand curve faced by sellers, which is the ex-ante probability of sale for a house

with a list price pt, can be written as:

d
⇣

pt,⌦t, ˜✓t

⌘

= Pr [Good Signal]Pr [Sell|Good Signal] + Pr [Bad Signal]Pr [Sell|Bad Signal]

= df
⇣

pt,⌦t, ˜✓t

⌘

+ dd
⇣

pt,⌦t, ˜✓t

⌘

. (12)

Similarly, the total probability a buyer buys given the �t randomization strategy is:

Pr [Buy] = �t
1

�t✓t
E⌦

t

h

df
⇣

pt,⌦t, ˜✓t

⌘i

+ (1� �t)
1

(1� �t) ✓t
E⌦

t

h

dd (pt,⌦t, ✓t,�t)
i

=

1

✓t
E⌦

t

h

d
⇣

pt,⌦t, ˜✓t

⌘i

.

Given these probabilities of purchase and sale, the stock of buyers is equal to the stock of buyers
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who failed to buy last period plus the stock of renters and flow of new entrants who decide to buy,
while the stock of sellers is equal to those sellers who failed to sell last period plus homeowners who
put their house up for sale. These are formalized by:

Bt =

✓

1� 1

✓t�1
E⌦

t�1

h

d
⇣

pt�1,⌦t�1, ˜✓t�1

⌘i

◆

Bt�1 + �rt�1Rt�1 + (1� L)�hHt�1 (13)

St =

⇣

1� E⌦
t�1

h

d
⇣

pt�1,⌦t�1, ˜✓t�1

⌘i⌘

St�1 + �hHt�1. (14)

Because there are mass one of homes that can either be owned by a homeowner or up for sale and
mass N of agents who can either be renters, homeowners, or buyers,

1 = Ht + St (15)

N = Rt +Bt +Ht. (16)

These equations together with (13) and (14) implicitly define laws of motion for Ht and Rt.
When a buyer buys, they receive the expected surplus E ["� "⇤t |" > "⇤t ] where "⇤t is a function

of pt. The value of a buyer who follows, V b,f
t , a buyer who does not follow V b,d

t , and a buyer prior
to choosing a submarket V b

t , are:

V b,f
t = b+ �EtV

b
t+1 +

1

�t✓t
E⌦

t

h

df
⇣

pt,⌦t, ˜✓t

⌘

E ["� "⇤t |" > "⇤t ]
i

(17)

V b,d
t = b+ �EtV

b
t+1 +

1

(1� �t) ✓t
E⌦

t

h

dd
⇣

pt,⌦t, ˜✓t

⌘

E ["� "⇤t |" > "⇤t ]
i

(18)

V b
t = max

n

V b,f
t , V b,d

t

o

.

In equilibrium, buyers are indifferent between the two markets, so V b,f
t = V b,d

t or:

E⌦
t

h

df
⇣

pt,⌦t, ˜✓t

⌘

E ["� "⇤t |" > "⇤t ]
i

E⌦
t

h

dd
⇣

pt,⌦t, ˜✓t

⌘

E ["� "⇤t |" > "⇤t ]
i

=

�t
1� �t

. (19)

This pins down the fraction of buyers who go to submarket f , �t. V b
t can then be rewritten as:

V b
t = b+ �EtV

b
t+1 +

1

�t✓t
E⌦

t

h

df
⇣

pt,⌦t, ˜✓t

⌘

E ["� "⇤t |" > "⇤t ]
i

. (20)

Sellers have rational expectations but set their list price before ⌘h,t is realized and without
knowing the valuation of the particular buyer who visits their house. The demand curve they face
is d

⇣

pt,⌦t, ˜✓t

⌘

, so the seller value function is:

V s
t = s+ �EtV

s
t+1 +max

p
t

n

d
⇣

pt,⌦t, ˜✓t

⌘

⇥

pt � s� �EtV
s
t+1

⇤

o

. (21)

I solve for the seller’s optimal price in the next subsection.
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I parameterize the model by assuming distributions for F (·), the distribution of idiosyncratic
match quality, and G (·), the noise in the signal. I assume that F ("m) is a uniform distribution on
[", "̄] with a mass point of mass � at "̄. In Figure 2, the demand curve for below average priced
homes is very flat, which implies a very low density of F (·) at the margin. If there were not a
mass point at the top of F (·), the low density would imply a very large upper tail conditional
expectation E ["� "⇤|" > "⇤], which in turn implies a very high value of future search to buyers.
Adding a mass point allows me to control the value of future search and target a realistic buyer
search cost. In practice, this means that there are many buyers who like the property, many who
do not, and a few in between. For G (·) I use a type 1 generalized normal distribution with a PDF
of g (x) = ⇣

2��(1/⇣)e
�(|x�µ|/�)⇣ . This is the same as a normal if the shape parameter ⇣ is equal to

two. When ⇣ > 2, the PDF is more flat topped” which results in a CDF that is more kinked rather
than smoothly s-shaped. This allows me to capture a feature of Figure 2: the demand curve, which
inherits the properties of the CDF G (·), is somewhat kinked. These two distributions provide a close
fit to the microdata. I also assume that the matching function is Cobb-Douglas qm (✓) = ⇠m✓� , as
is standard in the housing search literature, with ⇠f > ⇠d. While these functional form assumptions
matter somewhat for the precise quantitative predictions of the model, they are not necessary for
the intuitions it illustrates.

This setup leads to a locally concave demand curve with considerable curvature in the neigh-
borhood of the average price At below average prices, the house receives a good signal with near
certainty and the demand curve is dominated by the trade-off between idiosyncratic match quality
"m and price, so demand is less elastic. At above average prices, the demand curve is dominated by
the fact that perturbing the price affects whether the house gets a good signal or a bad signal, in
which case it ends up in a market with few buyers who match with less efficiency. To illustrate how
the demand curve is built up from its various components, Figure 3 shows the shapes of the prob-
ability of inspection q

⇣

✓ft

⌘

(1�G (pt � E⌦
t

[pt]� µ)) + q
�

✓dt
�

G (pt � E⌦
t

[pt]� µ), the probability
of purchase conditional on inspection 1� F ("⇤ (pt)), and the overall demand curve faced by sellers
d (pt,⌦t, ✓t), equal to the product of the first two panels. The probability of inspection and overall
demand curve are split into the f and d components, revealing that the d submarket has negligible
effect on the overall demand curve because it has few buyers. Note that the axes are switched from
a standard Marshallian supply and demand diagram to be consistent with the empirical estimates.

4.3 Price Setting

The strategic complementarity enters through the seller’s optimal price. Sellers have monopoly
power due to costly search, and the optimal pricing problem they solve in equation (21) is the same
as that of a monopolist facing the demand curve d except that the marginal cost is replaced by the
seller’s outside option of searching again next period s+ �EtV

s
t+1. The optimal pricing strategy is

a markup over this outside option s + �V s
t+1, and the markup varies inversely with relative price,

creating a strategic complementarity. With an initial friction that generates some heterogeneity in
the speed of adjustment, the strategic complementarity causes quick adjusters to adjust their price
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Figure 3: The Concave Demand Curve in the Model
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probability of inspection and the components coming form the f and d submarkets, with the f submarket almost entirely

overlapping the total and the d submarket essentially zero because few buyers are in the d submarket. The second panel shows

the probability of purchasing given inspection. The third panel shows the demand curve, which is the product of the two.

Again, the f submarket demand curve df is essentially on top of the total demand curve d and d submarket demand curve

dd is near zero. Note that the axes are swapped from the traditional Marshallian supply and demand diagram in order to be

consistent with the empirical analysis in Section 3.

more gradually when fundamentals change: s+�V s
t+1 jumps upon the change in fundamentals, but

raising the list price above the market average erodes the markup, so the optimal price does not
change much on impact.

To formalize these intuitions in my model, I focus on a symmetric equilibrium.17 Sellers do
not internalize that their choice of pt affects the average price, which they treat as given. Seller
optimization implies:

Lemma 2. The seller’s optimal list price at the interior optimum is:

pt = s+ �EtV
s
t+1 + Et

2
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◆ , (22)

where dd is defined by (11) and d is defined by (12).
17Although the seller’s problem may not be globally concave, I focus on an interior optimum and later check that the

interior optimum is the global optimum by simulation. This turns out not to be a concern in the baseline calibration
in Figure 3 as the mass point in the idiosyncratic taste distribution occurs before the probability of inspection curve
flattens. In some alternate calibrations, the mass point is further out, and the demand curve is non-concave.
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Proof. See Appendix E.

In equation (22), the seller markup is written as an additive markup equal to the reciprocal of
the semi-elasticity of demand, �d(p

t

,⌦
t,

✓
t

)
@d(p

t

,⌦
t

,✓

t

)
@p

t

. The semi-elasticity, in turn, is equal to the sum of the

hazard rates of the idiosyncratic preference distribution F (·) and the distribution of signal noise
G (·) adjusted for the share of sales that occur in the d submarket, the term in parenthesis. This
creates a local strategic complementarity because the elasticity of demand rises as relative price
increases, causing the optimal additive markup to fall and pushing sellers to set prices close to those
of others. Mathematically, this works through relative price pt�E⌦

t

[pt] entering the hazard rate of
the signal G (·), which is rising in relative price so the additive markup is falling in relative price.18

However, in a rational expectations equilibrium in which all sellers can set their price flexibly, all
sellers choose the same list price and pt = E⌦

t

[pt], so there is no change in relative prices to affect
the markup. A shock to home values thus causes list price to jump proportionally to the seller’s
outside option, and there is no momentum. In the terminology of Ball and Romer (1990), concave
demand is a real rigidity that only amplifies nominal rigidities.

Consequently, I introduce frictions that generate some heterogeneity in the insensitivity of prices
to fundamentals. As discussed in Section 2, there are several frictions that the literature has
identified that act in such a manner, and I am agnostic as to which underlying frictions are at work
in practice. In this paper I separately introduce two tractable, transparent, and well-understood
frictions, a small fraction of rule-of-thumb sellers and staggered pricing, and demonstrate concave
demand’s ability to amplify each of them. I call these the “rule of thumb model” and the “staggered
pricing model” and define their equilibria separately. I leave a formal analysis of other frictions that
may interact with concave demand to future work.

4.4 Source of Insensitivity 1: A Small Fraction of Rule-of-Thumb Sellers

Since Case and Shiller (1987), sellers with backward-looking expectations have been thought to
play an important role in housing markets. Previous models assume that all agents have backward-
looking beliefs (e.g., Berkovec and Goodman, 1996), but some observers have found the notion
that the majority of sellers are non-rational unpalatable given the financial importance of housing
transactions for many households. Indeed, recent evidence from surveys and experiments finds sig-
nificant heterogeneity in backward-looking expectations: Kuchler and Zafar (2016) analyze survey
expectations and find significant extrapolation by lower-educated households that make up 44 per-
cent of the sample but minimial extrapolation by higher-educated households, and Armona et al.
(2016) estimate that 41 percent of households are extrapolators using an experimental intervention.
Consequently, I introduce a small number of rule-of-thumb sellers, as in Campbell and Mankiw
(1989), and assess quantitatively what fraction of sellers is needed to be non-rational to explain the
momentum in data, similar to Gali and Gertler (1999).

18Because few buyers are in the d submarket, the term in parenthesis is near unity.
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I assume that at all times a fraction 1�↵ of sellers are of type R (rational) and set their list price
pRt rationally according to Lemma 2 and (22) but a fraction ↵ of sellers are of type E (extrapolator)
and use a backward-looking rule of thumb to set their list price pEt . Specifically, they set their price
equal to the most recently observed price plus a fraction of the most recently observed inflation:

pEt =

pt�2 + pt�3 + pt�4

3

+  

✓

pt�2 + pt�3 + pt�4

3

� pt�5 + pt�6 + pt�7

3

◆

, (23)

where pt is the transaction-weighted average price at time t:

pt =
↵dEt p

E
t + (1� ↵) dRt p

R
t

↵dEt + (1� ↵) dRt
. (24)

Such a rule is a common assumption in models with backward-looking expectations and in the
New Keynesian literature and is frequently motivated by limited knowledge, information costs, and
extrapolative biases (e.g., Hong and Stein, 1999; Fuster et al. 2010).19

For tractability and parsimony, I assume that regardless of whether rational or backward-looking
sellers sell faster, inflows adjust so that ↵ of the active listings are houses owned by backward-looking
sellers at all times. To conserve notation, in the model with rule of thumb sellers, St refers to the
total number of sellers, but V s

t is now the value function for the rational sellers. V s
t remains as in

equation (21), and the value function of a buyer remains (20), but now there are two prices pEt and
pRt in the market.

4.5 Source of Insensitivity 2: Staggered Price Setting

Prices in housing markets are adjusted only infrequently, with the median price lasting two months
as shown in the Altos listings data in Appendix D. This is the case because it takes time to market
a house and collect offers, and lowering the price frequently can signal that the house is of poor
quality. While likely not the most important pricing friction in housing markets, infrequent price
adjustment has the virtue of being familiar and tractable. I introduce it into the baseline model by
assuming that groups of sellers set prices in a staggered fashion as in Taylor (1980).

In particular, I assume there are N groups of sellers that set prices every N periods, typically
using N = 2 in monthly simulations. Denote the prices pt, value functions V s

t , seller masses St,
and purchase thresholds "t of a vintage of sellers that set prices ⌧ = {0, ..., N � 1} periods ago by ⌧
superscripts. Buyers receive the same signals buyer’s problem and value function remain the same,
while the seller’s value function is as in (21), except the value function for V s,⌧

t has V s
t+1 terms

replaced by V s,⌧+1
t+1 for ⌧ = {0, N � 2} and by V s,0

t+1 for ⌧ = N � 1.
Seller optimization implies an optimal list price that is reminiscent of Taylor or Calvo pricing:

19I use three-month lag to match the lag with which house price indices are released. I use three-month averages to
correspond to how major house price indices are constructed and to smooth out saw-tooth patterns that emerge with
non-averaged multi-period lags. I microfound such a rule using a model of limited information and near rationality
in Appendix E
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Lemma 3. If posted prices last N periods, the seller’s optimal reset price p0t is:
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Proof. See Appendix E.

As is standard in staggered pricing models, the optimal price is a weighted average of the optimal
flexible prices that are expected to prevail on the equilibrium path until the seller can reset his or
her price. The weight put on the optimal flexible price in period t + ⌧ is equal to the discounted
probability of sale in period t + ⌧ times the semi-elasticity of demand in period t + ⌧ . Intuitively,
the seller cares more about periods in which probability of sale is higher but also about periods in
which demand is more elastic because perturbing price has a larger effect on profit.

In addition to the new price setting rule, the law of motion for sellers (14) needs to be altered to
N different laws of motion for each of the the N groups of sellers each with separate prices. These
modifications are relegated to Appendix E.

4.6 Equilibrium

I add a stochastic shock process to the model to examine its dynamic implications. The results
do not depend qualitatively or qualitatively depend on the particular shock used, but the positive
correlation between price and volume in the data implies that demand-side shocks dominate. For
simplicity, I use a shock to the entry rate of renters �rt so that a positive shock causes the entry
of potential buyers into the market, increasing demand and pushing up prices.20 An example of
such a shock would be a change in credit standards for new homeowners or changes in the price
expectations of renters. I implement the shock by assuming that �rt follows a mean-reverting AR(1)
process:

�rt =
¯�r + ⇢

�

�rt�1 � ¯�r
�

+ ut with ut ⇠ N
�

0,�2⌘
�

and iid. (26)

An equilibrium with a fraction ↵ of backward-looking sellers is defined as:21

20See Guren (2015), a previous working paper version of this paper, for a model with an endogenous entry decision
whereby agents who receive shocks have the opportunity to pay a randomly-drawn fixed cost to avoid entry. The
working paper shows how momentum interacts with endogenous entry to explain the relationships between price,
volume, and inventory in the data, in particular the strong “housing Phillips curve” relationship between price changes
and inventory levels.

21An analogous equilibrium with N groups of backward-looking sellers is defined in Appendix E. Aside from
switching i 2 {E,R} for ⌧ = {0, ..., N � 1}, it differs from the above definition of an equilibrium with backward-
looking sellers in three key ways. First, prices are (25) for sellers that can reset their prices and fixed for sellers that

28



Definition 1. Equilibrium with a fraction ↵ of backward-looking sellers is a set of prices pit, demands
d
⇣

pit,⌦t, ˜✓t

⌘

, and purchase cutoffs "⇤,it for each type of seller i 2 {E,R}, a transaction-weighted
average price pt, rational seller, buyer, homeowner, and renter value functions V s

t , V b
t , V h

t , a proba-
bility that buyers follow the signal �t, stocks of each type of agent Bt, St, Ht, and Rt, and a shock
to the flow utility of renting xt satisfying:

1. Optimal pricing for rational sellers (22) and the pricing rule (23) for backward-looking sellers,
which depends on lagged transaction-weighted average prices (24);

2. Optimal purchasing decisions by buyers: "⇤,it = pit + b+ �V b
t+1 � V h

t ;

3. The demand curve for each type of seller i 2 {E,R} in the f submarket (10), the d submarket,
(11), and the aggregate (12), all of which result from buyer search behavior;

4. The value functions for buyers (20), rational sellers (21), homeowners (9);

5. The laws of motion for buyers (13) and sellers (14) and the closed system conditions for homes
(15) and people (G) that implicitly define the laws of motion for homeowners and renters;

6. Buyers are indifferent across markets (19);

7. All agents have rational expectations that �rt evolves according the AR(1) process (26).

The model cannot be solved analytically, so I simulate it numerically using a log-quadratic
approximation pruning higher-order terms as in Kim et al. (2008) around a steady state described
in Appendix E in which ut = 0 8 t implemented in Dynare (Adjemian et al., 2013).22 Appendix G
shows that the impulse responses are almost identical in an exactly-solved deterministic model with
an unexpected permanent shock, so approximation error is minimal.

5 Amplification of Momentum in the Calibrated Model

To quantitatively assess the degree to which concave demand curves amplify house price momentum,
this section calibrates the model to the empirical findings presented in Section 3 and a number of
aggregate moments.

5.1 Calibration

In order to simulate rule of thumb model, 22 parameters listed in Table 5 must be set. The staggered
pricing model requires two fewer parameters. This section describes the calibration procedure
and targets, with details in Appendix F. Because a few parameters are based on limited data

cannot. Second, the laws of motion for each vintage of sellers in the Appendix replace the laws of motion in the text.
Third, the value functions for each vintage of sellers are similarly altered.

22Because of the mass point in the F (·) distribution, the model is not smooth. However, a perturbation approach
is appropriate because the mass point at "̄ is virtually never reached (less than 0.1 percent of the time in simulations).
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and subject to some uncertainty, I use the baseline calibration for exposition and use 14 different
parameterizations to determine a plausible range for the amplification of each underlying friction.

Three components of the calibration control the shape of the demand curve and thus have a first-
order impact on momentum: the local density of the idiosyncratic quality distribution F (·) controls
the elasticity of demand for low-priced homes that are certain to be visited; � and ⇣, the variance
and shape parameters of the signal distribution, control how much the elasticity of demand changes
as relative price increases; and µ, the threshold for being overpriced, controls where on the curve the
average price lies. The other parameters have a second order effect on momentum. Consequently,
the first step of the calibration sets these three components to match the instrumental variable
binned scatter plot from Section 3. The second step calibrates the rest of the model to match
steady state and time series moments.

For the first step, I approximate the probability of sale as a function of a few key parameters,
the relative list price I observe in the data, and a fixed effect that absorbs the aggregate market
conditions so that the model can be directly compared to my empirical specification. This allows me
to approximate the model demand curve out of steady state with the heterogeneity in the data for
the purposes of calibration and then conduct dynamic simulations with the heterogeneity suppressed
to maintain a tractable state space. Specifically, Appendix E shows that the probability of sale at
the time the list price is posted can be approximated as:

d (pt � E⌦
t

[pt]) ⇡ t (1� F ("⇤mean + pt � E⌦
t

[pt]))⇥ (27)
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where t is a fixed effect that summarizes the state of the market at time t, and "⇤mean and �mean are
the mean values of these variables over the cycle. Appendix E also explains why the approximation
error is small. I solve for �mean by approximating it by its steady state value using a steady-state
version of (19). (27) is then used to simulate the probability of sale in three months for each
p � E⌦ [pt], and the density of F (·), µ, and � are chosen to minimize the mean squared error
between the simulated demand curve and the IV binned-scatter plot with t chosen match the
average probability of sale.23 24 25

Evaluating (27) requires values for ⇠d

⇠f
, "⇤mean, and a parametrization of F (·) given its density.

23To minimize the importance of outliers, 2.5 percent of the data is Winsorized from each end rather than 0.5
percent in Section 3.

24Setting ⇣ by minimizing the distance between the model and data leads to a very large ⇣ that leads to numerical
error when the dynamic model is solved using perturbation methods. Consequently, I choose ⇣ = 8, which gets nearly
all the way to the improvement in mean squared error from increasing ⇣ above two while reducing numerical error.
The results are not sensitive to this choice of ⇣.

25Through equations (21) and (22), the seller search cost is determined by the elasticity of demand given the
steady state price and probability of sale. In Figure 2, the zero point is just on the inelastic side of the demand
curve, yielding an extremely high seller search cost. Because the zero point corresponding to the average price is not
precisely estimated and depends on the deadline used for a listing to count as a sale, I use a zero point within one
percent of the estimated zero point that gives a more plausible demand elasticity and seller search cost.
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Figure 4: Model Fit Relative to Instrumental Variable Estimates
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Notes: The Xs are the binned scatter plot from the IV specification with 2.5 percent of the data from each end Winsorized to

reduce the effects of outliers. The dots are the simulated probabilities of sale in three months at each price calculated using

(27) and approximating �
t

by its steady state value using (19) as described in the text.

The baseline values are described here, and the parameters are permuted below. I assume "⇤mean =

$100k, which I show in robustness tests is a normalization that has no impact on the economics
of the model. I also assume a value of ⇠d/⇠f = 1/2. This has no analog in the data, and I
show in robustness checks that it is of minimal importance for my quantitative results.26 To fully
parameterize F (·), I introduce two additional moments that along with the assumed "⇤mean and
density pin down ", "̄, and �: the average fraction of home inspections that lead to a purchase
1� F ("⇤mean) and the average mean excess function E ["� "⇤mean|" > "⇤mean]. The average fraction
of home inspections that lead to a purchase is set to 1/10 to match buyer surveys from National
Association of Realtors surveys analyzed by Genesove and Han (2012). The mean excess function
is selected to match a reasonable target for the buyer flow cost of 0.75 percent of the purchase cost
of the house per month, so that the average seller incurs 3 percent of the purchase cost as search
costs, and this parameter is varied in robustness tests.

Figure 4 shows the IV binned scatter plot for the first IV sample alongside the model’s predicted
three-month probability of sale for the (F density,�, µ) that minimize the distance between the
model and the data. The demand curve in the calibrated model captures the curvature in the data
well.

The second step in the calibration sets the remaining parameters to match steady state moments
listed in the first three panels of Table 4 as detailed in Appendix F. These targets are either from

26I choose a value of 1/2 to limit the degree of non-convexity in the model. If ⇠d is high enough relative to ⇠f ,
sellers may have an incentive to deviate and set a price of "̄ when prices are rising and buyers visit rarely. Appendix
E shows numerically that with ⇠d/⇠f = 1/2 this never happens. Empirically, I rule out a substantially higher ⇠d
because the stronger incentive to deviate would generate asymmetries in house prices not present in the data.
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Table 4: Calibration Targets For Baseline Calibration

Steady State Parameter or Moment Value Source / Justification

Parameters

� (Matching Function Elasticity) 0.8 Genesove and Han (2012)

L (Prob. Stay in MSA) 0.7 Anenberg and Bayer (2015)

Aggregate Targets

Annual Discount Rate 5%

Time on Market for Sellers 4 Months Approx average parameter value in literature

Time on Market for Buyers 4 Months ⇡ Time to sell (Genesove and Han, 2012)

Homeownership Rate 65% Long run average, 1970s-1990s

Time in House For Owner Occupants 9 Years American Housing Survey, 1997-2005

Prob Purchase | Inspect 0.1 Mean buyer visits 10 homes (Genesove and Han, 2012)

Assumed Values

Steady State Price $760k Average transaction price in IV sample

h (Flow Utility of Homeowner) $6.78k 2/3 of House Falue From Flow Util (Normalization)

⇠d/⇠f 0.5 Limited Incentive to “Fish”

"⇤ in steady state $100k Normalization

b/P (Flow Utility of Buyer Rel To Price) .75% of Price Average total buyer search costs 3% of price

 0.4 Based on Case et al. (2012)

Time Series Moments

SD of Annual Log Price Changes 0.065 CoreLogic national HPI adjusted for CPI, 1976-2013

⇢ (Monthly Persistence of AR1 Shock) 0.950 Head et al. (2014, 2016) Autocorr of Local Pop Growth

Table 5: Calibrated Parameter Values for Baseline Rule of Thumb Model

Parameter Interpretation Value Parameter Interpretation Value

� Monthly Discount Factor 0.996 -b/P Flow Util of B (search cost)/Price 0.75%

� Matching Fn Elasticity 0.8 -s/P Flow Util of S (search cost)/Price 2.1%

⇠f Matching Fn Efficiency, Follow 2.540 "̄ Upper Bound of F Dist $ 161 k

⇠d Matching Fn Efficiency, Defy 1.270 " Lower Bound of F Dist -$5,516 k

�h Monthly Prob H Moving Shock 0.009 � Weight of Mass Point at "̄ 0.090

�̄r Ave Monthly Prob R Moving Shock 0.013 � Variance Param in G (·) 39.676

N Population 1.484 ⇣ Shape Param in G (·) 8

L Prob Leave MSA 0.7 µ Threshold for Signal 39.676

 AR(1) Param in Rule of Thumb 0.4 �
⌘

SD of Innovations to AR(1) shock 0.00004

V 0 NPV of Leaving MSA $2,776 k ⇢ Persistence of AR(1) shock 0.950

h Flow Util of H $6.783 k ↵ Fraction Backward Looking 0.299

Notes: These parameters are for the baseline calibration. The calibration is monthly.
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other papers or are long-run averages for the U.S. housing market, such as the homeownership rate,
the average amount of time between moves for buyers and renters, and the average time on the
market for buyers and sellers. The more speculative targets are varied in robustness tests.

To calibrate the driving shock process which controls the rate at which renters become buyers,
I match two time series moments as indicated by the bottom panel of Table 4. The monthly
persistence of the shock is set to match the persistence of local income shocks as in Glaeser et al.
(2014). The variance of the iid shock is set to match the standard deviation of annual log price
changes in stochastic simulations.

For the backward-looking model, I adjust ↵ and recalibrate the model until the impulse response
to the renter entry shock matches the matches the 36 months of positively autocorrelated price
changes in the AR(5) impulse response estimated on the CoreLogic national house price index in
Section 2. Table 5 summarizes the baseline calibrated parameter values for the backwards-looking
model. For the staggered pricing model, I use N = 2 groups in a monthly calibration to match
the median time to adjust price in the data described in Appendix D. Because I cannot generate
enough momentum to match the data using the staggered pricing model, I use the backward-
looking calibration procedure and then report results that take out backward-looking sellers and
add staggering.

5.2 Quantitative Results on Amplification

To assess the degree of momentum in the data and in the model, I compare the calibrated rule of
thumb and staggered pricing models to a frictionless model and to calibrated models with either
backward-looking sellers and staggered pricing but no concavity. The simulations without concavity
use a demand curve with the same steady state probability of sale and additive markup for the
average house as the concave model, but the markup is constant regardless of the relative price as
detailed in Appendix E.

Figure 5 shows the impulse responses graphically by plotting impulse responses under the base-
line calibration. The impulse response is computed as the average difference between two sets of
simulations that use the same sequence of random shocks except for one period in which an addi-
tional standard deviation shock is added. Impulse responses for downward shocks are approximately
symmetric and shown in Appendix G.

Panel A shows these impulse responses for rule of thumb model. The solid line shows the model
impulse response that attains a 36 month impulse response with 30 percent backward-looking sellers,
while the dotted line shows the estimated AR(5) impulse response from the CoreLogic data with the
95 percent confidence interval shown as thin grey lines. The two impulse responses nearly identical:
they both jump very little on impact and rise smoothly before flattening out at 36 months. The
dashed line shows the model without backward-looking sellers but with concave demand. In this
case, the optimal price jumps nearly all the way to its peak level immediately. There is essentially
no momentum because there is no initial stickiness for the strategic complementarity to amplify.
The dash-dotted line shows the non-concave demand impulse response. Prices jump over half of

33



Figure 5: Price Impulse Response Functions: Model and Data

A: Rule of Thumb Model B: Staggered Pricing Model
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Notes: Panel A figure shows impulse responses to a one standard deviation shock to the renter probability of becoming a buyer

in the rule of thumb model with and without concavity as well as a fully-flexible model (↵ = 0). The calibration removing

concave demand maintains the steady state markup and probability of sale as described in Appendix E.. Also shown on the

right vertical axis in the figure in the dotted black line and with grey 95% confidence intervals is the impulse response to a

one standard deviation price shock estimated from a quarterly AR(5) for the seasonally and CPI adjusted CoreLogic national

house price index for 1976-2013, as in Figure 1. The vertical axes of the model and AR(5) are different because the AR(5) is

a quarterly shock, while the model is a monthly shock. Panel B shows impulse responses to a one standard deviation shock to

the renter probability of becoming a buyer in the staggered pricing model as well as a model with no staggering and a model

with no concavity. Simulated impulse responses are calculated by differencing two simulations of the model from periods 100 to

150, both of which use identical random shocks except in period 101 in which a one standard deviation negative draw is added

to the random sequence, and then computing the average difference over 100 simulations.

the way to their peak value upon the impact of the shock and continue to rise for seven months,
at which point they begin to mean revert. One can generate a 36 month impulse response without
concave demand, but this requires 74 percent of sellers to be backward looking.27 28

Far fewer backward-looking sellers are needed to match the data with concave demand in the
rule-of-thumb model because the strategic complementarity creates a two-way feedback. When a
shock occurs, the backward-looking sellers are not aware of it for several months, and the rational
sellers only slightly increase their prices so that they do not dramatically reduce their chances of
attracting a buyer. When the backward-looking sellers do observe increasing prices, they observe a
much small increase than in the non-concave case and gradually adjust their price according to their
AR(1) rule, reinforcing the incentives of the rational sellers not to raise their prices too quickly.

Panel B shows similar impulse responses for the staggered model. Again, the solid line shows the
27The 30 percent backward-looking sellers I find are necessary to explain the data is slightly below the 40 to 50

percent of the population that is significantly extrapolative found by Kuchler and Zafar (2016) and Armona et al.
(2016). This is likely the case because the model excludes several strong arbitrage forces that work against momentum
such as construction and endogenous entry, which would increase the necessary fraction of backward-looking sellers.
30 percent is also of the same order of magnitude as Gali and Gertler (1999), who find find that 26 percent of firms
are backward looking in a structurally estimated New Keynesian model.

28Because rational sellers are incentivized to “imitate” the backward-looking sellers, the loss from failing to optimize
for the backward-looking sellers is relatively small, on average under half a percent of the sales price.
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model with concave demand, the dashed line shows the model with flexible prices, and the dash-
dotted line shows the model without concavity. Without both concave demand and staggering,
reset prices jump on impact and reach a convergent path to the stochastic steady state as soon as
all sellers have reset their prices, as indicated by the dotted red line and the dashed green line. In
combination, however, the two-month staggered pricing friction is amplified into seven months of
autocorrelated price changes. While this is only one sixth of the momentum observed in the data,
this experiment reveals concave demand to be a powerful amplification mechanism.

The gradual impulse response results from sellers only partially adjusting their list prices when
they have the opportunity to do so in order to not ruin their chances of attracting a buyer by being
substantially overpriced. Repeated partial adjustment results in serially correlated price changes
that last far beyond the point that all sellers have reset their price.29

Table 6 summarizes the amount of amplification generated by concave demand in the calibrated
model by showing summary statistics for the amplification of momentum that compare the concave
model impulse response to the nonconcave model impulse response under 14 different calibrations.
For the rule of thumb model, amplification is measured as the ratio of the fraction of backward-
looking sellers ↵ without concavity to ↵ with concavity. For the staggered model, amplification
is measured as the ratio of the maximum period of the impulse response with concavity to the
maximum period without concavity. In the model without concavity, this is always two periods
because prices fully adjust once all sellers have had the opportunity to change their price. To
capture the number of periods with nontrivial autocorrelation, my preferred measure of amplification
replaces the number of periods to reach the maximum with number of periods to reach 99 percent
of the maximum. For the baseline calibration, both the rule of thumb and staggered pricing models
amplify both frictions by a factor of 2.5. Table 6 reveals that this is a robust finding, as across a
broad range of calibrations and for both frictions, concave demand robustly amplifies momentum
by a factor of two to three.

The parameter that most affects the degree of amplification is the seller’s search cost. This is
the case because search costs create market power for list-price-setting sellers. As search costs fall,
the market power of these sellers is eroded, and the incentive to set once’s price close to the market
average, which enters as an additive markup in equation (22), shrinks relative to changes in market
conditions, which enters through the seller’s outside option of searching again next period.

The seller search cost is pinned down by the elasticity of demand at the average price and is
2.1 percent of the average sale price per month. The average seller, who is on the market for four
months, thus incurs search costs equal to 8.4 percent of the transaction price. This is a plausible
figure given six-percent realtor fees, maintenance and staging costs to get the house into condition
for listing, the nuisance of listing ones house, and the fact that many sellers need to sell quickly
due to the high costs of holding multiple houses. Nonetheless, because a 2.1 percent monthly seller

29With staggered pricing there are further dynamic incentives because price resetters leapfrog sellers with fixed
prices and are subsequently leapfrogged themselves. The interested reader is referred to Appendix G.3 for a detailed
discussion of the dynamic intuition with staggered pricing.
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Table 6: Summary Statistics for Amplification of Momentum Across Different Calibrations
Rule of Thumb Model Staggered Pricing Model

↵ ↵ Ampli- Max Ampli- 99% of Max Ampli-
Concave Nonconcave fication Period fication Period fication

IV Sample 1 (Baseline) 0.2988 0.7406 2.479 7 3.5 5 2.5
IV Sample 2 0.2637 0.7188 2.726 8 4 6 3

-b/P of 0.25% 0.2988 0.7422 2.484 7 3.5 5 2.5
-b/P of 1.25% 0.2988 0.7375 2.468 7 3.5 5 2.5
-s/P of 1.0% 0.4062 0.7664 1.887 6 3 4 2
-s/P of 1.5% 0.3496 0.757 2.165 6 3 5 2.5
-s/P of 2.5% 0.2715 0.7188 2.648 7 3.5 6 3
"⇤ = $50k 0.2988 0.7375 2.468 7 3.5 5 2.5
"⇤ = $150k 0.2988 0.7375 2.468 7 3.5 5 2.5

h 1/2 of Flow Util 0.2988 0.7406 2.479 7 3.5 5 2.5
h 4/5 of Flow Util 0.2988 0.7375 2.468 7 3.5 5 2.5
⇠d/⇠f = 0.75 0.3145 0.7453 2.370 7 3.5 5 2.5
 = 0.3 0.2617 0.7008 2.678 N/A N/A N/A N/A
 = 0.5 0.3457 0.7852 2.271 N/A N/A N/A N/A

Notes: Each row shows a different robustness check. The entire model is recalibrated given the indicated parameter change.

The first column shows ↵, the share of backward-looking sellers necessary for a 36-month price impulse response in the rule of

thumb model, and the second column shows the required ↵ in a model with no concavity. For the no concavity case, the demand

cure is calibrated to maintain the steady state markup and probability of sale as described in Appendix E. The amplification

column shows the ratio of the first to the second column. The third and fifth columns show the period in which the maximum

price and 99% of the maximum price are reached in the staggered pricing model with the same calibration. The fourth and

sixth columns report the ratio of the maximum and 99% of the maximum period in the staggered model to the model without

concavity, which results in a two-month impulse response as prices fully adjust once all sellers have the opportunity to do so.

Because the seller search cost is pinned down by the elasticity of demand along with the probability of sale and price, the

robustness checks that vary s/p alter the binned scatter plot that is used for the calibration by slightly scaling the probability

of sale relative to its median value to obtain a more or less elastic demand curve, as described in Appendix F. This approach

was chosen because it errs on the side of reducing the amount of concavity.

search cost may be considered high, I vary it in robustness tests.30 When I do so, I find that the
factor of amplification falls to 1.89 (2.0 for staggered) for a monthly search cost of 1.0 percent of the
purchase price and rises to 2.65 (3.0 for staggered) when I raise the seller search cost to 2.5 percent
of the purchase price.

The other parameters that are calibrated to somewhat speculative targets and consequently
altered in Table 6 have a smaller effect on the factor of amplification.31 I thus conclude that
concave demand amplifies both frictions by a factor of two to three.

30Because the seller search cost is pinned down by the elasticity of demand, in order to vary it I must alter the
binned-scatter plot to which I calibrate to obtain a more elastic demand curve. To do so, I stretch the probability of
sale around its median value. I take this approach as opposed to compressing the relative list price because it reduces
the concavity slightly while compressing the relative list price increases concavity, and I do not want to artificially
increase concavity.

31Calibrating to IV sample two yields a slightly higher degree of amplification. Although the demand curve is
slightly less concave in IV sample two, it is more inelastic, yielding a larger seller search cost. With a seller search
cost equal to what I use for IV sample one, I would obtain slightly less amplification than for IV sample one.
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5.3 Amplification of Other Frictions

Because concave demand induces sellers to set their list price close to the market average, it ampli-
fies any friction that creates heterogeneity in the speed of adjustment by list-price-setting sellers.
Beyond the two frictions I incorporate in my model to quantitatively assess the amplification of
momentum created by list-price-setting sellers, concave demand would amplify momentum created
by learning in a model with incomplete information or by the gradual spread of sentiment in a
model with belief disagreement. Although formally modeling these channels is beyond the scope of
this paper, it is worth briefly discussing why each of these frictions would be amplified.

In Burnside et al.’s (2015) model of gradually-spreading sentiment, momentum arrises from
the gradual conversion of pessimists to optimists through social interactions. With a strategic
complementarity, the optimistic agents would not want to raise their price too much relative to
pessimists, creating the same amount of momentum with more rapid social dynamics.

With incomplete information and learning, strategic complementarities can cause very gradual
price adjustment even if first-order learning occurs somewhat rapidly as in Anenberg (2014) because
the motive to price close to others makes higher order beliefs matter. Learning about higher order
beliefs is more gradual—which in turn makes price adjustment more gradual—because agents must
learn not only about fundamentals but also about what everyone else has learned as in a Keynesian
beauty contest. Such a model has the potential to quantitatively explain momentum without ap-
pealing to non-rationality. For instance, Anenberg (2014) obtains about a quarter of the momentum
in the data from learning. If the degree of amplification of learning is similar to what I find for
staggered pricing and backward-looking sellers, this would come close to explaining the amount of
momentum observed in the data.

6 Conclusion

The degree and persistence of autocorrelation in house price changes is one of the housing market’s
most distinctive features and greatest puzzles, and existing explanations rely on unpalatably large
frictions to quantitatively explain momentum. This paper introduces a mechanism that amplifies
many proposed frictions into substantial momentum, allowing the needed frictions to be of a plau-
sible magnitude. Search and concave demand in relative price together imply that increasing one’s
list price above the market average is costly, while lowering one’s list price below the market av-
erage has little benefit. This strategic complementarity induces sellers to set their list prices close
to the market average. Consequently, frictions that cause heterogenous insensitivity to changes in
fundamentals can lead to prolonged autocorrelated price changes as sellers slowly adjust their list
price to remain close to the mean.

I provide evidence for concave demand in micro data and introduce an equilibrium search model
with concave demand that is calibrated to match the amount of concavity in the micro data.
Quantitatively, concave demand amplifies momentum created by staggered pricing and a fraction
of backward-looking rule of thumb sellers by a factor of two to three. Importantly, concave demand
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amplifies any other pricing frictions that creates heterogeneity in the speed of price adjustment
because the incentive to price close to the average makes sellers who would change their price
quickly instead respond sluggishly. Assessing which frictions are relevant is an important path for
future research.

Beyond the housing market, this paper shows how a central idea in macroeconomics—that
strategic complementarities can greatly amplify modest frictions—can be applied in new contexts.
These contexts can, in turn, serve as empirical laboratories to study macroeconomic phenomena
for which micro evidence has proven elusive. In particular, many models with real rigidities (Ball
and Romer, 1990) use a concave demand curve. This paper provides new evidence that a concave
demand curve in relative price is not merely a theoretical construct and can have a significant effect
on market dynamics.
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Appendix For “The Causes and Consequences of House Price Momentum”

Adam M. Guren · May 26, 2016

This Appendix provides a number of details relegated from the main text. The Appendix is
structured as follows:

• Section A provides details on the data and the procedures used to clean it. Section A.1 focuses
on the data used in the time series analysis in Section 2 of the main text, while Section A.2
details the DataQuick and Altos matched microdata as well as the house price indices used
in estimation in Section 3 of the main text.

• Section B provides a number of facts about momentum in the time series data sets described
in Appendix A beyond the basic analysis in Section 2 of the main text.

• Section C provides econometric proofs and robustness tests related to the micro evidence for
concave demand presented in Section 3 of the main text. This includes many robustness and
specification tests for the main IV analysis as well as robustness tests for the OLS specifications
and analysis of the robustness of the results to other sources of markup variation, which may
induce measurement error.

• Section D provides facts about prices from the matched Altos-DataQuick microdata to support
some of the assumptions made in the model. In particular, it provides evidence to support
the assumption that the average house is sold at list price by comparing list prices with
transaction prices in the DataQuick and Altos matched microdata. It also provides evidence
on the frequency of price change to motivate the staggered pricing friction calibration.

• Section E provides details and proofs related to the backward-looking and staggered price
models as well as the non-concave model.

• Section F details the calibration procedure for the model parameters and shocks.

• Section G provides additional simulation results and robustness checks, including a downward
price shock and a deterministic shock so that the model solution is not approximated.

A Data

A.1 Time Series Data

A.1.1 National and Regional Data

In the main text, the national-level price series is the CoreLogic national repeat-sales house price
index. This is an arithmetic interval-weighted house price index from January 1976 to August
2013. The monthly index is averaged at a quarterly frequency and adjusted for inflation using the
Consumer Price Index, BLS series CUUR0000SA0.

Other price and inventory measures are used in Appendix B. The price measures include:

• A median sales price index for existing single-family homes. The data is monthly for the
whole nation from January 1968 to January 2013 and available on request from the National
Association of Realtors.
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• The quarterly national “expanded purchase-only” HPIs that only includes purchases and sup-
plements the FHFA’s database from the GSEs with deeds data from DataQuick from Q1 1991
to Q4 2012. This is an interval-weighted geometric repeat-sales index.

• The monthly Case-Shiller Composite Ten from January 1987 to January 2013. This is an
interval-weighted arithmetic repeat-sales index.

• A median sales price index for all sales (existing and new homes) from CoreLogic from January
1976 to August 2013.

For annual AR(1) regressions, I use non-seasonally-adjusted data. For other specifications, use
seasonally-adjusted data. I use the data provider’s seasonal adjustment if available and otherwise
seasonally adjust the data using the Census Bureau’s X-12 ARIMA software using a multiplicative
seasonal factor.

A.1.2 City-Level Data

The city level data set consists of local repeat-sales price indices for 103 CBSA divisions from
CoreLogic. These CBSAs divisions include all CBSAs divisions that are part of the 100 largest
CBSAs which have data from at least 1995 onwards. Most of these CBSAs have data starting in
1976. Table A1 shows the CBSAs and years. This data is used for the annual AR(1) regression
coefficient histogram in Figure 1 and is adjusted for inflation using the CPI.

A.2 Micro Data

The matched listings-transactions micro data covers the San Francisco Bay, San Diego, and Los
Angeles metropolitan areas. The San Francisco Bay sample includes Alameda, Contra Costa, Marin,
San Benito, San Francisco, San Mateo, and Santa Clara counties. The Los Angeles sample includes
Los Angeles and Orange counties. The San Diego sample only includes San Diego County. The
data from DataQuick run from January 1988 to August 2013. The Altos data run from October
2007 to May 2013. I limit my analysis to April 2008 to February 2013, as described in footnote 11.

A.2.1 DataQuick Characteristic and History Data Construction

The DataQuick data is provided in separate assessor and history files. The assessor file contains
house characteristics from the property assessment and a unique property ID for every parcel in
a county. The history file contains records of all deed transfers, with each transfer matched to a
property ID. Several steps are used to clean the data.

First, both data files are formatted and sorted into county level data files. For a very small
number of properties, data with a typo is replaced as missing.

Second, some transactions appear to be duplicates. Duplicate values are categorized and com-
bined into one observation if possible. I drop cases where there are more than ten duplicates, as this
is usually a developer selling off many lots individually after splitting them. Otherwise, I pick the
sale with the highest price, or, if as a tiebreaker, the highest loan value at origination. In practice,
this affects very few observations.

Third, problematic observations are identified. In particular, transfers between family members
are identified and dropped based on a DataQuick transfer flag and a comparison buyer and seller
names. Sales with prices that are less than or equal to one dollar are also counted as transfers. Par-
tial consideration sales, partial sales, group sales, and splits are also dropped, as are deed transfers
that are part of the foreclosure process but not actually transactions. Transactions that appear to be
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Table A1: CBSAs in CoreLogic City-Level Price Data Set

CBSA Code Main City Name Start End 32820 Memphis, TN 1984 2013

10420 Akron, OH 1978 2013 33124 Miami, FL 1976 2013
10580 Albany, NY 1992 2013 33340 Milwaukee, WI 1976 2013
10740 Albuquerque, NM 1992 2013 33460 Minneapolis, MN 1976 2013
10900 Allentown, PA 1976 2013 34980 Nashville, TN 1976 2013
12060 Atlanta, GA 1976 2013 35004 Nassau, NY 1976 2013
12420 Austin, TX 1976 2013 35084 Newark, NJ-PA 1976 2013
12540 Bakersfield, CA 1976 2013 35300 New Haven, CT 1985 2013
12580 Baltimore, MD 1976 2013 35380 New Orleans, LA 1976 2013
12940 Baton Rouge, LA 1992 2013 35644 New York, NY 1976 2013
13140 Beaumont, TX 1993 2013 36084 Oakland, CA 1976 2013
13644 Bethesda, MD 1976 2013 36420 Oklahoma City, OK 1976 2013
13820 Birmingham, AL 1976 2013 36540 Omaha, NE 1990 2013
14484 Boston, MA 1976 2013 36740 Orlando, FL 1976 2013
14860 Bridgeport, CT 1976 2013 37100 Ventura, CA 1976 2013
15380 Buffalo, NY 1991 2013 37764 Peabody, MA 1976 2013
15764 Cambridge, MA 1976 2013 37964 Philadelphia, PA 1976 2013
15804 Camden, NJ 1976 2013 38060 Phoenix, AZ 1976 2013
16700 Charleston, SC 1976 2013 38300 Pittsburgh, PA 1976 2013
16740 Charlotte, NC 1976 2013 38900 Portland, OR 1976 2013
16974 Chicago, IL 1976 2013 39100 Poughkeepsie, NY 1976 2013
17140 Cincinnati, OH 1976 2013 39300 Providence, RI 1976 2013
17460 Cleveland, OH 1976 2013 39580 Raleigh, NC 1976 2013
17820 Colorado Springs, CO 1976 2013 40060 Richmond, VA 1976 2013
17900 Columbia, SC 1977 2013 40140 Riverside, CA 1976 2013
18140 Columbus, OH 1976 2013 40380 Rochester, NY 1991 2013
19124 Dallas, TX 1977 2013 40484 Rockingham County, NH 1990 2013
19380 Dayton, OH 1976 2013 40900 Sacramento, CA 1976 2013
19740 Denver, CO 1976 2013 41180 St. Louis, MO 1978 2013
19804 Detroit, MI 1989 2013 41620 Salt Lake City, UT 1992 2013
20764 Edison, NJ 1976 2013 41700 San Antonio, TX 1991 2013
21340 El Paso, TX 1977 2013 41740 San Diego, CA 1976 2013
22744 Fort Lauderdale, FL 1976 2013 41884 San Francisco, CA 1976 2013
23104 Fort Worth, TX 1984 2013 41940 San Jose, CA 1976 2013
23420 Fresno, CA 1976 2013 42044 Santa Ana, CA 1976 2013
23844 Gary, IN 1992 2013 42644 Seattle, WA 1976 2013
24340 Grand Rapids, MI 1992 2013 44140 Springfield, MA 1976 2013
24660 Greensboro, NC 1976 2013 44700 Stockton, CA 1976 2013
24860 Greenville, SC 1976 2013 45060 Syracuse, NY 1992 2013
25540 Hartford, CT 1976 2013 45104 Tacoma, WA 1977 2013
26180 Honolulu, HI 1976 2013 45300 Tampa, FL 1976 2013
26420 Houston, TX 1982 2013 45780 Toledo, OH 1976 2013
26900 Indianapolis, IN 1991 2013 45820 Topeka, KS 1985 2013
27260 Jacksonville, FL 1976 2013 46060 Tucson, AZ 1976 2013
28140 Kansas City, MO 1985 2013 46140 Tulsa, OK 1981 2013
28940 Knoxville, TN 1977 2013 47260 Virginia Beach, VA 1976 2013
29404 Lake County, IL 1982 2013 47644 Warren, MI 1976 2013
29820 Las Vegas, NV 1983 2013 47894 Washington, DC 1976 2013
30780 Little Rock, AR 1985 2013 48424 West Palm Beach, FL 1976 2013
31084 Los Angeles, CA 1976 2013 48620 Wichita, KS 1986 2013
31140 Louisville, KY 1987 2013 48864 Wilmington, DE 1976 2013
32580 McAllen, TX 1992 2013 49340 Worcester, MA 1976 2013
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corrections or with implausible origination loan to value ratios are also flagged and dropped. Prop-
erties with implausible characteristics (<10 square feet, < 1 bedroom, < 1/2 bathroom, implausible
year built) have the implausible characteristic replaced as a missing value.

From the final data set matched to Altos, I only use resale transactions (as opposed to new
construction or subdivisions) of single-family homes, both of which are categorized by DataQuick.

For the purposes of estimating the equity for each house when it is listed, I also create a secondary
dataset that includes not only the history of deed transfers but also the history of mortgage liens
for each property. This data includes the value, lender, interest rate type (adjustable- or fixed-
rate), as well as the initial interest rate on the loan as estimated by DataQuick using the date of
origination of the loan and loan characteristics together with other proprietary data on interest
rates. The estimated interest rate is not available until 1995 for most counties in California. The
data is cleaned identically to the main data set for transfers. For the loan data, duplicates, group
sales, split properties, partial sales, partial consideration sales, and loans that are less than $10,000
are dropped.

A.2.2 Altos Research Listings Data Construction and Match to DataQuick

The Altos research data contains address, MLS identifier, house characteristics, list price, and date
for every week-listing. Altos generously provided me access to an address hash that was used to
parse the address fields in the DataQuick assessor data and Altos data and to create a matching
hash for each. Hashes were only used that appeared in both data files, and hashes that matched to
multiple DataQuick properties were dropped.

After formatting the Altos data, I match the Altos data to the DataQuick property IDs. I
first use the address hash, applying the matched property ID to every listing with the same MLS
identifier (all listings with the same MLS ID are the same property, and if they do not all match
it is because some weeks the property has the address listed differently, for instance “street” is
included in some weeks but not others). Second, I match listings not matched by the address hash
by repeatedly matching on various combinations of address fields and discarding possible matches
when there is not a unique property in the DataQuick data for a particular combination of fields,
which prevents cases where there are two properties that would match from being counted as a
match. I determine the combinations of address fields on which to match based on an inspection of
the unmatched observations, most of which occur when the listing in the MLS data does not include
the exact wording of the DataQuick record (e.g., missing “street”). The fields typically include ZIP,
street name, and street number and different combinations of unit number, street direction, and
street suffix. In some cases I match to the first few digits of street number or the first word of
a street name. I finally assign any unmatched observations with the same MLS ID as a matched
observation or the same address hash, square feet, year built, ZIP code, and city as a matched
observation the property ID of the matched observation. I subsequently work only with matched
properties so that I do not inadvertently count a bad match as a withdrawal.

The observations that are not matched to a DataQuick property ID are usually multi-family
homes (which I drop due to the problematic low match rate), townhouses with multiple single-
family homes at the same address, or listings with typos in the address field.

I use the subset of listings matched to a property ID and combine cases where the same property
has multiple MLS identifiers into a contiguous listing to account for de-listings and re-listings of
properties, which is a common tactic among real estate agents. In particular, I count a listing as
contiguous if the property is re-listed within 13 weeks and there is not a foreclosure between the
de-listing and re-listing. I assign each contiguous listing a single identifier, which I use to match to
transactions.
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In a few cases, a listing matches to several property IDs. I choose the property ID that matches
to a transaction or that corresponds to the longest listing period. All results are robust to dropping
the small number of properties that match to multiple property IDs.

I finally match all consolidated listings to a transaction. I drop transactions and corresponding
listings where there was a previous transaction in the last 90 days, as these tend to be a true
transaction followed by several subsequent transfers for legal reasons (e.g., one spouse buys the
house and then sells half of it to the other). I first match to a transaction where the date of last
listing is in the month of the deed transfer request or in the prior three months. I then match
unmatched listings to a transaction where the date of last listing is in the three months after the
deed transfer request (if the property was left on the MLS after the request, presumably by accident).
I then repeat the process for unmatched listings for four to 12 months prior and four to 12 months
subsequent. Most matches have listings within three months of the last listing. The matching
procedure takes care to make sure that listings that match to a transaction that is excluded from
the final sample (for instance due to it being a transfer or having an implausible sale price) are
dropped and not counted as unmatched listings.

For matched transactions, I generate two measures of whether a house sold within a given time
frame. The first, used in the main text, is the time between the date of first listing and the date
of filing of the deed transfer request. The second, used in robustness checks in Appendix C, is the
time between date of first listing and the first of the last listing date or the transfer request.

Figure A1 shows the fraction of all single-family transactions of existing homes for which my
data accounts in each of the three metropolitan areas over time. Because the match rates start low
in October 2007, I do not start my analysis until April 2008, except in San Diego where almost all
listings have no listed address until August 2008. Besides that, the match rates are fairly stable,
except for a small dip in San Diego in mid-2009 and early 2012 and a large fall off in the San
Francisco Bay area after June 2012. I consequently end the analysis for the San Francisco Bay area
at June 2012. Figures A2, A3, and A4 show match rates by ZIP code. One can see that the match
rate is consistently high in the core of each metropolitan area and falls off in the outlying areas,
such as western San Diego county and Escondido in San Diego, Santa Clarita in Los Angeles, and
Brentwood and Pleasanton in the San Francisco Bay area.

A.2.3 Construction of House Price Indices

I construct house price indices largely following Case and Shiller (1989) and follow sample restrictions
imposed in the construction of the Case-Shiller and Federal Housing Finance Administration (FHFA)
house price indices.

For the repeat sale indices, I drop all non-repeat sales, all sales pairs with less than six months
between sales, and all sales pairs where a first stage regression on year dummies shows a property
has appreciated by 100 percent more or 100 percent less than the average house in the MSA. I
estimate an interval-corrected geometric repeat-sales index at the ZIP code level. This involves
estimating a first stage regression:

ph`t = ⇠h` + �t + "h`t, (A1)

where p is the log price of a house h in location ` at time t, ⇠h` is a sales pair fixed effect, �t is a
time fixed effect, and "h`t is an error term.

I follow Case and Shiller (1989) by using a GLS interval-weighted estimator to account for the
fact that longer time intervals tend to have a larger variance in the error of (A1). This is typically
implemented by regressing the square of the error term "2h`t on a linear (Case-Shiller index) or
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Figure A1: Match Rates by Month of Transaction
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Figure A2: Match Rates by ZIP Code: Bay Area
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Figure A3: Match Rates by ZIP Code: Los Angeles
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Figure A4: Match Rates by ZIP Code: San Diego
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quadratic (FHFA) function of the time interval between the two sales. The regression coefficients
are then used to construct weights corresponding to 1p

"̂2
h`t

where "̂2h`t is a predicted value from the

interval regression. I find that the variance of the error of (A1) is non-monotonic: it is very high for
sales that occur quickly, falls to its lowest level for sales that occur approximately three years after
the first sale, and then rises slowly over time. This is likely due to flippers who upgrade a house
and sell it without the upgrade showing up in the data. Consequently, I follow a non-parametric
approach by binning the data into deciles of the time interval between the two sales, calculate the
average "2h`t for the decile "̄2h`t, and weight by 1p

"̄2
h`t

. The results are nearly identical using a linear
interval weighting.

exp (�t) is then a geometric house price index. The resulting indices can be quite noisy. Conse-
quently, I smooth the index using a 3-month moving average, which produced the lowest prediction
error of several different window widths. The resulting indices at the MSA level are very comparable
to published indices by Case-Shiller, the FHFA, and CoreLogic.

The log predicted value of a house at time t, p̂t, that sold originally at time ⌧ for P⌧ is:

p̂t = log

0

@

exp

⇣

ˆ�t

⌘

exp

⇣

ˆ�⌧

⌘P⌧

1

A .

For the hedonic house price indices, I use all sales and estimate:

pi`t = �t + �Xi + "i`t, (A2)

where Xi is a vector of third-order polynomials in four housing characteristics: age, bathrooms,
bedrooms, and log (square feet), all of which are winsorized at the one percent level by county for
all properties in a county, not just those that trade. Recall that these characteristics are all recorded
as a single snapshot in 2013, so Xi is not time dependent. I do not include a characteristic if over
25 percent of the houses in a given geography are missing data for a particular characteristic. Again
exp (�t) is a house price index, which I smooth using a 3-month moving average. The log predicted
price of a house is:

p̂it = ˆ�Xi +
ˆ�i.

For homes that are missing characteristics included in an area’s house price index calculation, I
replace the characteristic with its average value in a given ZIP code.

For my analysis, I use a ZIP code level index, but all results are robust to alternatively using
a house price index for all homes within one mile of the centroid of a home’s seven-digit ZIP code
(roughly a few square blocks). I do not calculate a house price index if the area has fewer than 500
sales since 1988. This rules out about 5% of transactions, typically in low-density areas far from
the core of the MSA. For each ZIP code, I calculate the standard deviation of the prediction error
of the house price index from 1988 to 2013 and weight most specifications by the reciprocal of the
standard deviation.

A.2.4 Construction of the Final Analysis Samples

I drop listings that satisfy one of several criteria:

1. If the list price is less than $10,000;

2. If the assessed structure value is less than five percent of the assessed overall value;

8



Table A2: Share of Sample Accounted For By Each MSA and Year

Sample All Prior Trans All Prior Trans
All All Transactions Transactions

SF Bay 26.99 % 26.59 % 27.86 % 27.31 %
Los Angeles 58.76 % 59.52 % 57.47 % 58.35 %
San Diego 14.25 % 13.89 % 14.67 % 14.34 %

2008 18.17 % 20.06 % 16.48 % 18.26 %
2009 20.66 % 20.90 % 21.06 % 21.38 %
2010 23.88 % 23.45 % 23.56 % 23.08 %
2011 21.09 % 20.37 % 21.60 % 20.95 %
2012 14.90 % 14.00 % 15.94 % 15.05 %
2013 1.30 % 1.21% 1.36 % 1.27 %

Notes: Each cell indicates the percentage of each sample accounted for by each MSA (above the line) or by each year of first

listing (below the line).

3. If the data shows the property was built after the sale date or there has been “significant
improvement” since the sale date;

4. If there was an implausibly large change in the house’s value, indicating a typo or large
renovation;

5. If there is a previous sale within 90 days.

Each observation is a listing, regardless of whether it is withdrawn or ends in a transaction. The
outcome variable is sold within 13 weeks, where withdrawn listings are counted as not transacting.
The price variable is the initial list price. The predicted prices are calculated for the week of first
listing by interpolation from the monthly index values. The sample is summarized in Table 1 in the
main text, and the fraction of the sample accounted for by each MSA and year are summarized in
Table A2.

A.2.5 Estimation of Equity Positions at Date of Listing

I estimate the equity position of the seller at date of listing for each listing in the final sample
using the DataQuick data on both transactions and mortgage liens together with the listing dates
for each property. While the data on mortgages is rich—it contains every lien, and I am able to
observe loan amounts, loan type (fixed or adjustable rate), and DataQuick’s estimated mortgage
interest rate—I do not have enough data to perfectly calculate equity for three reasons. First, I only
observe new mortgage liens and cannot tell which mortgages have been prepaid or replaced. I thus
cannot definitely know whether a new mortgage is a refinance, consolidation, or a second mortgage.
Second, I do not observe some features of the mortgage, such as the frequency and time of reset,
the margin over one-year LIBOR (or a similar index) to which an adjustable rate mortgage resets,
the interest rate path (e.g. teaser rates or balloon mortgages), whether the mortgage is interest
only, and whether the borrower is current on their mortgage payments or has prepaid. Finally, if
a mortgage is a home equity line of credit, I do not observe its draw down. There are also cases
where loan type or interest rate are missing.

Because of these data limitations, I follow a procedure to estimate equity similar to DeFusco
(2015) and make several assumptions that allow me to estimate the equity of each home. In
particular I assume:

9



1. Assumptions about mortgages:

(a) All adjustable rate mortgages are 5/1 ARMs (among the most popular ARMs) that
amortize over 30 years that reset to a 2.75% margin over one-year LIBOR on the date of
reset, which according to the Freddie Mac Primary Mortgage Market Survey is roughly
the average historical margin.

(b) All fixed rate mortgages and mortgages of unknown type are 30 year fixed rate mortgages.
(c) All mortgages with a missing DataQuick estimated interest rate (most are prior to 1995)

are assigned an interest rate equal to the average interest rate on a 30-year fixed rate
mortgage in the month of origination from the Freddie Mac Primary Mortgage Market
Survey.

2. All borrowers are current on their mortgage, have not prepaid their mortgage unless they move
or refinance, and all home equity lines of credit are drawn down immediately. Consequently,
the mortgage balance at listing can be computed by amortizing all outstanding loans to the
date of listing.

3. All houses can have at most two outstanding mortgages at one time (the DataQuick data
includes up to three in a given history entry, and I choose the largest two). Mortgages are
estimated to be a first or second mortgage according to several rules:

(a) Initial mortgage balances:
i. If a property has an observed prior transaction, the initial mortgage balance is the

mortgage amount associated with that transaction (the mortgage balance used to
estimate the cumulative loan to value ratio)

ii. If the house has no observed prior transactions but there are observed mortgage liens,
a new loan is counted as a first mortgage if it is greater than or equal to 50% of the
hedonic value of the house (computed using the ZIP hedonic price index described
above) at the time of purchase and a second mortgage if it is less than 50%.

iii. If the house has no observed prior transactions and no observed new mortgage liens
since 1988, there is no mortgage balance by 2008 when the sample starts. Since
we are interested in screening out houses with negative equity, this is a harmless
assumption as any homeowner with no new mortgage liens in 20 years has a very
low mortgage balance and very high equity.

(b) If a new lien record shows two mortgages simultaneously taken out, both outstanding
mortgage “slots” are updated unless the two mortgages have the same value (a likely du-
plicate in the records) or both are very small (less than half of the outstanding mortgage
balance together), in which case they are likely a second and third mortgage and only
the larger of the two is counted as a second mortgage.

(c) If a new lien record shows one new mortgage, then:
i. If the property has no mortgage, it is a first mortgage.
ii. If the property only has a second mortgage (only for homes with no observed prior

transaction), the new mortgage is a first mortgage if it is over half of the hedonic
estimated value and otherwise a second mortgage.

iii. If the property has no second mortgage, the new mortgage is a second mortgage
if it is less than half the estimated first mortgage balance and otherwise the new
mortgage is a refinancing of the first mortgage.

10



Table A3: The Robustness of Momentum Across Price Measures and Metrics

Price Measure Annual 1 Year 2 Year Lag in Which Quarter Quarter of
AR(1) Lagged Lagged Quarterly �p of Peak Peak Value of

Coefficient Autocorr of Autocorr of Autocorr is of AR(5) Lo-MacKinlay
Quarterly �p Quarterly �p First < 0 IRF Variance Ratio

CoreLogic Repeat 0.665 0.516 0.199 12 12 19
Sales HPI, 1976-2013 (0.081)

Case-Shiller 0.670 0.578 0.251 14 11 20
Comp 10, 1987-2013 (0.088)

FHFA Expanded 0.699 0.585 0.344 14 11 18
HPI, 1991-2013 (0.089)
NAR Median 0.458 0.147 0.062 12 6 16

Price, 1968-2013 (0.103)
CoreLogic Median 0.473 0.215 0.046 11 7 16
Price, 1976-2013 (0.082)

Notes: Each row shows six measures of momentum for each of the five house price indices, which are detailed in Appendix A.

The first row shows the AR(1 coefficient for a regression of the annual change in log price on a on-year lag of itself estimated on

quarterly data, as in equation (1), with robust standard errors in parenthesis. The second and third columns show the one and

two year lagged autocorrelations of the quarterly change in log price. The fourth column shows the quarterly lag in which the

autocorrelation of the quarterly change in log price is first negative. The fifth column indicates the quarter in which the impulse

response function estimated from an AR(5), as in Section 2, reaches its peak. Finally, the last column shows the quarterly lag

for which the Lo-MacKinlay variance ratio computed as in equation (A3) reaches its peak.

iv. If there is currently a second mortgage, there are two cases:
A. If the balance is greater than the total current combined mortgage balance minus

$10,000 (for error), this is a mortgage consolidation. Replace the first mortgage
with the new mortgage and eliminate the second mortgage.

B. Otherwise, the loan for which the outstanding balance is closest to the new loan
amount is replaced, unless the loan is closer to the second mortgage and under
25% of the second mortgage balance in which case it is a third mortgage and is
dropped, as I assume that houses have up to two mortgages for simplicity.

Given the above assumptions, I calculate the mortgage balance at each listing and merge this into
the final data set. Equity at listing is then calculated as

Equity = 1� Mortgage Balance
Predicted Value

.

The rules for determining a first and second mortgage appear to be a reasonable approximation
for equity based on a visual inspection of at loan histories for many houses in the data set. There
will be some noise due to inaccuracies about the loan interests rate, amortization schedule, what
is a first versus second mortgage, error in the home’s predicted value, et cetera, but the estimated
mortgage balance at listing shoudl be a good proxy for the seller’s equity position in most cases.

B Momentum

To assess the robustness of the facts about house price momentum presented in Section 2, Table
A3 shows several measures of momentum for five different national price indices. The indices are
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Table A4: Testing For Asymmetry in Momentum

Dependent Variable: Annual Change in Log Price Index at CBSA Level

Specification With Interaction Without Interaction

Coefficient on Year-Lagged 0.614*** 0.591***
Annual Change in Log Price (0.011) (0.020)

Coefficient on Interaction With 0.045
Positive Lagged Change (0.031)

CBSA Fixed Effects Yes Yes
CBSAs 103 103

N 13,188 13,188
Notes: *** p<0.001. Each column shows a regression of the annual change in log price on a one-year lag of itself and CBSA

fixed effects. In column two, the interaction between the lag of annual change in log price with an indicator for whether the

lag of the annual change in log price is also included as in equation (A4). The regressions are estimated on the panel of 103

CBSAs repeat-sales price indices described in Appendix A. Robust standard errors are in parentheses.

the CoreLogic National repeat-sales house price index discussed in the main text, the Case-Shiller
Composite Ten, the FHFA expanded repeat-sales house price index, the National Association of
Realtors’ national median price for single-family homes, and CoreLogic’s national median price for
all transactions. The first column shows the coefficient on an AR(1) in log annual price change run
at quarterly frequency as in equation (1).1 The next two columns show the one- and two-year lagged
autocorrelations of the quarterly change in log price. The fourth column shows the quarterly lag
in which the autocorrelation of the quarterly change in log price is first negative. The fifth column
shows the quarter subsequent to a shock in which the impulse response from an estimated AR(5)
estimated in log levels, as in Section 2, reaches its peak value. Finally, the sixth column shows
the quarterly lag in which the Lo-MacKinlay variance ratio statistic reaches its peak value. This
statistic is equal to,

V (k) =
var

⇣

Pt�k+1
t=1 rt�k+1

⌘

/k

var (rt)
=

var (log (pt)� log (pt�k)) /k

var (log (pt)� log (pt�1))
, (A3)

where rt = log (pt)� log (pt�1) is the one-period return. If this statistic is equal to one, then there
is no momentum, and several papers have used the maximized period of the statistic as a measure
of the duration of momentum.

Table A3 shows evidence of significant momentum for all price measures and all measures of
momentum. The two median price series exhibit less momentum as the IRFs peak at just under
two years and the two-year-lagged autocorrelation is much closer to zero.

Table A4 tests for asymmetry in momentum. Many papers describe prices as being primarily
sticky on the downside (e.g., Leamer, 2007; Case, 2008). To assess whether this is the case, I turn
to the panel of 103 CBSA repeat-sales price indices described in Appendix A, which allows for a
more powerful test of asymmetry than using a single national data series. I estimate a quarterly

1Case and Shiller (1989) worry that the same house selling twice may induce correlated errors that generate
artificial momentum in regression (1) and use �p

t,t�4 from one half of their sample and �p
t�4,t�8 from the other. I

have found that this concern is minor with 25 years of administrative data by replicating their split sample approach
with my own house price indices estimated from the DataQuick micro data.
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Table A5: Momentum Across Countries

Country AR(1) Coefficient N Country AR(1) Coefficient N

Australia, 1986-2013 0.217* 100 Netherlands, 1995-2013 0.951*** 67
(0.108) (0.079)

Belgium, 1973-2013 0.231** 154 Norway, 1992-2013 -0.042 79
(0.074) (0.091)

Denmark, 1992-2013 0.412*** 78 New Zealand, 1979-2013 0.507*** 127
(0.110) (0.075)

France, 1996-2013 0.597*** 62 Sweden, 1986-2013 0.520*** 103
(0.121) (0.100)

Great Britain, 1968-2013 0.467*** 173 Switzerland, 1970-2013 0.619*** 167
(0.079) (0.082)

Notes: * p< 0.05, ** p<0.01, *** p<0.001. Each row shows the AR(1) coefficient for a regression of the annual change in log

price on an annual lag of itself, as in equation (1), estimated on quarterly, non-inflation-adjusted data from the indicated country

for the indicated time period. Robust standard errors are in parentheses, and N indicates the number of quarters in the sample.

The BIS identifiers and series descriptions are listed for each country. Australia: Q:AU:4:3:0:1:0:0, residential property for all

detached houses, eight cities. Belgium Q:BE:0:3:0:0:0:0, residential property all detached houses. Denmark: Q:DK:0:2:0:1:0:0,

residential all single-family houses. France: Q:FR:0:1:1:6:0, residential property prices of existing dwellings. Great Britain:

Q:GB:0:1:0:1:0:0, residential property prices all dwellings from the Office of National Statistics. Netherlands: Q:NL:0:2:1:1:6:0,

residential existing houses. Norway: Q:NO:0:3:0:1:0:0, Residential detached houses. New Zealand: Q:NZ:0:1:0:3:0:0, residential

all dwellings. Sweden: Q:SE:0:2:0:1:0:0, owner-occupied detached houses. Switzerland: Q:CH:0:2:0:2:0:0, owner-occupied

single-family houses.

AR(1) regression of the form:

�t,t�4 ln pc = �0 + �1�t�4,t�8 ln pc + �2�t�4,t�8 ln pc ⇥ 1 [�t�4,t�8 ln pc > 0] + �c + ", (A4)

where c is a city. If momentum is stronger on the downside, the interaction coefficient �2 should
be negative. However, Table A4 shows that the coefficient is insignificant and positive. Thus
momentum appears equally strong on the upside and downside when measured using a repeat-sales
index.

B.1 Across Countries

Table A5 shows annual AR(1) regressions as in equation (1) run on quarterly non-inflation-adjusted
data for ten countries. The data come from the Bank for International Settlements, which compiles
house price indices from central banks and national statistical agencies. The data and details can be
found online at http://www.bis.org/statistics/pp.htm. I select ten countries from the BIS database
that include at least 15 years of data and have a series for single-family detached homes or all homes.
Countries with per-square-foot indices are excluded. With the exception of Norway, which shows
no momentum, and the Netherlands, which shows anomalously high momentum, all of the AR(1)
coefficients are significant and between 0.2 and 0.6. Price momentum thus holds across countries as
well as within the United States and across U.S. metropolitan areas.
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C Micro Evidence For Concave Demand

C.1 Binned Scatter Plots

Throughout the analysis, I use binned scatter plots to visualize the structural relationship between
list price relative to the reference list price and probability of sale. This section briefly describes
how they are produced.

Recall that the econometric model is:

dh`t = g (ph`t � p̃h`t) +  `t + "h`t, (A5)

where ph`t � p̃h`t is equal to f (zh`t) in:

ph`t = f (zh`t) + �Xh`t + ⇠`t + uh`t. (A6)

To create the IV binned scatter plots. I first estimate f (zh`t) by (A6) and let ph`t�p̃h`t = f (zh`t).
I drop the top and bottom 0.5 percentiles of ph`t�p̃h`t and ZIP-quarter cells with a single observation
and create 25 indicator variables ⇣b corresponding to 25 bins q of ph`t � p̃h`t. I project sale within
13 weeks dh`t on fixed effects and the indicator variables:

dh`t =  `t + ⇣b + ⌫h`tq (A7)

I visualize g (·) by plotting the average ph`t � p̃h`t for each bin against the average dh`t �  `t for
each bin, which is equivalent to ⇣b.

C.2 Proof of Lemma 1

Recall that the Lemma assumes that:

zh`t ? (uh`t, "h`t) ,
ph`t = f (zh`t) + ⇣h`t + p̃h`t,

⇣h`t ? f (zh`t), and that the true regression function g (·) is a third-order polynomial. Because of the
fixed effect ⇠h`t in p̃h`t, ⇣h`t can be normalized to be mean zero. Using the third-order polynomial
assumption, the true regression function is:

g (ph`t � p̃h`t) = E [dh`tq|f (zh`t) + ⇣h`t, `t] = �1 (f (zh`t) + ⇣h`t)+�2 (f (zh`t) + ⇣h`t)
2
+�3 (f (zh`t) + ⇣h`t)

3 .

However, ⇣h`t is unobserved, so I instead estimate:

E [dh`tq|f (zh`t) , `t] = �1f (zh`t) + �2f (zh`t)
2
+ �3f (zh`t)

3

+ �1E [⇣h`t|f (zh`t)] + 2�2E [f (zh`t) ⇣h`t] + �2E
⇥

⇣2h`t|f
⇤

+ 3�3f (zh`t)E
⇥

⇣2h`t|f
⇤

+ 3�23f (zh`t)E [⇣h`t|f ] + �3E
⇥

⇣3h`t|f
⇤

.

However, because ⇣h`t ? f (zh`t), E [⇣h`t|f (zh`t)] = 0, E [f (zh`t) ⇣h`t] = 0, and E
⇥

⇣2h`t|f
⇤

and
E
⇥

⇣3h`t|f
⇤

are constants. The �2E
⇥

⇣2h`t|f
⇤

and �3E
⇥

⇣3h`t|f
⇤

terms will be absorbed by the fixed
effects  `t, leaving:

E [dh`tq|f (zh`t) , `t] = �1f (zh`t) + �2f (zh`t)
2
+ �3f (zh`t)

3
+ 3�3f (zh`t)E

⇥

⇣2h`t|f
⇤

.
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Figure A5: Reduced-Form Relationship Between the Instrument and the Outcome Variable
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Notes: This figure shows the reduced-form relationship between the instrument on the x-axis and the probability of sale within

13 weeks on the y axis. Both are residualized against ZIP ⇥ first quarter of listing fixed effects and the repeat-sales and

hedonic predicted prices, and the means are added back in. Before binning, the top and bottom 0.5 percent of the log sale price

residual and any observations fully absorbed by fixed effects are dropped. This plot of the reduced form shows the basic concave

relationship that the IV approach, although the downward-sloping first stage flips and shrinks the x-axis. The left panel shows

IV sample 1, which drops sales of foreclosures, sales of homes with less than negative 20 percent appreciation since purchase,

sales by investors who previously purchased with all cash, and homes with under -10 percent estimated equity. The right panel

shows IV sample 2, which does away with the estimated equity requirement and instead drops DataQuick determined short

sales and withdrawn listings that are foreclosed upon in the subsequent year..

Thus when one estimates g (·) by a cubic polynomial of f (zh`t),

dh`tq = �1f (zh`t) + �2f (zh`t)
2
+ �3f (zh`t)

3
+  `t + "h`t,

one recovers �1 = �1 + 3�3E
⇥

⇣2h`t|f
⇤

, �2 = �2, and �3 = �3, so the true second- and third-order
terms are recovered.

For the quadratic case, I estimate

E [dh`tq|f (zh`t) , `t] = �1f (zh`t) + �2f (zh`t)
2
+ �3f (zh`t)

3

+�1E [⇣h`t|f (zh`t)] + 2�2E [f (zh`t) ⇣h`t] + �2E
⇥

⇣2h`t|f
⇤

= �1f (zh`t) + �2f (zh`t)
2 .

and so �1 = �1 and �2 = �2 and the true first- and second-order terms are recovered.

C.3 Instrumental Variable Robustness and Specification Tests

This section provides robustness and specification tests for the IV estimates described in Section
3. All robustness tests are shown for both IV sample 1 and IV sample 2, although the results are
similar across samples.
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Figure A6: Instrumental Variable Estimates With Probability of Sale Axis in Logs
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Notes: For both samples, the figure shows a binned scatter plot of the log of the probability of sale within 13 weeks net of ZIP

⇥ first quarter of listing fixed effects (with the average probability of sale within 13 weeks added in) against the estimated log

relative markup p� p̃. It also shows an overlaid cubic fit of the relationship, as in equation (3). To create the figure, a first stage

regression of the log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter of listing

level, and repeat sales and hedonic log predicted prices, as in (6), is estimated by OLS. The predicted value of the polynomial

of the instrument is used as the relative markup. The figure splits the data into 25 equally-sized bins of this estimated relative

markup and plots the mean of the estimated relative markup against the log of the mean of probability of sale within 13 weeks

net of fixed effects for each bin, as detailed in Appendix C. The log transformation is applied at the end as the y variable is

binary. Before binning, the top and bottom 0.5 percent of the log sale price residual and any observations fully absorbed by

fixed effects are dropped. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error

in the repeat-sales house price index in the observation’s ZIP code from 1988 to 2013. IV sample 1 drops sales of foreclosures,

sales of homes with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with

all cash, and homes with under -10 percent estimated equity. IV sample 2 does away with the estimated equity requirement

and instead drops DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year.

The grey bands indicate a pointwise 95-percent confidence interval for the cubic fit created by block bootstrapping the entire

procedure on 35 ZIP-3 clusters. N = 140,344 observations for IV sample 1 and 137,238 observations for IV sample 2 prior to

dropping unique zip-quarter cells and winsorizing.

Figure A5 shows the reduced-form relationship between the instrument and outcome variable
when both are residualized against fixed effects and the repeat-sales and hedonic predicted price.
The estimates presented in the main text rescale the instrument axis into price (and in the process
flip and shrink the x axis), but the basic concave relationship between probability of sale and
appreciation since purchase is visible in the reduced form. The clear concave relationship in the
reduced form is important because it ensures that nonlinearities in the first stage are not driving
the overall concave relationship (although one could surmise this from the smooth and monotonic
first stage).

Figure A6 shows IV binned scatter plots when the y-axis is rescaled to a logarithmic scale so
that the slope represents the elasticity of demand. The demand curve is still robustly concave.

Figure A7 shows third-order polynomial fits varying the number of weeks that a listing needs
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Figure A7: Instrumental Variable Estimates: Varying The Sell-By Date
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Notes: For both samples, the figure shows third-order polynomial fits of equation (3) for the probability of sale by eleven different

deadlines (6, 8, 10, 12, 14, 16, 18, 20, 22, 24, and 26 weeks) net of fixed effects (with the average probability of sale added

in) against the estimated log relative markup. To create the figure, a first stage regression of the log list price on a fifth-order

polynomial in the instrument, fixed effects at the ZIP x first quarter of listing level, and repeat sales and hedonic log predicted

prices, as in (6), is estimated by OLS. The predicted value of the polynomial of the instrument is used as the relative markup

before equation (3) is run. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error

in the repeat-sales house price index in the observation’s ZIP code from 1988 to 2013. IV sample 1 drops sales of foreclosures,

sales of homes with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with

all cash, and homes with under -10 percent estimated equity. IV sample 2 does away with the estimated equity requirement

and instead drops DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year.

N = 140,344 observations for IV sample 1 and 137,238 observations for IV sample 2 prior to dropping unique zip-quarter cells

and winsorizing.

to sell within to count as a sale from six weeks to 26 weeks. Concavity is evident regardless of the
deadline used for the binary y-variable.

Figure A8 shows the IV binned scatter plot and a third-order polynomial fit when the sample
is limited to transactions and transaction prices are used rather than initial list prices. Substantial
concavity is still present, assuaging concerns that the concavity in list prices may not translate into
a strategic complementarity in transaction prices. The upward slope in the middle of the figure is
not statistically significant.

Figure A9 shows third-order polynomial fits for each ZIP-3 in the data set with over 2,000
observations, so that the cubic polynomial is estimated with some degree of confidence. These ZIP-
3s form the core of my analysis sample. The pointwise standard errors on each line are fairly wide
and are not shown, but one can see that almost all of the ZIP-3s there is substantial curvature.

Figure A10 provides some evidence on the exclusion restriction by showing how observed quality
varies with time since purchase. In particular, it shows plots of six measures of observed quality
residualized against zip by quarter of listing fixed effects (with the mean added back in) against
the date of the previous transaction for both of the IV samples. For both samples, there is no clear
relationship between bedrooms and bathrooms and original sale date. To the extent to which unob-
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Figure A8: Instrumental Variable Estimates: Transaction Prices
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IV Sample 2

Notes: For both samples, the figure shows a binned scatter plot of the probability of sale within 13 weeks net of ZIP ⇥ first

quarter of listing fixed effects (with the average probability of sale within 13 weeks added in) against the estimated log relative

markup p� p̃ measured using transaction prices rather than list prices. It also shows an overlaid cubic fit of the relationship,

as in equation (3). To create the figure, a first stage regression of the log transaction price on a fifth-order polynomial in the

instrument, fixed effects at the ZIP x first quarter of listing level, and repeat sales and hedonic log predicted prices, as in (6), is

estimated by OLS. The predicted value of the polynomial of the instrument is used as the relative markup. The figure splits the

data into 25 equally-sized bins of this estimated relative markup and plots the mean of the estimated relative markup against

the mean of the probability of sale within 13 weeks net of fixed effects for each bin, as detailed in Appendix C. Before binning,

the top and bottom 0.5 percent of the log sale price residual and any observations fully absorbed by fixed effects are dropped.

The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales house

price index in the observation’s ZIP code from 1988 to 2013. IV sample 1 drops sales of foreclosures, sales of homes with less

than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and homes

with under -10 percent estimated equity. IV sample 2 does away with the estimated equity requirement and instead drops

DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year. The grey bands

indicate a pointwise 95-percent confidence interval for the cubic fit created by block bootstrapping the entire procedure on 35

ZIP-3 clusters. N = 96,400 observations for IV sample 1 and 86,033 observations for IV sample 2 prior to dropping unique

zip-quarter cells and winsorizing.

served quality varies with these observed measures of quality, this is consistent with the exclusion
restriction. There is a weak negative relationship between log square feet and original sale date,
but there are strong negative relationships between lot size, rooms, age, and original sale date. Age
is slightly nonmonotonic as it rises post 2005, but otherwise the results are more or less linear, and
do not strongly vary with the housing cycle. To the extent to which unobserved quality varies with
these observed measures of quality, these results imply that a linear time trend would pick up the
effects of unobservables. This motivates a robustness check using a linear time trend in date of
purchase (or time since purchase) below.

Tables A6, A8, A10, A12, A14, and A16 present various robustness and specification tests of
the main IV specification for IV sample 1 (column 3 of Table 2). Tables A7, A9, A11, A13, A15,
and A17 repeat the same robustness tests for IV sample 2 (column 5 of Table 2). For all robustness

18



Figure A9: Instrumental Variable Estimates: Best Fit Polynomial By ZIP-3
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Notes: For both samples, the figure shows for each ZIP-3 with over 2,000 observations a cubic fit of the log of the probability of

sale within 13 weeks net of ZIP ⇥ first quarter of listing fixed effects (with the average probability of sale within 13 weeks added

in) against the estimated log relative markup p� p̃ as in equation (3). To create the figure, a pooled first stage regression of

the log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter of listing level, and repeat

sales and hedonic log predicted prices, as in (6), is estimated by OLS. The predicted value of the polynomial of the instrument

is used as the relative markup in equation (3), which is estimated for each ZIP-3 with over 2,000 observations. For each ZIP-3,

the x-axis of the best-fit polynomial reflects the 1st to 99th percentiles of the log relative markup in that ZIP. IV sample 1

drops sales of foreclosures, sales of homes with less than negative 20 percent appreciation since purchase, sales by investors

who previously purchased with all cash, and homes with under -10 percent estimated equity. IV sample 2 does away with the

estimated equity requirement and instead drops DataQuick determined short sales and withdrawn listings that are foreclosed

upon in the subsequent year.

tables, each row in the tables represents a separate regression, with the specifications described
in the Appendix text. Coefficients for a quadratic polynomial in the log relative markup and a
bootstrapped 95 percent confidence interval for the quadratic term are reported as in the main
text. The robustness and specification checks consistently show evidence of significant concavity,
although in a few specifications the bootstrapped confidence intervals widen when the sample size
is reduced to the point that the results are no longer significant.

Tables A6 and A7 evaluate the exclusion restriction that unobserved quality is independent of
when a seller purchased. The first two specifications add a linear trend in date of purchase or time
since purchase in Xh`t along with the two predicted prices, thus accounting for any variation in
unobserved quality that varies linearly in date of purchase or time since purchase. To the extent
that unobserved quality varies with date of purchase in the same way that lot size, rooms, and age
do n Figure A10, a linear time trend will help control for unobserved quality. If anything, adding
a linear time trend strengthens the finding of concavity, with more negative point estimates on the
quadratic term. The next three rows limit the sample to homes purchased before the bust (before
2005), after 1994, and in a window from 1995 to 2004. Finally, the last two rows add linear time
trends to the purchased before 2005 sample. In all cases, the bootstrapped 95 percent confidence
intervals for the quadratic term continue to show significant concavity, and if anything the point
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Figure A10: Observed Quality (Residualized Against ZIP-Quarter FE) By Original Sale Date
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Orig Sale Date vs. Observables, IV Sample 2

Notes: For both samples, the figure shows binned scatter pots of six observed measures of quality versus the original sale date.

For each figure, the quality measure (but not the original sale date) is residualized against zip by quarter of listing dummies

and the mean is added back in to create a residualized quality measure. The data is then binned into 100 bins of the original

sale date and the mean residualized quality is plotted against the mean original sale date for each bin. IV sample 1 drops sales

of foreclosures, sales of homes with less than negative 20 percent appreciation since purchase, sales by investors who previously

purchased with all cash, and homes with under -10 percent estimated equity. IV sample 2 does away with the estimated

equity requirement and instead drops DataQuick determined short sales and withdrawn listings that are foreclosed upon in the

subsequent year.
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Table A6: IV Sample 1 Robustness 1: Controls for Time Since Purchase

Dependent Var: Sell Within 13 Weeks

Specification Quadratic Polynomial Coefficients Quadratic Coefficient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Linear Trend in 0.476*** -3.360*** -64.978* [-141.455,-28.643] 140,344
Date of Purchase (0.008) (0.660) (27.420)
Linear Trend in 0.476*** -3.381*** -65.428* [-143.701,-28.427] 140,344

Time Since Purchase (0.008) (0.671) (27.992)
Purchased Pre 2005 0.492*** -2.357*** -93.245* [-220.122,-44.835] 107,980

(0.008) (0.631) (46.725)
Purchased Post 1994 0.475*** -2.474*** -45.538*** [-63.142,-32.285] 122,818

(0.003) (0.137) (7.809)
Purchased 1995-2004 0.489*** -2.992*** -136.931* [-306.78,-75.278] 90,454

(0.009) (0.656) (60.586)
Pre 2005 With Trend 0.493*** -1.818*** -66.248** [-129.257,-35.281] 107,980
in Date of Purchase (0.008) (0.382) (24.604)

Pre 2005 With Trend 0.493*** -1.833*** -67.119** [-130.846,-35.509] 107,980
in Time Since Purchase (0.008) (0.388) (25.041)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coefficients when g(·) in equation (3) is approximated
using a quadratic polynomial for a different robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (3), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is Winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed effects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 1, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
homes with under -10 percent estimated equity. The number of observations listed is prior to dropping unique zip-quarter cells
and winsorizing.

estimate on the quadratic term are more negative.
Tables A8 and A9 show various specification checks. The first set of regressions limit the analysis

to ZIP-quarter cells with at least 15 and 20 observations to evaluate whether small sample bias in
the estimated fixed effect ⇠h`t could be affecting the results. In both cases, the results appear similar
to the full sample and the bootstrapped confidence interval shows a significantly negative quadratic
term, which suggests that bias in the estimation of the fixed effects is not driving the results. The
second set introduces Xh`t, the vector of house characteristics that includes the repeat-sales and
hedonic predicted prices, as a quadratic, cubic, quartic, and quintic function instead of linearly.
The assumed linearity of these characteristics is not driving the results. In particular, introducing
zh`t nonlinearly and p̂repeath`t linearly is not driving the results, as when zh`t and p̂repeath`t are both
introduced as fifth-order polynomials the results are virtually unchanged. Finally, the third set
considers different specifications for the flexible function of the instrument f (zh`t) in the first stage,
which is quintic in the baseline specification. Again, the order of f (·) does not appear to alter the
finding of significant concavity.

Table A10 and A11 show various robustness checks. These include:

• House Characteristic Controls: This specification includes a third-order polynomial in age,
log square feet, bedrooms, and bathrooms in Xh`t along with the predicted prices.

• Alternate Time To Sale Definition: Instead of measuring time to sale as first listing to the
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Table A7: IV Sample 2 Robustness 1: Controls for Time Since Purchase

Dependent Var: Sell Within 13 Weeks

Specification Quadratic Polynomial Coefficients Quadratic Coefficient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Linear Trend in 0.458*** -2.673*** -42.695* [-91.130,-21.180] 137,238
Date of Purchase (0.009) (0.532) (18.076)
Linear Trend in 0.458*** -2.684*** -42.910* [-92.536,-21.014] 137,238

Time Since Purchase (0.009) (0.538) (18.339)
Purchased Pre 2005 0.471*** -2.523*** -90.567* [-185.042,-51.624] 105,775

(0.010) (0.651) (37.485)
Purchased Post 1994 0.455*** -2.077*** -30.401*** [-41.221,-20.681] 120,229

(0.002) (0.122) (5.241)
Purchased 1995-2004 0.465*** -2.987*** -111.862* [-252.84,-72.415] 88,766

(0.010) (0.730) (46.582)
Pre 2005 With Trend 0.472*** -2.014*** -66.436** [-124.922,-37.902] 105,775
in Date of Purchase (0.009) (0.427) (20.940)

Pre 2005 With Trend 0.472*** -2.026*** -66.965** [-127.425,-38.101] 105,775
in Time Since Purchase (0.009) (0.434) (21.340)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coefficients when g(·) in equation (3) is approximated
using a quadratic polynomial for a different robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (3), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is Winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed effects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 2, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year. The number of
observations listed is prior to dropping unique zip-quarter cells and winsorizing.

filing of the deed transfer request, this specification measures time to sale as first listing to
the first of the deed transfer request or the last listing.

• 18 and 10 Weeks to Sale: This specification varies sell-by deadline for the binary y-variable
from 13 weeks to 10 and 18 weeks, respectively.

• No Weights: This specification does not weight observations by the inverse standard deviation
of the repeat-sales house price index prediction error at the ZIP level.

• No Possibly Problematic Observations: A small number of listings are matched to multiple
property IDs and I use an algorithm described in Appendix A to guess of which is the relevant
property ID. Additionally, there are spikes in the number of listings in the Altos data for a few
dates, which I have largely eliminated by dropping listings that do not match to a DataQuick
property ID. Despite the fact that these two issues affect a very small number of observations,
this specification drops both types of potentially problematic observations to show that they
do not affect results.

• By Time Period: This specification splits the data into two time periods, February 2008 to
June 2010 and July 2010 to February 2013.

• By MSA: This specification runs separate regressions for the San Francisco Bay, Los Angeles,
and San Diego areas.
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Table A8: IV Sample 1 Robustness 2: Specification Checks
Dependent Var: Sell Within 13 Weeks

Specification Quadratic Polynomial Coefficients Quadratic Coefficient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Only FE Cells With 0.483*** -2.381*** -35.437** [-62.362,-20.101] 99,594
At Least 15 Obs (0.010) (0.381) (10.862)

Only FE Cells With 0.484*** -2.364*** -33.537** [-62.418,-14.822] 79,304
At Least 20 Obs (0.011) (0.439) (12.313)
Predicted Prices 0.480*** -2.317*** -42.381*** [-65.556,-30.138] 140,344

Introduced as Quadratic (0.008) (0.322) (9.229)
Predicted Prices 0.481*** -2.323*** -43.270*** [-66.779,-30.618] 140,344

Introduced as Cubic (0.008) (0.318) (9.276)
Predicted Prices 0.481*** -2.307*** -42.764*** [-66.865,-30.291] 140,344

Introduced as Quartic (0.008) (0.317) (9.297)
Predicted Prices 0.480*** -2.300*** -42.420*** [-66.052,-30.379] 140,344

Introduced as Quintic (0.008) (0.318) (9.256)
Linear Fn of Instrument 0.490*** -2.425*** -70.956*** [-121.787,-51.831] 140,344

(0.008) (0.360) (17.669)
Quadratic Fn of Instrument 0.489*** -2.288*** -67.890*** [-112.521,-49.987] 140,344

(0.009) (0.354) (15.904)
Cubic Fn of Instrument 0.478*** -2.206*** -36.511*** [-63.469,-24.76] 140,344

(0.008) (0.343) (10.339)
Quartic Fn of Instrument 0.480*** -2.236*** -42.040*** [-72.821,-28.122] 140,344

(0.008) (0.350) (11.795)
Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coefficients when g(·) in equation (3) is approximated
using a quadratic polynomial for a different robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (3), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is Winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed effects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 1, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
homes with under -10 percent estimated equity. The number of observations listed is prior to dropping unique zip-quarter cells
and winsorizing.

The results continue to show concavity, although in some specifications it is weakened by the smaller
sample size and no longer significant. In particular, in San Diego the confidence intervals are so
wide that nothing can be inferred. The insignificance is in large part because the standard errors
are created by block bootstrapping on ZIP-3 clusters, so in San Diego there are very few effective
observations. Additionally, in the second half of the sample, the result is weakened although still
significant.

Table A12 and A13 show various robustness checks. These include:

• Beta varies by MSA-Year or MSA-Quarter: In this specification, �, the control for observables
in the first stage relationship which is assumed fixed across MSAs and years in the baseline
specification, is estimated separately for each MSA-year or MSA-quarter rather than in a
pooled regression. This accounts for potentially differential sorting between households and
homes across space and time.

• Only Low All Cash Share ZIPs: This specification limits the sample to ZIP codes where less
than 10 percent of buyers buy in all cash (a hallmark of investors).
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Table A9: IV Sample 2 Robustness 2: Specification Checks
Dependent Var: Sell Within 13 Weeks

Specification Quadratic Polynomial Coefficients Quadratic Coefficient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Only FE Cells With 0.471*** -1.964*** -25.751*** [-44.255,-14.298] 94,447
At Least 15 Obs (0.011) (0.280) (7.209)

Only FE Cells With 0.474*** -1.971*** -24.945** [-47.136,-9.286] 72,579
At Least 20 Obs (0.013) (0.336) (9.568)
Predicted Prices 0.461*** -2.000*** -30.532*** [-45.069,-21.543] 137,238

Introduced as Quadratic (0.009) (0.265) (6.103)
Predicted Prices 0.461*** -2.018*** -31.192*** [-45.058,-22.07] 137,238

Introduced as Cubic (0.009) (0.263) (6.071)
Predicted Prices 0.461*** -2.009*** -30.829*** [-44.901,-21.843] 137,238

Introduced as Quartic (0.009) (0.263) (6.082)
Predicted Prices 0.461*** -2.007*** -30.730*** [-44.938,-21.915] 137,238

Introduced as Quintic (0.009) (0.264) (6.113)
Linear Fn of Instrument 0.471*** -2.107*** -52.619*** [-91.046,-38.946] 137,238

(0.009) (0.301) (13.492)
Quadratic Fn of Instrument 0.469*** -1.964*** -49.855*** [-86.671,-36.932] 137,238

(0.009) (0.296) (12.585)
Cubic Fn of Instrument 0.459*** -1.908*** -26.688*** [-47.592,-18.009] 137,238

(0.009) (0.287) (7.610)
Quartic Fn of Instrument 0.461*** -1.921*** -29.661*** [-50.928,-20.422] 137,238

(0.009) (0.292) (7.981)
Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coefficients when g(·) in equation (3) is approximated
using a quadratic polynomial for a different robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (3), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is Winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed effects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 2, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year. The number of
observations listed is prior to dropping unique zip-quarter cells and winsorizing.

• Uniqueness Controls: This specification drops households that appear to be unique in their ZIP
code in an effort to get a more homogenous sample. Uniqueness is defined three ways. First, if
beds, baths, square feet, lot size, rooms, or year built is more than 2 standard deviations from
the mean value (e.g. unique on one dimension). Second, the same metric with a threshold
of 1.5 standard deviations. Third, if the average squared value of a house’s Z score for these
characteristics is above 2. Note that if a characteristic is missing for a house, it is not counted
as having a high Z score.

• Tier Controls: This specification uses a ZIP code level repeat sales house price index as in the
main estimation to estimate the value of all homes based on their most recent transaction. It
then splits each ZIP code into two or four tiers based on the estimated value of the house and
makes the fixed effects ⇠`t and  `t to be ZIP-quarter-tier level instead of the ZIP-quarter level
in the baseline specification.

The results show that the concavity is not affected by any of the above controls, although confidence
intervals do widen when fewer observations are used (only low all cash share ZIPs) or when more
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Table A10: IV Sample 1 Robustness 3: Miscellaneous Robustness Tests

Dependent Var: Sell Within 13 Weeks Unless Otherwise Indicated

Specification Quadratic Polynomial Coefficients Quadratic Coefficient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

House Characteristic 0.481*** -2.514*** -50.595*** [-80.123,-33.569] 133,671
Controls (0.008) (0.366) (12.066)

Alternate Time 0.511*** -2.140*** -36.433*** [-59.576,-25.285] 140,344
to Sale Defn (0.010) (0.320) (9.014)

Dep Var: 18 Weeks 0.547*** -2.205*** -40.078*** [-65.127,-27.644] 140,344
(0.007) (0.340) (9.607)

Dep Var: 10 Weeks 0.425*** -2.132*** -41.778*** [-71.622,-29.343] 140,344
(0.007) (0.321) (11.095)

No Weights 0.466*** -1.868*** -34.965*** [-58.351,-23.906] 140,344
(0.008) (0.312) (8.778)

No Poss Problematic Obs 0.485*** -2.231*** -40.822*** [-68.327,-29.289] 135,858
(0.007) (0.340) (9.944)

No Short Interval Between 0.481*** -2.278*** -41.368*** [-69.123,-28.903] 139,580
Prev Trans and Listing (0.008) (0.356) (10.562)

First Listed 2008-7/2010 0.453*** -2.190*** -30.295** [-55.285,-10.604] 69,240
(0.012) (0.346) (11.216)

First Listed 7/2010-2013 0.502*** -2.248*** -44.960* [-94.677,-26.093] 71,104
(0.008) (0.372) (18.294)

Bay Area 0.511*** -2.609*** -36.537** [-70.887,-19.171] 39,550
(0.016) (0.633) (13.883)

Los Angeles 0.463*** -1.940*** -47.637** [-85.803,-24.353] 82,803
(0.008) (0.415) (15.634)

San Diego 0.494*** -4.374*** -100.529 [-100.529,483.072] 17,991
(0.018) (0.451) (132.245)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coefficients when g(·) in equation (3) is approximated
using a quadratic polynomial for a different robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (3), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is Winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed effects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 1, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
homes with under -10 percent estimated equity. The number of observations listed is prior to dropping unique zip-quarter cells
and winsorizing.
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Table A11: IV Sample 2 Robustness 3: Miscellaneous Robustness Tests

Dependent Var: Sell Within 13 Weeks Unless Otherwise Indicated

Specification Quadratic Polynomial Coefficients Quadratic Coefficient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

House Characteristic 0.462*** -2.145*** -36.076*** [-53.821,-25.145] 130,958
Controls (0.010) (0.293) (7.669)

Alternate Time 0.487*** -1.897*** -27.126*** [-44.842,-18.793] 137,238
to Sale Defn (0.011) (0.285) (6.575)

Dep Var: 18 Weeks 0.519*** -1.951*** -27.989*** [-43.7,-18.914] 137,238
(0.009) (0.301) (6.431)

Dep Var: 10 Weeks 0.411*** -1.800*** -29.772*** [-50.912,-21.054] 137,238
(0.009) (0.271) (7.714)

No Weights 0.444*** -1.628*** -24.665*** [-42.218,-16.763] 137,238
(0.010) (0.278) (6.326)

No Poss Problematic Obs 0.466*** -1.903*** -29.225*** [-49.197,-20.982] 132,835
(0.009) (0.292) (7.299)

No Short Interval Between 0.462*** -1.942*** -29.580*** [-49.421,-20.53] 136,342
Prev Trans and Listing (0.009) (0.295) (7.450)

First Listed 2008-7/2010 0.438*** -2.088*** -27.212** [-49.764,-14.762] 69,603
(0.012) (0.362) (8.898)

First Listed 7/2010-2013 0.483*** -1.695*** -28.092* [-61.53,-14.924] 67,635
(0.010) (0.273) (12.574)

Bay Area 0.505*** -2.343*** -34.164* [-74.646,-15.522] 37,742
(0.020) (0.591) (16.990)

Los Angeles 0.438*** -1.722*** -29.972* [-59.485,-8.72] 81,998
(0.009) (0.350) (11.803)

San Diego 0.474*** -3.329*** -49.741 [-547.966,103.933] 17,498
(0.017) (0.667) (110.829)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coefficients when g(·) in equation (3) is approximated
using a quadratic polynomial for a different robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (3), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is Winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed effects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 2, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year. The number of
observations listed is prior to dropping unique zip-quarter cells and winsorizing.
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Table A12: IV Sample 1 Robustness 4: Miscellaneous Robustness Tests II

Dependent Var: Sell Within 13 Weeks Unless Otherwise Indicated

Specification Quadratic Polynomial Coefficients Quadratic Coefficient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Beta Varies By MSA-Year 0.481*** -2.442*** -48.770*** [-78.037,-33.523] 140,344
(0.008) (0.351) (11.218)

Beta Varies by MSA-Quarter 0.481*** -2.466*** -50.577*** [-78.156,-33.86] 140,344
(0.008) (0.349) (11.185)

Only Low All Cash Share ZIPs 0.512*** -3.163*** -47.394* [-103.288,-24.069] 58,171
(0.011) (0.521) (19.797)

Uniqueness: Any Characteristic 0.494*** -2.341*** -44.000*** [-70.292,-31.184] 116,495
Over 2 SD From Mean (0.008) (0.377) (10.148)

Uniqueness: Any Characteristic 0.504*** -2.384*** -47.284*** [-80.995,-33.281] 90,085
Over 1.5 SD From Mean (0.009) (0.384) (12.678)

High Aggregate Uniqueness Index 0.502*** -2.820*** -58.017*** [-98.104,-38.305] 92,645
(0.008) (0.484) (15.291)

FE: Quarter x ZIP x 0.480*** -2.321*** -43.091*** [-69.675,-28.318] 140,030
Top or Bottom Tier in ZIP (0.008) (0.327) (10.839)

FE: Quarter x ZIP x 0.480*** -2.516*** -45.689*** [-72.385,-22.595] 140,030
Tier Quartile in ZIP (0.008) (0.332) (12.072)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coefficients when g(·) in equation (3) is approximated
using a quadratic polynomial for a different robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (3), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is Winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed effects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 1, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
homes with under -10 percent estimated equity. The number of observations listed is prior to dropping unique zip-quarter cells
and winsorizing.
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Table A13: IV Sample 2 Robustness 4: Miscellaneous Robustness Tests II

Dependent Var: Sell Within 13 Weeks Unless Otherwise Indicated

Specification Quadratic Polynomial Coefficients Quadratic Coefficient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Beta Varies By MSA-Year 0.461*** -2.099*** -35.003*** [-52.123,-23.767] 137,238
(0.009) (0.292) (7.399)

Beta Varies by MSA-Quarter 0.462*** -2.103*** -35.346*** [-52.401,-24.195] 137,238
(0.009) (0.292) (7.412)

Only Low All Cash Share ZIPs 0.500*** -2.554*** -35.700* [-78.086,-17.256] 55,232
(0.013) (0.457) (15.817)

Uniqueness: Any Characteristic 0.477*** -2.076*** -33.991*** [-51.256,-24.2] 113,714
Over 2 SD From Mean (0.009) (0.306) (7.129)

Uniqueness: Any Characteristic 0.487*** -2.124*** -37.348*** [-61.747,-26.938] 88,003
Over 1.5 SD From Mean (0.010) (0.319) (9.079)

High Aggregate Uniqueness Index 0.484*** -2.474*** -44.945*** [-77.341,-29.962] 90,815
(0.010) (0.412) (11.603)

FE: Quarter x ZIP x 0.462*** -2.019*** -30.136*** [-48.423,-17.66] 136,654
Top or Bottom Tier in ZIP (0.009) (0.285) (7.814)

FE: Quarter x ZIP x 0.464*** -2.200*** -34.143*** [-54.441,-13.74] 136,654
Tier Quartile in ZIP (0.010) (0.273) (10.228)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coefficients when g(·) in equation (3) is approximated
using a quadratic polynomial for a different robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (3), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is Winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed effects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 2, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year. The number of
observations listed is prior to dropping unique zip-quarter cells and winsorizing.
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fixed effects are added.
The top section of Tables A14 and A15 show results for the subset of homes that transact

for three different outcome variables. First, it shows the main sale within 13 weeks outcome, for
which the concavity is still significant. The second two specifications show results using weeks on
the market as the outcome variable, for which concavity is indicated by a positive quadratic term
rather than a negative term when probability of sale is the dependent variable. For both the baseline
and alternate weeks on the market definitions, there is significant concavity.

The bottom section of Tables A14 and A15 show results for different sample restrictions. The
top row includes investors who previously purchased with all cash. The concavity is somewhat
weakened, which is not surprising as these sellers, who have had low appreciation since purchase,
likely upgrade the house in unobservable ways, which should make these low appreciation (and by
the instrument, high list price) houses sell faster, reducing the concavity.

For IV sample 1, the next four rows of Table A14 show results when the estimated equity
threshold for inclusion in the sample is changed, while the last two rows show results when short sales
and houses subsequently foreclosed upon are excluded and when houses with negative appreciation
since purchase are excluded.2 While the results are robust, they are weaker when we condition on a
higher equity requirement. This is the case both because shrinking sample sizes expand confidence
intervals and because the point estimate on the quadratic term drops a bit as the lowest appreciation
since purchase borrowers have non-zero equity and are less sensitive to the instrument. Nonetheless,
the results are either significantly concave or just barely insignificant at the 95 percent confidence
level, making clear that the finding of concavity is not being driven by the sample selection criteria.

For IV sample 2, the bottom three rows of table A15 impose an estimated equity requirement
of varying levels on IV sample 2. Again, the results are a bit weaker for higher equity requirements
but are still significant.

Finally Tables A16 and A17 show results controlling for the number of nearby foreclosures
(within 1 and 0.25 miles) over the entire downturn and over the past year. The results are very
stable, indicating that the concavity cannot be explained by nearby foreclosure sales. These results
are largely unchanged if one looks at other distance thresholds.

C.4 Ordinary Least Squares

An alternative to IV is to assume that there is no unobserved quality and thus no need for an
instrument. This ordinary least squares approach implies that:

p̃h`t = ⇠`t + �Xh`t,

and so ph`t � p̃h`t is equal to the regression residual ⌘h`t in:

ph`t = ⇠`t + �Xh`t + ⌘h`t, (A8)

which can be estimated in a first stage and plugged into the second stage equation:

dh`t = g (⌘h`t) +  `t + "h`t.
2For a few of the specifications with a high equity threshold, houses with less than 10 percent negative appreciation

since purchase (rather than negative 20 percent) are dropped. This is done so that the stricter equity requirement does
not make it so that the houses with the lowest appreciation since purchase are essentially all sellers who previously
purchased with abnormally high down payments and who should be far less responsive to the instrument.
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Table A14: IV Sample 1 Robustness 5: Transactions Only and Relaxing Sample Restrictions

Dependent Variable Quadratic Polynomial Coefficients Quadratic Coefficient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Sell Within 13 Weeks 0.680*** -1.991*** -56.791** [-102.866,-35.732] 96,400
(0.007) (0.325) (17.277)

Weeks on Market 12.959*** 69.766*** 2,008.614*** [1333.398,3282.778] 96,400
(0.217) (9.739) (492.627)

Weeks on Market 11.130*** 57.628*** 1,758.968*** [1149.601,2919.092] 96,400
Alternate Defn (0.407) (7.678) (436.691)

Including Investors Who Prev 0.480*** -1.553*** -21.995* [-45.709,-12.182] 169,147
Purchased With All Cash (0.007) (0.272) (8.594)
Keeping Estimated Equity 0.451*** -3.215*** -49.967*** [-89.533,-31.677] 158,217

> -30% (0.008) (0.477) (15.030)
Keeping Estimated Equity 0.464*** -3.054*** -54.223*** [-95.958,-36.222] 150,932

> -20% (0.008) (0.450) (15.497)
Keeping Estimated Equity 0.498*** -1.410*** -22.902** [-39.058,-1.223] 113,717

> 0 % † (0.009) (0.266) (8.845)
Keeping Estimated Equity 0.512*** -1.001*** -15.918* [-26.834,2.268] 99,640

> 10% † (0.009) (0.216) (6.893)
Dropping Short Sales and 0.499*** -1.360*** -23.190** [-39.136,-5.792] 107,896
Subsequent Foreclosure † (0.010) (0.236) (8.128)
Dropping Short Sales and 0.475*** -1.132*** -29.955** [-55.902,-16.12] 102,342

Neg Appreciation Since Purch (0.010) (0.300) (10.174)
Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coefficients when g(·) in equation (3) is approximated
using a quadratic polynomial for a different robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (3), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is Winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed effects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 1, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
homes with under -10 percent estimated equity. The number of observations listed is prior to dropping unique zip-quarter cells
and winsorizing. The rows with a † indicate that rather than excluding households who had less than negative 20 percent
appreciation since purchase from the sample, households with less than negative 10 percent appreciation since purchase have
been excluded. This is done so that the stricter equity requirement does not make it so that the houses with the lowest
appreciation since purchase have essentially all sellers who previously purchased with abnormally high down payments.
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Table A15: IV Sample 2 Robustness 5: Transactions Only and Relaxing Sample Restrictions

Dependent Variable Quadratic Polynomial Coefficients Quadratic Coefficient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Sell Within 13 Weeks 0.710*** -0.910*** -23.200*** [-37.92,-12.298] 86,033
(0.007) (0.131) (6.773)

Weeks on Market 11.953*** 28.944*** 753.945*** [474.25,1126.112] 86,033
(0.212) (4.313) (167.095)

Weeks on Market 10.278*** 22.794*** 714.468*** [480.683,1051.453] 86,033
Alternate Defn (0.354) (3.660) (145.799)

Including Investors Who Prev 0.463*** -1.442*** -18.225** [-35.973,-10.607] 166,595
Purchase With All Cash (0.008) (0.263) (6.580)

Keeping Estimated Equity 0.477*** -1.815*** -24.651*** [-39.623,-15.414] 129,481
> -30% (0.009) (0.257) (6.090)

Keeping Estimated Equity 0.482*** -1.685*** -21.100*** [-33.209,-10.933] 126,501
> -20% (0.009) (0.236) (5.508)

Keeping Estimated Equity 0.488*** -1.483*** -13.854* [-23.383,-1.408] 121,369
> -10 % (0.009) (0.209) (5.434)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coefficients when g(·) in equation (3) is approximated
using a quadratic polynomial for a different robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (3), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is Winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed effects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 2, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year. The number of
observations listed is prior to dropping unique zip-quarter cells and winsorizing.
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Table A16: IV Sample 1 Robustness 6: Controls for Nearby Foreclosures

Dependent Variable Quadratic Polynomial Coefficients Quadratic Coefficient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Control For Foreclosures (0.008) (0.339) (12.415)
Within .25 Miles Over Entire Downturn 0.479*** -2.301*** -41.762** [-78.965,-30.086] 140,344

Control For Foreclosures (0.008) (0.358) (13.021)
Within 1 Mile Over Entire Downturn 0.479*** -2.308*** -41.484** [-78.457,-29.78] 140,344

Control For Foreclosures (0.008) (0.342) (12.338)
Within .25 Miles in Past Year 0.479*** -2.293*** -41.415** [-78.461,-29.906] 140,344

Control For Foreclosures (0.008) (0.359) (13.025)
Within 1 Mile in Past Year 0.479*** -2.303*** -41.487** [-78.618,-29.784] 140,344

(0.008) (0.357) (12.944)
Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coefficients when g(·) in equation (3) is approximated
using a quadratic polynomial for a different robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (3), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is Winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed effects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 1, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
homes with under -10 percent estimated equity. The number of observations listed is prior to dropping unique zip-quarter cells
and winsorizing.

Table A17: IV Sample 2 Robustness 6: Controls for Nearby Foreclosures

Dependent Variable Quadratic Polynomial Coefficients Quadratic Coefficient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

Control For Foreclosures 0.460*** -1.965*** -28.984*** [-55.093,-20.726] 137,238
Within .25 Miles Over Entire Downturn (0.009) (0.284) (8.664)

Control For Foreclosures 0.460*** -1.952*** -28.402*** [-53.095,-20.356] 137,238
Within 1 Mile Over Entire Downturn (0.009) (0.277) (8.325)

Control For Foreclosures 0.460*** -1.956*** -28.846*** [-55.099,-20.525] 137,238
Within .25 Miles in Past Year (0.009) (0.285) (8.663)

Control For Foreclosures 0.460*** -1.944*** -28.266*** [-53.067,-20.276] 137,238
Within 1 Mile in Past Year (0.009) (0.279) (8.337)

Notes: * p <0.05, ** p<0.01, *** p<0.001. Each row shows regression coefficients when g(·) in equation (3) is approximated
using a quadratic polynomial for a different robustness test described in the first column and detailed in the appendix text.
A first stage regression of log list price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter
of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in (6), is estimated by OLS.
The predicted value of the polynomial of the instrument is used as the relative markup in equation (3), which is estimated by
OLS. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction error in the repeat-sales
house price index in the observation’s ZIP code from 1988 to 2013. Before running the second-stage regression, 0.5 percent
of the sample is Winsorized on each end of the distribution of the relative markup, and any observations fully absorbed by
fixed effects are dropped. Standard errors and the 95 percent confidence interval for the quadratic term are computed by block
bootstrapping the entire procedure on 35 ZIP-3 clusters. The sample, IV sample 2, drops sales of foreclosures, sales of homes
with less than negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and
DataQuick determined short sales and withdrawn listings that are foreclosed upon in the subsequent year. The number of
observations listed is prior to dropping unique zip-quarter cells and winsorizing.
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Figure A11: The Effect of List Price on Probability of Sale: Ordinary Least Squares
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A. All Listings
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B. Transactions Only
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C. IV Sample 1
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D. IV Sample 2

Notes: Each panel shows a binned scatter plot of the probability of sale within 13 weeks against the log relative markup. The

OLS methodology assumes no unobserved quality. To create each figure, a first stage regression of log list price on fixed effects

at the ZIP x first quarter of listing level x seller distress status level and repeat sales and hedonic log predicted prices, as in

(A8), is estimated by OLS. Distress status corresponds to three groups: normal sales, REOs (sales of foreclosed homes and

foreclosure auctions), and short sales (cases where the transaction price is less than the amount outstanding on the loan and

withdrawals that are subsequently foreclosed on in the next two years). The residual is used as the relative markup in equation

(3), which is estimated by OLS. The figure splits the data into 25 equally-sized bins of the estimated relative markup and plots

the mean of the estimated relative markup against the log of the mean of the probability of sale within 13 weeks net of fixed

effects for each bin. Before binning, 0.5 percent of the sample is Winsorized on each end of the distribution of the relative

markup, and any observations fully absorbed by fixed effects are dropped. The entire procedure is weighted by the reciprocal

of the standard deviation of the prediction error in the repeat-sales house price index in the observation’s ZIP code from 1988

to 2013. Panel A uses all listings with a prior observed sale N=416,373. Panel B uses listings with a prior observed sale that

lead to transactions N = 310,758. Panel C uses IV sample 1,which drops sales of foreclosures, sales of homes with less than

negative 20 percent appreciation since purchase, sales by investors who previously purchased with all cash, and homes with

under -10 percent estimated equity. For panel C, N=140,344. Panel D uses IV sample 2 does away with the estimated equity

requirement in IV sample 1 and instead drops DataQuick determined short sales and withdrawn listings that are foreclosed

upon in the subsequent year. For panel D, N=137,2387. In all cases, he number of observations listed is prior to dropping

unique zip-quarter cells and winsorizing.

Given the importance of unobserved quality, this is likely to provide significantly biased results,
but it is worth considering as a benchmark as discussed in the main text. This section provides
additional OLS results to show that the findings in columns one, two, and four of Table 2 are robust.

33



Table A18: Ordinary Least Squares Robustness

Dependent Var: Weeks on Market

Specification Quadratic Polynomial Coefficients Quadratic Coefficient
(Details In Text) Constant Linear Quadratic Bootstrapped 95% CI Obs

House Characteristic 0.460*** -0.184*** -0.612*** [-0.769,-0.506] 399,423
Controls (0.005) (0.010) (0.068)

Alternate Time 0.514*** -0.222*** -0.530*** [-0.703,-0.402] 416,373
to Sale Defn (0.013) (0.014) (0.080)

Dep Var: 18 Weeks 0.542*** -0.180*** -0.595*** [-0.773,-0.467] 416,373
(0.005) (0.015) (0.080)

Dep Var: 10 Weeks 0.393*** -0.218*** -0.467*** [-0.633,-0.352] 416,373
(0.004) (0.012) (0.074)

Hedonic Predicted 0.470*** -0.176*** -0.391*** [-0.578,-0.236] 663,976
Price Only (0.006) (0.012) (0.091)

Low REO ZIPs 0.470*** -0.331*** -0.382* [-0.752,-0.147] 134,666
(0.013) (0.026) (0.174)

Low Short Sale ZIPs 0.476*** -0.325*** -0.433* [-0.765,-0.146] 109,249
For Predicted Price (0.016) (0.022) (0.172)

Only FE Cells With 0.460*** -0.250*** -0.481*** [-0.715,-0.336] 251,945
At Least 20 Obs (0.008) (0.014) (0.099)
Predicted Prices 0.459*** -0.212*** -0.596*** [-0.725,-0.495] 416,373

Introduced as Cubic (0.004) (0.011) (0.059)
Beta Varies By MSA-Year 0.458*** -0.199*** -0.543*** [-0.704,-0.437] 416,373

(0.005) (0.012) (0.070)

First Listed 2008-7/2010 0.451*** -0.289*** -0.452*** [-0.637,-0.31] 223,429
(0.008) (0.013) (0.084)

First Listed 7/2010-2013 0.465*** -0.106*** -0.595*** [-0.757,-0.499] 192,944
(0.005) (0.018) (0.069)

Bay Area 0.478*** -0.213*** -0.573*** [-0.728,-0.414] 110,719
(0.010) (0.015) (0.081)

Los Angeles 0.446*** -0.199*** -0.495*** [-0.755,-0.336] 247,818
(0.005) (0.019) (0.110)

San Diego 0.473*** -0.196*** -0.718*** [-0.759,-0.677] 57,836
(0.008) (0.030) (0.025)

Notes: * p<0.05, ** p<0.01, *** p<0.001. Each row shows regression coefficients when g(.) in equation (3) is approximated
using a quadratic polynomial. Quality is assumed to be perfectly measured by the hedonic and repeat-sales predicted prices and
have no unobserved component. Consequently, the log list price is regressed on fixed effects and the predicted prices and uses
the residual as the estimated relative markup into equation (3), as described in Appendix C. The fixed effects at the quarter of
initial listing x ZIP x distress status level. Distress status corresponds to three groups: normal sales, REOs (sales of foreclosed
homes and foreclosure auctions), and short sales (cases where the transaction was less than the amount outstanding on the loan
and withdrawals that are subsequently foreclosed on in the next two years). The entire procedure is weighted by the reciprocal
of the standard deviation of the prediction error in the repeat-sales house price index in the observation’s ZIP code from 1988
to 2013. Before running the second-stage regression, 0.5 percent of the sample is Winsorized on each end of the distribution
of the relative markup, and any observations fully absorbed by fixed effects are dropped. Standard errors and the 95 percent
confidence interval for the quadratic term are computed by block bootstrapping the entire procedure on 35 ZIP-3 clusters. The
number of observations listed is prior to dropping observations that are unique to a ZIP-quarter cell and winsorizing. The
appendix text details each specification.
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Because the OLS sample may include distressed sales, I take a conservative approach and include
fixed effects at the ZIP ⇥ quarter ⇥ distress status level. Distressed status is defined as either non-
distressed, REO, or a short sale (or withdrawn listing subsequently foreclosed upon). The results
would look similar if ZIP ⇥ quarter fixed effects were used and an additive categorical control for
distressed status were included in Xh`t.

First, Figure A11 shows binned scatter plots for OLS for all listings, transactions only, and each
of the IV samples. In each, a clear pattern of concavity is visible, but as discussed in the main text,
the upward slope on the left indicates the presence of substantial unobserved quality—particularly
among homes that do not sell—and thus the need for an instrument.3 The concavity is only slightly
stronger in the IV samples, assuaging concerns about sample selection. Importantly, most of the
differences occur in the extremely low log relative markup quantiles, which do not look like outliers
in the IV binned scatter plot, assuaging concerns about sample selection driving some of the findings
of concavity.

Table A18 shows a number of robustness and specification checks. Those different from the IV
specification checks described previously are:

• House Characteristic Controls: As with IV, this includes a third-order polynomial in age, log
square feet, bedrooms, and bathrooms, but it also includes additive fixed effects for quintiles
of the time since purchase distribution in Xh`t.

• Hedonic predicted price only: Drops the repeat-sales house price index from Xh`t. This
expands the sample to all listings in the data rather than only those with a prior observed
sale.

• Low REO ZIPs: Only includes ZIP codes with less than 20 percent REO sale shares from
2008 to 2013. (REO is a sale of a foreclosed property.)

• Low Short ZIPs: Only includes ZIP codes with less than 20 percent short sale shares from
2008 to 2013. (A short sale occurs when a homeowner sells their house for less than their
outstanding mortgage balance and must negotiate the sale with their lender.)

• No REO or Short Sale: Drops REOs, short sales, and withdrawn sales subsequently foreclosed
upon homes, thus only leaving non-distressed sales.

• Transactions only: Drops houses withdrawn from the market.

• IV Subsample: Drops homes with negative appreciation since purchase, REOs, and homes
previously purchased with all cash.

All specifications show significant concavity.

C.5 Robustness to Other Sources of Markup Variation

In my estimation, I assume ⇣h`t = 0, that is that there are no other sources of markup variation
that manifest themselves as Berkson measurement error. While this is not realistic, I argue that if
⇣h`t 6= 0 and ⇣h`t ? f (zh`t), using a quadratic or cubic polynomial for g (·) will lead to unbiased
estimates of the coefficient on the quadratic or cubic terms. This appendix relaxes these assumptions
to assess the robustness of the econometric strategy to other sources of markup variation entering

3An alternative explanation is that in the later years of my sample I do not have follow-up data on foreclosures, so
some withdrawn short sales are counted as non-distressed. This may explain some of the upward slope, as the upward
slope is concentrated in non-withdrawn properties, high short sale ZIP codes, and the later years of my sample.
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g (·) nonlinearly when ⇣h`t is independent of the instrument and when ⇣h`t is correlated with the
instrument.

Recall that I want estimate the non-linear effect of the relative markup ph`t � p̃h`t on the
probability of sale dh`t. The reference price is p̃h`t = ⇠`t + qh`t, where ⇠`t is the average price in
location ` at time t. qh`t is quality defined as qh`t = �Xh`t + uh`t where uh`t is unobserved quality
and Xh`t are observable measures of quality. Unobserved quality affects qh`t, which in turn affects
p̃h`t.

Unobserved quality is problematic for two reasons. First, it is likely correlated with price. This
endogeneity problem is the main issue I address through instrumental variables. Second, one cannot
observe p̃h`t directly, so there is a measurement error problem. In a classical measurement error
setup in which the error is independent of the true value, the instrumental variable would solve this
issue as well. However, here by construction I have that �Xh`t, the observed quality, is independent
of uh`t, the unobserved quality. In other words, the measurement error is independent of the proxy I
see (observed quality) rather than being independent of true quality qh`t. This is known as Berkson
measurement error, and it cannot be solved through traditional IV methods.4 This manifests itself
in the first stage of the IV estimation:

ph`t � p̃h`t = f (zh`t) + ⇣h`t

= f (zh`t) + ⇠`t + �Xh`t + uh`t + ⇣h`t.

The residual now has two components: uh`t, which is part of p̃h`t, and ⇣h`t, which is not. One thus
cannot identify ph`t � p̃h`t as it is observed with measurement error.

To assess whether the assumption that ⇣h`t = 0 may generate spurious concavity, I perform
Monte Carlo simulations that relax the assumptions in the main lemma. To do so, for each house
in IV sample 1 (results are similar across the two samples) I simulate dh`t using an assumed true
g (·), which is either the baseline cubic fit to the data in Figure 2 in the text or a linear fit to the
data, and an assumed measurement error distribution ⇣h`t. I simulate dh`t using:

dh`t = g (ph`t � p̃h`t) +  `t + "h`t.

However, rather than assuming ph`t � p̃h`t = f (zh`t), I let ph`t � p̃h`t = f (zh`t) + ⇣h`t and report
results for different parameterizations for the other sources of relative markup variation ⇣h`t.

Specifically, I follow a five step procedure 1,000 times and report the average values:

1. Based on first stage, calculate ph`t � p̃h`t = f (zh`t). In doing so, I drop the 1st and 99th
percentile, which remain dropped throughout the exercise so sample sizes are consistent.

2. Estimate  `t given assumed g (·).

3. Draw ⇣h`t from assumed distribution. Using the assumed g (·), calculate g (f (zh`t) + ⇣h`t)+ `t.

4. dh`t is drawn from a Bernoulli distribution in which the house sells with probability g (f (zh`t) + ⇣h`t)+
 `t.

5. Run the estimator of interest on the simulated dh`ts.

4There are two main ways to address Berkson measurement error in a nonlinear setting. First, one can have
an additional outcome variable, which can be used as an instrument. I do not have such a variable here. Second,
one can use higher-order conditional moments (e.g. E

⇥
Y 2|X

⇤
in addition to E [Y |X]) to identify the distribution of

Berkson error. Unfortunately, this does not work either as a I have a binary outcome variable and so the higher-order
conditional moments do not provide any additional information. I have used this technique on alternate outcomes
such as weeks on the market conditional on a transaction, and my finding of concavity is unchanged.
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Table A19: Monte Carlo Simulations: Adding Independent Noise to Concave and Linear True
Demand Curve

Panel A: ⇣h`t Added to Concave Assumed True Demand Curve
Quadratic Polynomial SD of ⇣h`t

Coef Estimates 0 0.02 0.04

Constant 0.4789 0.464 0.422
(0.002) (0.002) (0.002)

Linear -2.218 -1.812 -0.820
(0.077) (0.077) (0.077)

Quadratic -41.572 -41.756 -35.524
(4.508) (4.662) (4.411)

Quadratic [-49.754,-32.349] [-50.934,-32.372] [-44.065,-26.622]
95% CI

Panel B: ⇣h`t Added to Linear Assumed True Demand Curve
Quadratic Polynomial SD of ⇣h`t

Coef Estimates 0 0.02 0.04

Constant 0.463 0.463 0.464
(0.002) (.002) (.002)

Linear -2.319 -2.317 -2.295
(0.083) (0.079) (0.077)

Quadratic 3.291 3.207 3.148
(4.513) (4.488) (4.39)

Quadratic [-5.673,11.947] [-5.362,11.746] [-5.427,11.722]
95% CI

Notes: Each column shows the mean and standard deviation over 1,000 Monte Carlo simulations of the point estimates of a
quadratic polynomial for g(·) as in the main text. The simulated data is the actual data for all parameters except for whether
the house sold within 13 months, which is created as simulated data using an assumed value for g(·), here a cubic estimate, and
then adding noise to the first stage relative markup that is independent of the instrument and normally distributed with mean
zero and the indicated standard deviation. The simulation procedure is described in detail in the Appendix text and uses IV
sample 1.

Table A19 shows results with a normally distributed ⇣h`t that is independent of f (zh`t). In
panel A, the assumed true g (·) is the third-order polynomial estimate of g (·) shown in Figure 2
in the main text. In panel B, the assumed true g (·) is a linear fit to the data, identical to Figure
2 in the main text but with a linear fit instead of a cubic fit. Panel A shows that increasing the
standard deviation of ⇣h`t leads to a g (·) that is steeper and more linear than the baseline estimates,
reflecting bias if the true g (·) is not a polynomial. Panel B shows that adding noise to a linear
true g (·) does not create spurious concavity. Other sources of variation in the relative markup that
are independent of the instrument would thus likely lead to an under-estimate of the true degree of
concavity, if anything, and would not generate spurious concavity.

Spurious concavity is, however, a possibility if the variance of ⇣h`t were correlated with zh`t.
Specifically, consider the case where the instrument captures most of the variation in the relative
markup for sellers with low appreciation since purchase but little of the variation with high appre-
ciation since purchase. Then the observed probability of sale at low ph`t� p̃h`t would be an average
of the probabilities of sale at true ph`t � p̃h`ts that are scrambled, yielding an attenuated slope for
low ph`t � p̃h`t. However, at high ph`t � p̃h`t, the observed ph`t � p̃h`t would be close to the true
ph`t � p̃h`t, yielding the true slope.

Table A20 illustrates that this type of bias could create spurious concavity. However, generating
the amount of concavity I observe in the data would require an extreme amount of unobserved vari-
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Table A20: Monte Carlo Simulations: Other Sources of Markup Variation Corr With Instrument

SD f (z) < .01 0 0.10 0.20 0.50 0.20 0.40
SD f (z) � .01 0 0 0 0 0.10 0.10

Constant 0.463 0.466 0.473 0.484 0.474 0.482
(0.002) (0.002) (0.002) (0.002) (0.002) (.002)

Linear -2.316 -2.273 -2.154 -1.973 -1.993 -1.847
(0.078) (0.081) (0.082) (0.082) (0.082) (0.081)

Quadratic 3.184 -2.434 -15.990 -37.090 -10.929 -27.476
(4.480) (4.523) (4.659) (4.682) (4.728) (4.652)

Quadratic [-5.893,11.690] [-11.253,5.992] [-25.000,-7.128] [-46.687,-27.727] [-20.048,-1.858] [-36.481,-18.358]
95% CI

Notes: Each column shows the mean and standard deviation over 1,000 Monte Carlo simulations of the point estimates of a
three-part spline in g(·) as in the main text. The simulated data is the actual data for all parameters except for whether the
house sold within 13 months, which is created as simulated data using an assumed value for g(·), here a cubic estimate, and then
adding noise to the first stage relative markup. Here the variance of the noise depends on f (z

h`t

) (the estimated log relative
markup) and thus the instrument. Specifically, the noise is normally distributed with a standard deviation equal to the first
row if f (z

h`t

) < .01 and the second row if f (z
h`t

) � .01. This makes the noise larger for homes with more appreciation since
purchase, creating the potential spurious concavity from heteroskedasticity described in the text. The simulation procedure is
described in detail in the Appendix text and uses IV sample 1.

ation in the relative markup at low levels of appreciation since purchase and virtually no unobserved
variation in the relative markup at high levels of appreciation. To show this, I assume the true g (·)
is linear and let the standard deviation of ⇣h`t depend on f (zh`t) in a piecewise manner as indicated
in the first two rows of the table. This piecewise formulation is a particularly extreme dependence
of ⇣h`t on f (zh`t). The first column shows estimates with no noise, which are approximately linear.
To generate statistically-significant spurious concavity, the standard deviation of other sources of
variation in the relative markup must be near 0.2 log points for high appreciation since purchase
and zero for low appreciation since purchase. However, the lower bound of the 95 percent confidence
interval in this case still falls well short of the point estimates of the quadratic term in in the baseline
IV specification for sample 1 shown in Table 2. To match the point estimate on the quadratic term
requires the relative markup be near 0.5 log points for high appreciation since purchase and zero for
low appreciation since purchase. This is an extreme amount of measurement error for high appreci-
ation since purchase relative to low appreciation since purchase: at high appreciation since purchase
the measurement error must have roughly 20 times the variation induced by the instrument and
must account for nearly the entire amount of variation in list and transaction prices in the raw data.
This is implausible as unobserved quality is almost certain to account for some of the variation in
list and transaction prices for all levels of appreciation since purchase, which bounds the variance of
the measurement error distribution below what is necessary to generate significant spurious concav-
ity. The last two columns show that one can obtain significant concavity with slightly less extreme
assumptions, but still to get a point estimate near what I observe in the data, one would need a
standard deviation of 0.1 log points for high appreciation since purchase and 0.4 log points for high
appreciation since purchase, which again seems implausibly large.

D Facts About House List Prices

This appendix provides facts about house list prices that motivate some of the assumptions made
in the model
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Figure A12: Histogram of the Difference Between Log Transaction Price and Log Final List Price
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Notes: The figure shows a histogram of the difference between log transaction price at the time of sale and log final list price

for all homes in the San Francisco Bay, Los Angeles, and San Diego areas that were listed between April 2008 and February

2013 that are matched to a transaction and have a previous observed listing. The 1st and 99th percentiles are dropped from

the histogram. N = 470,655.

D.1 List Prices Relative to Transaction Prices

As mentioned in the main text, the modal house sells at its list price at the time of sale and the
average and median house sell within 0.016 log points of their list price. To illustrate this, Figure
A12 shows a histogram of the difference between the log final list price at sale and the log transaction
price in the Altos-DataQuick merged data after extreme outliers likely due to typos in the list or
transaction price have been dropped. 9.17 percent of transactions occur exactly at the final list
price, and 22.63 percent occur within one percent of the final list price. The mean of the difference
between the log final list price and the log first list price is -0.016 log points, and the median is
-0.010 log points.

Table A21 reinforces these findings by showing mean and median log difference for each of the
three MSAs in each year. The mean does not fluctuate by more than 0.03 log points across years
and MSAs.

Note that the stability of the difference between list price and transaction price across years and
markets does not hold for the initial list price. This is because most houses are listed high and then
the list price is lowered over time. Consequently, the difference between the log first list price and
the transaction price is -0.060 log points, 0.044 log points below the difference between the log final
list price and the transaction price. This varies over time and across markets because the number
of markdowns varies as time to sale varies with market conditions. While this feature of the data
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Table A21: Difference Between Log Transaction Price and Log Final List Price

Mean Median

SF Bay Los Angeles San Diego SF Bay Los Angeles San Diego

2008 -0.021 -0.008 -0.023 -0.013 -0.017 -0.011
2009 0.001 -0.028 -0.010 0.000 0.000 -0.003
2010 -0.011 -0.008 -0.026 -0.007 -0.013 -0.019
2011 -0.015 -0.021 -0.031 -0.011 -0.018 -0.023

2012-3 0.008 -0.026 -0.009 0.000 -0.005 -0.002
Notes: Each cell shows the mean difference between the log transaction price and log final list price in the indicated MSA-year

cell. To reduce the influence of outliers, the 1st and 99th percentiles have bin dropped. N = 470,655.

is abstracted from in the model, the model does allow for list prices to change as market conditions
change, and thus it does allow for there to be differences between the initial and final list price. The
key assumption is that houses sell at their final list price.

It is, however, possible that the difference between list and transaction prices varies systemati-
cally based on whether a house is listed above or below average. This would be problematic because
I assume that the house sells at its list price regardless of whether it is overpriced or not.

To address this concern, I replicate the IV approach in the main text, but replace the indicator
variable for whether the house was sold within 13 months with the difference between the log list
price and the log transaction price, using both the first and final log list price. The IV control
for unobserved quality is essential here, as in OLS it is unclear whether a house is being listed
high because it is of high unobserved quality or because the seller has chosen a high list price. By
instrumenting for unobserved quality, I isolate the effect of listing high relative to a house’s quality
on whether the house sells above or below its list price.

Figure A13 shows the results. The left column shows IV sample 1, while the right column
shows IV sample 2. The top row shows binned scatter plots where the dependent variable is the
log transaction price minus the log first list price, while the bottom row shows binned scatter plots
where the dependent variable is the log transaction price minus the log final list price. In none of
them is there a pronounced pattern. If anything, the difference between the log transaction price
and log first list price shows a slight inverse-U pattern, suggesting that sellers have to cut their
price less on average if they set their price at the “correct” initial price, but this effect is small and
insignificant. The difference between the log transaction price and log final list price shows no clear
pattern.

These results suggest that for empirically-relevant forms of ex-post bargaining, the list price
is the best predictor of the transaction price. Due to linear utility in the model, this will not
substantially alter the seller’s incentive to set a list price close to the market average. In particular,
if the demand curve d

⇣

plistt ,⌦t, ˜✓t

⌘

is concave in list price but the sale price is pt = plistt + � where
� is mean-zero error, then the seller’s problem will be:

max

plist
t

E�

h

d
⇣

plistt ,⌦t, ˜✓t

⌘⇣

plistt + � � s� �V s
t+1

⌘i

which reduces to
max

plist
t

d
⇣

plistt ,⌦t, ˜✓t

⌘⇣

plistt � s� �V s
t+1

⌘

which is the same seller problem as my model with no ex-post bargaining.
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Figure A13: IV Specification: Difference Between Log Transaction Price and Log List Price vs. Log
Relative Markup
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Notes: Each panel shows a binned scatter plot of the difference between the transaction price and the indicated log list price

for the set of houses that transact net of ZIP ⇥ first quarter of listing fixed effects (with the average probability of sale within

13 weeks added in) against the estimated log relative markup p� p̃. To create the figure, a first stage regression of the log list

price on a fifth-order polynomial in the instrument, fixed effects at the ZIP x first quarter of listing level, and repeat sales and

hedonic log predicted prices, as in (6), is estimated by OLS. The predicted value of the polynomial of the instrument is used

as the relative markup. The figure splits the data into 25 equally-sized bins of this estimated relative markup and plots the

mean of the estimated relative markup against the mean of the difference between the log transaction and log list price net

of fixed effects for each bin, as detailed in Appendix C. Before binning, the top and bottom 0.5 percent of the log sale price

residual and any observations fully absorbed by fixed effects are dropped. The entire procedure is weighted by the reciprocal

of the standard deviation of the prediction error in the repeat-sales house price index in the observation’s ZIP code from 1988

to 2013. IV sample 1 drops sales of foreclosures, sales of homes with less than negative 20 percent appreciation since purchase,

sales by investors who previously purchased with all cash, and homes with under -10 percent estimated equity. IV sample 2

does away with the estimated equity requirement and instead drops DataQuick determined short sales and withdrawn listings

that are foreclosed upon in the subsequent year. The sample is the sample of houses that transact in each IV sample. N =

96,400 observations for IV sample 1 and 86,033 observations for IV sample 2 prior to dropping unique zip-quarter cells and

winsorizing.
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Figure A14: Kaplan-Meier Survival Curve For List Prices
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Notes: The figure shows the Kaplan-Meier survival curve for list price in the Altos-DataQuick data, where sales and withdrawals

are treated as censored observations and a price change is treated as a failure. The curve thus corresponds to the probability

of a list price surviving for a given number of weeks conditional on the property not having sold. The sample is made up of

885,836 listings with 1,849,398 list prices and 15,104,588 week-listings of homes in the San Francisco Bay, Los Angeles, and

San Diego areas. Any match between Altos and DataQuick is included in this sample. To help the reader observe price change

hazards in the first several weeks of listing, the survival curve is only shown through 20 weeks.

D.2 Frequency of Price Changes in Microdata

To assess the frequency of price changes in the microdata, I use the Altos-DataQuick matched data.
I create a dataset where each observation is a week-listing, with listings consolidated together so
that de-listings and re-listings within 13 weeks without an intervening foreclosure are counted as a
single listing (this is why I use only Altos listings that are matched to a DataQuick property). For
the three MSAs, this gives me 885,836 listings with 1,849,398 unique price-listings and 15,104,588
week-listings.

Figure A14 shows the Kaplan-Meier survival curve for list prices, which plots the probability
that a price survives for a given number of weeks conditional on the house not selling or being
withdrawn from the market. The median price lasts 9 weeks (week 1 to week 10), or approximately
two months. This is used to motivate a two-month fixed price in the staggered pricing model.

E Model

For simplicity of exposition, I define everything for the rule of thumb model and then describe how
the staggered pricing model differs rather than juggling the two simultaneously.
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E.1 Lemma 2: Optimal Price Setting

From the definition of V s
t , sellers solve:

max

p
t

d
⇣

pt,⌦t, ˜✓t

⌘

⇥

pt � s� �V s
t+1

⇤

,

with first order condition:

0 =

@d
⇣

pt,⌦t, ˜✓t

⌘

@pt

⇥

pt � s� �V s
t+1

⇤

+ d
⇣

pt,⌦t, ˜✓t

⌘

pt = s+ �V s
t+1 +

d
⇣

pt,⌦t, ˜✓t

⌘

�@d
(

p
t

,⌦
t

,✓̃
t

)

@p
t

.

Using the definitions of df and dd:

@df
⇣

pt,⌦t, ˜✓t

⌘

@pt
= df

⇣

pt,⌦t, ˜✓t

⌘



�f (·)
1� F (·) +

�g (·)
1�G (·)

�

,

and
@dd

⇣

pt,⌦t, ˜✓t

⌘

@p
= dd

⇣

pt,⌦t, ˜✓t

⌘



g (·)
G (·) +

�f (·)
1� F (·)

�

.

So that the markup is (suppressing arguments for parsimony):

dt

�@d
t

@p
t

=

df + dd

df
h

f
1�F +

g
1�G

i

+ dd
h

f
1�F � g

G

i

=

df + dd

d f
1�F + df

h

g
1�G

i

� dd
h

1�G
G

g
1�G

i

=

df + dd

d f
1�F + d g

1�G � g
1�G

1
Gd

d

=

1

f
1�F +

g
1�G

⇣

1� 1
G

dd

d

⌘ .

This optimal price is unique on the concave region of the demand curve by standard arguments.
However, the problem may not be globally concave if "̄ is past the point where G (·) begins to
flatten, and sellers may have an incentive to deviate. If they do, they would always choose "̄, as
the demand curve is very inelastic in the non-concave region, pushing the markup to the highest
possible level. I describe tests for whether the seller would like to deviate to post "̄ in Section E.4.
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E.2 F(·) Distribution, Full Equilibrium System, and Simulation Details

The F (·) distribution is parameterized as a uniform distribution with a mass point of weight � at
"̄. The density for " < "̄ is defined by:

Z "̄

"
f (") d" = 1� �,

where f (") is a constant f . Thus,
Z "̄

"
fd" = 1� �) f ("̄� ") = 1� �) f =

1� �

"̄� "
.

The survivor function is:

1� F (") =

Z "̄

"
f (") d"+ � =

("̄� ") (1� �)

"̄� "
+ �

=

("̄� ") (1� �) + � ("̄� ")

"̄� "

=

"̄� "+ � ("� ")

"̄� "
.

The hazard function is:

h (") =
f (")

1� F (")
=

1��
"̄�"

("̄�")(1��)
"̄�" + �

=

1

("̄� ") + �
1�� ("̄� ")

.

The upper-tail conditional expectation is:

E ["|" > "⇤] =

R "̄
"⇤ "f (") d"

1� F ("⇤)
=

�"̄+ 1��
"̄�"

R "̄
"⇤ "d"

("̄�")(1��)
"̄�" + �

=

�"̄+ 1��
"̄�"

R "̄
"⇤ "d"

("̄�")(1��)
"̄�" + �

=

�"̄+ 1��
"̄�"

"̄2�"⇤
2

2

("̄�")(1��)
"̄�" + �

=

�"̄+ 1��
"̄�"

("̄+"⇤)("̄�"⇤)
2

("̄�")(1��)
"̄�" + �

=

�"̄ ("̄� ") + 1��
2 ("̄+ "⇤) ("̄� "⇤)

"̄� "⇤ + � ("⇤ � ")
.

The mean excess function is thus:

E ["� "⇤|" > "⇤] =

�"̄ ("̄� ") + 1��
2 ("̄+ "⇤) ("̄� "⇤)

"̄� "⇤ + � ("⇤ � ")
� "⇤.

The G (·) distribution is a type 1 generalized normal. The PDF is:

g (x) =
⇣

2�� (1/⇣)
e�(|x�µ|/�)⇣ ,
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and the CDF is:

G (x) =
1

2

+ sgn (x� µ)

�



1
⇣ ,
⇣

|x�µ|
�

⌘⇣
�

2� (1/⇣)
.

This implies a hazard function of:

g

1�G
=

⇣
�exp

⇣

� (|x� µ| /�)⇣
⌘

� (1/⇣)� sgn (x� µ) �



1
⇣ ,
⇣

|x�µ|
�

⌘⇣
� .

Note that the CDF is piecewise. However, in all calibrations µ � 0, so sgn (x� µ) < 0. I thus
perturb the equilibrium assuming that the equilibrium is on the upper-portion of the CDF. To assess
the quality of the log-quadratic approximation I make sure that the dynamic model stay son the
upper portion of the CDF and also compare the IRFs obtained from perturbation to IRFs obtained
from one-time shocks in a deterministic model. Appendix G shows they are nearly identical, so this
assumption is not crucial.

The markup is then:

Markupt =
1

f
1�F +

g
1�G

⇣

1� 1
G
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d

⌘

=

1

1
("̄�")+ �
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⇣

�
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⇣

,

✓
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t
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t
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�

◆
⇣

# ⇥

0

B

@
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t
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"
1
⇣

,

✓
|p

t

�E⌦[p
t

]�µ|
�

◆
⇣

# dd

d

1

C

A

It is worth simplifying several conditions with expectations over the set of list prices ⌦. Note that
there are two list prices: pEt with mass ↵ and pRt with mass 1�↵, so E⌦

t

[X] = ↵XE
+(1� ↵)XR.

Consequently,

E⌦
t

[pt] = ↵pEt + (1� ↵) pRt

E⌦
t

[dt] = ↵dEt + (1� ↵) dRt .
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To simplify notation, let:

GE
t = G

�

pEt � E⌦
t

[pt]� µ
�

=

1

2
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#
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�

�

"
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✓

|pR
t
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�
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⇣

"̄+ "⇤,Et

⌘⇣
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⇣
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⇣
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⌘ � "⇤,Rt .

Then the market tightnesses are then:

✓ft =

Bt�t
StE⌦ [1�G (pt � E⌦ [pt]� µ)]

=

Bt�t

St

⇥

↵
�

1�GE
t

�
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�

1�GR
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�⇤
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Bt (1� �t)

StE⌦ [G (pt � E⌦ [pt]� µ)]
=

Bt (1� �t)

St

⇥

↵GE
t + (1� ↵)GR

t

⇤ .

The buyer value function is:

V b
t = b+ �EtV

b
t+1 +

1

�t✓t

h

↵dE,f
t ME

t + (1� ↵) dR,f
t MR

t

i

.

Finally, the indifference condition is:

↵dE,f
t ME

t + (1� ↵) dR,f
t MR

t

↵dE,d
t ME

t + (1� ↵) dR,d
t MR

t

=

�t
1� �t

.
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The system is made up of GE
t , G

R
t , ME

t , and MR
t ,

dRt = dR,f
t + dR,d

t

dEt = dE,f
t + dE,d
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dR,f
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�⇤

!�
�

1�GR
t

�

"̄� "⇤,Rt + �
⇣

"⇤,Rt � "
⌘

"̄� "

dR,d
t = ⇠d

 

Bt (1� �t)

St

⇥

↵GE
t + (1� ↵)GR

t

⇤

!�

GR
t

"̄� "⇤,Rt + �
⇣

"⇤,Rt � "
⌘

"̄� "

dE,f
t = ⇠f

 

Bt�t

St

⇥

↵
�

1�GE
t

�

+ (1� ↵)
�

1�GR
t

�⇤

!�
�

1�GE
t

�

"̄� "⇤,Et + �
⇣

"⇤,Et � "
⌘

"̄� "

dE,d
t = ⇠d

 

Bt (1� �t)

St

⇥

↵GE
t + (1� ↵)GR

t

⇤

!�

GE
t

"̄� "⇤,Et + �
⇣

"⇤,Et � "
⌘

"̄� "

Ht = 1� St

Rt = N �Bt �Ht

Bt =

✓

1� 1

✓t�1

⇥

↵dEt�1 + (1� ↵) dRt�1

⇤

◆

Bt�1 + �rt�1Rt�1 + (1� L)�hHt�1

St =

�

1�
⇥

↵dEt�1 + (1� ↵) dRt�1

⇤�

St�1 + �hHt�1

V h
t = h+ �Et

h

�h
h

V s
t+1 + LV 0

+ (1� L)V b
t+1

i

+

⇣

1� �h
⌘

V h
t+1

i

V b
t = b+ �EtV

b
t+1 +

1

�t✓t

h

↵df,Et ME
t + (1� ↵) df,Rt MR

t

i

V s
t = s+ �EtV

s
t+1 + dRt

⇥

pRt � s� �V s
t+1

⇤

"⇤Rt = pRt + b+ �V b
t+1 � V h

t

"⇤Et = pEt + b+ �V b
t+1 � V h

t

pRt = s+ �EtV
s
t+1 +Markupt

pEt =

pt�2 + pt�3 + pt�4

3

+  

✓

pt�2 + pt�3 + pt�4

3

� pt�5 + pt�6 + pt�7

3

◆

pt =

↵dEt p
E
t + (1� ↵) dRt p

R
t

↵dEt + (1� ↵) dRt
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I simulate this system with a log-quadratic approximation using Dynare as described in the main
text. In Section E.4 I provide a test to show that the mass point at "̄ does not preclude the use of
perturbation methods since it is essentially never reached.

For the impulse response functions, I use Dynare to compute the impulse response as the average
difference between two sets of 100 simulations that use the same sequence of random shocks except
for one period in which an additional standard deviation shock is added.
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E.3 Steady State

The steady state that can be found by equating the value of the endogenous variables across time
periods. Steady state values are denoted without t subscripts. Note that in steady state, pEt = pRt ,
so there is no price variation and all prices are equal to pt. Consequently, there is no heterogeneity.
I thus drop all i = {E,R} superscripts.

Begin with the laws of motion, recalling that we have mass one of houses and mass N of agents.
From (14) and (15),

H =

d

d+ �h
and S =

�h

d+ �h
.

The law of motion for Rt, which is redundant but needed to solve for the steady state, is

Rt =
�

1� �rt�1

�

Rt�1 + L�hHt�1

so in steady state,

R =

L�h

¯�r
H.

From (13) and (16) and the steady state expression for R:
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d
H
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d
✓
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¯�r

!

d

d+ �h
.

The steady state value functions are:

V h
=

h+ ��h
⇥

V s
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V b
=

b+ 1
�✓d

fM

1� �
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)

+ 1
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1
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where
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�"̄ ("̄� ") + 1��
2 ("̄+ "⇤) ("̄� "⇤)

"̄� "⇤ + � ("⇤ � ")
� "⇤.

With µ > 0 as we find in the calibration and p = E⌦ [p] in steady state,
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1
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so,

"⇤ = b+ �V b
+ p� V h

p = s+ �V s
+Markup

d = df + dd

df = ⇠f✓�f (1�G (�µ))
"̄� "⇤ + � ("⇤ � ")

"̄� "

dd = ⇠d✓�d (1�G (�µ))
"̄� "⇤ + � ("⇤ � ")

"̄� "

df

dd
=

�

1� �
.

Note that given ✓⇤, and "⇤, one can solve for dd and df and hence � and d. One can then solve
for p, V b, V h, V s, H, R, B, and S. Thus the steady state system can be reduced to a two equation
system with two unknowns, ✓⇤, and "⇤:

N =

 

1 +

�h

d
✓

+

L�h

¯�r

!

d

d+ �h

"⇤ = b+ �V b
+ p� V h.

This steady state can be solved numerically and has a unique solution.

E.4 Specification Checks

I run three different sets of checks on the model to make sure several assumptions I make in solving
it are not problematic in practice.

First, I check that "⇤,Rt and "⇤,Et do not go above "̄. In 200 simulations of 500 years each,
"⇤,Rt almost never goes above "̄ and "⇤,Et goes above "̄ less than 0.1 percent of the time. Using a
perturbation method is thus not problematic despite the kink at "̄ because this kink is virtually
never reached.

Second, I check that my assumption that sellers do not have an incentive to deviate from
their interior optimum is correct. I do so by simulating for the seller’s objective function in their
optimization problem d

⇣

pt,⌦t, ˜✓t

⌘

�

pt � s� �V s
t+1

�

if the seller posts the interior optimum pt or if
the seller alternately sets their price so "⇤t (pt) = "̄, which delivers the highest price for the seller
in the region of the demand curve where the house is almost certain to end up in the “do not
follow” market and hence the probability of sale is roughly constant. Setting this price thus has the
highest expected profit. In 200 simulations of 500 years each, I find that sellers would never have an
incentive to deviate from the interior optimum. This is because the mass point in the idiosyncratic
taste distribution occurs before the signal distribution G (·) begins to flatten.

Third, I calculate the dollar loss that backward-looking sellers experience by failing to optimize.
To do so, I simulate the value of a backward-looking seller using,

V s,E
t = s+ �V s,E

t+1 + d
⇣

pEt ,⌦t, ˜✓t

⌘⇣

pEt � s� �V s,E
t+1

⌘

,

which calculates a value function similar to that of a rational seller but using the probability of sale
and price of a backward-looking seller. The average and mean of this value is below half of one
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percent.

E.5 Staggered Pricing Model

E.5.1 Lemma 3: Optimal Staggered Price Setting

The price-setting seller’s value function is:

V s,0
t = max
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t

n

s+ �V s,1
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and V N
t = V 0

t . The first order condition is:
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where for ⌧ < N � 1,
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Defining Dj
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Rearranging gives:
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which, defining  ⌧
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E.5.2 Altered Laws of Motion With Staggered Pricing

The laws of motion for sellers also need to be altered. Specifically, for all old vintages with ⌧ > 0 ,
there are no new entrants and so the number laws of motion are:

S⌧
t =

⇣

1� d
⇣

p⌧�1
t�1 ,⌦t�1, ˜✓t�1

⌘⌘

S⌧�1
t�1 8⌧ > 0 (A11)

By contrast, new price setting sellers is equal to inflows plus those in the N � 1th vintage that have
yet to sell:

S0
t =

⇣

1� d
⇣

pN�1
t�1 ,⌦t�1, ˜✓t�1

⌘⌘

SN�1
t�1 + �hHt�1. (A12)

There is also an adding up constraint that St =
PN�1

⌧=0 S⌧
t .

E.5.3 Full Staggered Pricing Model

An equilibrium of the staggered pricing model can be defined as:

Definition 2. Equilibrium with a fraction ↵ of backward-looking sellers is a set of prices pit, demands
d
⇣

pit,⌦t, ˜✓t

⌘

, and purchase cutoffs "⇤,it for each type of seller i 2 {E,R}, a transaction-weighted
average price pt, rational seller, buyer, homeowner, and renter value functions V s

t , V b
t , and V h

t , a
probability that buyers follow the signal �t, entry cutoffs c⇤t and k⇤t , stocks of each type of agent Bt,
St, Ht, and Rt, and a shock to the flow utility of renting xt satisfying:

1. Optimal pricing for price resetters (25) for whom ⌧ = 0 and p⌧t = p⌧�1
t�1 for ⌧ > 0.

2. Optimal purchasing decisions by buyers: "⇤,⌧t = p⌧t + b+ �V b
t+1 � V h

t ;

3. The demand curve for each vintage of seller ⌧ = {0, ..., N � 1} in the f submarket (10), the d
submarket, (11), and the aggregate (12), all of which result from buyer search behavior;

4. The value functions for buyers (20), homeowners (9), and for price resetting sellers (A9) and
each vintage of non-resetting sellers (A10).

5. The laws of motion for buyers (13) and each vintage of sellers (A11) and (A12) and the closed
system conditions for homes (15) and people (16) that implicitly define the laws of motion for
homeowners and renters;

6. Buyers are indifferent across markets (19);

7. All agents have rational expectations that �rt evolves according to the AR(1) process (26).

The steady state is identical to the steady state in the backward-looking model because prices are
constant so all groups set the same price.
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Given this equilibrium, I now develop the full dynamic system that is put into Dynare as with
the backward-looking model. I do so for N = 2 both for simplicity of exposition and to match my
simulations.

There are two list prices: p0t with mass S0
t

S
t

and p1t with mass S1
t

S
t

, so:
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Finally, the indifference condition is:
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The system is made up of G0
t , G

1
t , M0
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plus the pricing rule. Since
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E.6 Non-Concave Model

For the non-concave model, I use a demand curve that uses the same distributional assumptions
but has a slope equal to the slope of the demand curve with concavity at the average price and
thus the same steady state markup as before. I set G (·) = 1 to eliminate concavity which implies
� = 1, and I keep "⇤ the same as my previous calibration, I set � = 0 to get as much room for "⇤
to fluctuate as possible,5 and choose " and "̄ to satisfy:

("̄nc � "⇤nct ) +

�

1� �
("̄nc � "nc) = Markup

"̄nc � "⇤nc + � ("⇤nc � "nc)

"̄nc � "nc
= Pr [Sell] ,

where Markup and Pr [Sell] are the markup and probability of sale in the baseline calibration. The
other parameters are left unchanged.

5This does not affect the results. It does, however, make it so that perturbation methods are usable as "̄ is virtually
never reached.
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The full system is then:
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The non-concave model with staggered pricing is similar, except for the altered law of motion and
optimal price setting for resetters. This follows the same formula as above, except the optimal price
and dd

dp are changed to be the same as in this section. Consequently,
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E.7 Microfoundation For Backward-Looking Sellers

This appendix presents a microfoundation for the Backward looking sellers’ price setting equation
(23).

The backward-looking sellers are near-rational sellers with limited information whose optimizing
behavior produces a price-setting rule of thumb based on the recent price path. They are not fully
rational in two ways. First, backward-looking sellers understand that a seller solves,

max
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with first order condition,
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However, they do not fully understand the laws of motion and how prices and the value of being
a seller evolve. Instead, they think the world is a function of a single state variable, the average
price E [pt], and can only make “simple” univariate forecasts that take the form of a first order
approximation of (A13) in average price and relative price:
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where ¯V s, ¯M , ⇡1, and ⇡2 are constants.6
Second, they mistakenly assume that price follows a random walk with drift with both the inno-

vations ' and the drift ⇣ drawn independently from mean zero normal distributions with variances
�2' and �2⇣ . They also have limited information and only see the transaction-weighted average prices
pt of houses that transact between two to four months ago p̄t�3 =

p
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t�3+p
t�4

3 and between five
to seven months ago p̄t�6 =

p
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3 , corresponding to the lag with which reliable house price
indices are released. Through a standard signal extraction problem, they expect that today’s price
will be normally distributed with mean E [pt] = p̄t�3 + E [⇣], where E [⇣] =
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Given this normal posterior, backward-looking sellers follow an AR(1) rule:
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where everything is lagged because where  =
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and pt is the transaction-weighted average
price at time t:
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E
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F Calibration

F.1 Calibration Targets

The aggregate moments and parameters chosen from other papers are:

• A long-run homeownership rate of 65 percent. The homeownership hovered between 64 percent
and 66 percent from the 1970s until the late 1990s before rising in the boom of the 2000s and
falling afterwards.

• � = 0.8 from the median specification of Genesove and Han (2012). Anenberg and Bayer
(2015) find a similar number.

• L = 0.7 from the approximate average internal mover share for Los Angeles of 0.3 from
Anenberg and Bayer (2015), which is also roughly consistent with Wheaton and Lee’s (2009)

6The second line follows from the second assumption, which implies a symmetric posterior for p
t

so p
t

= E [p
t

].
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analysis of the American Housing Survey and Table 3-10 of the American Housing survey,
which shows that under half of owners rented their previous housing unit.

• A median tenure for owner occupants of approximately nine years from American Housing
Survey 1997 to 2005 (Table 3-9).

• The approximately equal time for buyers and sellers is from National Association of Realtors
surveys (Head et al., 2014; Genesove and Han, 2012). This implies that a normal market is
defined by a buyer to seller ratio of ✓ = 1. I assume a time to sale in a normal market of four
months for both buyers and sellers. There is no definitive number for the time to sale, and in
the literature it is calibrated between 2.5 and six months. The lower numbers are usually based
on real estate agent surveys (e.g., Genesove and Han, 2012), which have low response rates
and are effectively marketing tools for real estate agents. The higher numbers are calibrated
to match aggregate moments (Piazzesi and Schneider, 2009). I choose four months, which is
slightly higher than the realtor surveys but approximately average for the literature.

• Price is equal to $760,000, roughly the average transaction price in the IV samples. IV Sample
1 corresponds is $758,803 and in IV sample 2 is $781,091. The results are not sensitive to this
calibration target.

• One in ten houses that are inspected are purchased. Genesove and Han (2012) show that in
National Association of Realtors surveys of buyers the mean buyer visits 9.96 homes. This
does lead to a ⇠ > 1, but this is standard for search models and not a practical issue for the
model.

• A monthly buyer search cost of of 0.75 of the average price per month, so that the average
buyer, who is in the market for four months, has total search costs equal to 3 percent of the
average home’s price as described in the main text. Since this target is somewhat speculative,
I vary it in robustness checks.

• A five percent annual discount rate, as is standard in the literature.

•  = 0.4.  is the AR(1) coefficient in the backward-looking model and is set based evidence
from Case et al. (2012). Using surveys of home buyers, Case et al. (2012) show that regress-
ing realized annual house price appreciation on households’ ex-ante beliefs yields a regression
coefficient of 2.34. I use this survey evidence to calibrate the beliefs of the backward-looking
sellers by dividing the approximate regression coefficient one would obtain in quarterly simu-
lated data (approximately 0.94) by their coefficient. Since this target is somewhat speculative,
I vary it in robustness checks.

• h is set so that the present discounted value of the flow utility of living in a home is approx-
imately 2/3 of its value in steady state, which implies h = $6.78k per month for a $760,000
house. Since this target is somewhat speculative, I vary it in robustness checks to show it is
effectively a normalization.

Two time series moments are used:

• The persistence of the shock ⇢ = 0.95 is chosen to match evidence on the persistence of popula-
tion growth from the corrigendum of Head et al. (2014). They report that the autocorrelation
of population growth is 0.62 at a one year horizon, 0.29 at a two year horizon, and 0.06 at a
three-year horizon. These imply monthly autocorrelations of 0.961, 0.950, and 0.925. I choose
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the middle value. This moment controls when the shock begins to mean revert, and all that
matters for the results is that the shock does not mean revert before three years.

• A standard deviation of annual log price changes of 0.065 for the real CoreLogic national house
price index from 1976 to 2013. This is set to match the standard deviation of aggregate prices
for homes that transact collapsed to the quarterly level in stochastic simulations.

The seller search cost is pinned down by the shape of the demand curve, the steady state probability
of sale, and the target steady state price. This is the case because p = s + �V s

+ Markup and
V s

=

s+dMarkup
1�� together imply that:

s

p
= 1� � � (�d+ 1� �)

Markup

p
.

In the baseline calibration, the monthly seller search cost is 2.1 percent of the sale price.
The seller search cost is important as it controls the degree of search frictions sellers face.

Consequently, I introduce a procedure to adjust the binned scatter plot to match a target for the
monthly seller search cost as a fraction of the price in steady state. This requires changing the
demand curve so it is more elastic, which can either be done by shrinking the log relative markup
axis or by stretching the probability of sale axis. The former would add concavity, while the
later would reduce concavity. To err on the side of not adding concavity to the data, I use the
former procedure. Specifically, the new probability of sale probsell0 is set according to probsell0 =
stretch⇥ (probsell �median (probsell))+median (probsell), and the stretch parameter is selected
to hit a target s/p. I report results that target target monthly seller search costs of 1.0 percent, 1.5
percent, and 2.5 percent.

F.2 Estimation and Calibration Procedure

As described in the text, the estimation and calibration procedure proceeds in two steps. First, I
calibrate to the micro estimates. Then I match the aggregate and time series moments.

Approximation of d (p) in Equation (27)
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. Given the distributional assumption on F (·) ,
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where "⇤ (pt) = pt + b+ �V b
t+1 � V h

t and so "⇤t (pt) = pt � E⌦
t

[pt] + "⇤t (E⌦t

[pt]). Thus,

1� F ("⇤ (pt)) =
"̄� �"

"̄� "
+

1� �

"̄� "
(pt � E⌦

t

[pt] + "⇤t (E⌦t

[pt]))

=

"̄� �"

"̄� "
+

1� �

"̄� "
(pt � E⌦

t

[pt] + "⇤mean � "⇤mean + "⇤t (E⌦t

[pt]))

= 1� F ("⇤mean + pt � E⌦
t

[pt]) + ("⇤t (E⌦t

[pt])� "⇤mean)
1� �

"̄� "
.

Because the estimated density 1��
"̄�" is 0.0001, the last term is close to zero. I thus approximate

1� F ("⇤ (pt)) ⇡ 1� F ("⇤mean + pt � E⌦
t

[pt]) ,

where the approximation error is small.
I also approximate �t = �mean. The approximation error is small here as well because fluctua-

tions in � over the cycle are relatively small. Finally, for simplicity I approximate �mean and "⇤mean

by their steady state values, which are close to the mean values over the cycle given the mean zero
shocks and lack of a substantial asymmetry in the model.

Calculating d (pt) then takes two steps. First, I solve for � in steady state. The steady state
equilibrium condition is:
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I approximate � by assuming that E ["� "⇤t |" > "⇤t ] is the same for all bins, which is roughly the
case, and then solving for �. Second, I calculate d (pt) from (27) using "⇤ (p) = "⇤,mean

+pt�E⌦ [p].

Calibration To Micro Estimates

The procedure to calibrate to the micro estimates is largely described in the main text. I start
with the IV binned scatter plot (pb, db), which can be thought of as an approximation of the demand
curve by 25 indicator functions after the top and bottom 2.5 percent of the price distribution is
dropped. In Figure 2, the log relative markup p is in log deviations from the average, and I convert
it to a dollar amount using the average price of $760,000 in the IV sample. For each combination
of �, �, and the density of F (·), I use equation (27) to calculate the mean of squared error:

⌃b

⇣

db � d3 month
(pb)

⌘

/Nb.

Because the data is in terms of probability of sale within 13 weeks, d3 month
(pb) = d (pb) +

(1� d (pb)) d (pb)+(1� d (pb))
2 d (pb) is the simulated probability a house sells within three months.

I also need to set t, the multiplicative constant. I do so by minimizing the same sum of squared
errors for a given vector of the parameters (�, µ, density).

⇣ could also be chosen using this method, but doing so obtains a very large ⇣ that introduces
numerical error into the dynamic model solution. Consequently, I choose ⇣ = 8, which gives most
of the improvement in mean squared error from choosing ⇣ optimally relative to using a normal
distribution with ⇣ = 2 while reducing numerical error. The results are not sensitive to this nor-
malization.
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Additionally, The seller search cost s is pinned down by the elasticity of demand at the zero
point, and using the zero point estimated from the data leads to a very large s because the zero point
is slightly on the inelastic side of the kink. Because the zero point corresponding to the average
price is not precisely estimated and depends on the deadline used for a listing to count as a sale, I
shifting the zero point by up to one percent to to obtain a more plausible seller search cost.

At each step of the optimization, for a given value of the density I find "̄, ", and � to match
targets for 1�F ("⇤) = "̄�"⇤+�("⇤�")

"̄�" and E ["� "⇤|" > "⇤] =
�"̄("̄�")+ 1��

2 ("̄+"⇤)("̄�"⇤)
"̄�"⇤+�("⇤�") �"⇤. The target

for E ["� "⇤mean] is chosen to match a target value of b assuming V 0 ⇡ V h. This is done by matching
the aggregate targets below through the calibration system below and choosing E ["� "⇤|" > "⇤] to
match the target b.

Matching the Aggregate Targets

To match the aggregate targets in Table 4, I invert the steady state so that the remaining parame-
ters can be solved for in terms of the target moments conditional on

�

�, ⇣, µ, "̄, ",�, ⇠d/⇠f , and "⇤mean

�

.
I solve this system, defined below, conditional on the steady-state targets described in Table 4 in
the main text. I then select a value for the standard deviation of innovations to the AR(1) shock
�⌘, run 25 random simulations on 500 years of data, and calculate the standard deviation of annual
log price changes. I adjust the target value for �⌘ and recalibrate the remainder of the moments
until I match the two time series moments. I repeat this procedure altering ↵ until the impulse
response to the renter flow utility shock in the backward-looking model peaks after 36 months.

The Calibration System

Many variables can be found from just a few target values, and I reduce the unknowns to a four
equation and four unknown system. The system is defined by:

• �, L, and �, are set to their assumed monthly values.

• b and h are set to their assumed values.

• ✓ = 1 from the equality of buyer and seller time on the market.

• d = 1/4 together with indifference in steady state imply:

⇠f =

d

✓ d
✓����1(1�G)1��(1�F )

,

where and 1� F ("⇤) 1�G (�µ)1�� can be found from the first stage of the calibration.

• �h is set to match the frequency with which homeowners move.

• The homeownership rate in the model, H
H+B+R , is matched to the target moment. Plugging

in steady-state values gives:

Homeownership Rate =
1

1 +

�h✓
d +

L�h

�̄r

.

This is solved for ¯�r:
¯�r =

HRRateL�h

1�HRRate�HRRate�
h✓
d
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Figure A15: Impulse Response Functions: Downward Shock
A: Rule of Thumb Model B: Staggered Pricing Model
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Notes: The left panel shows a downward shock in the rule of thumb model, while the right panel shows a downward shock in

the staggered model.. Simulated impulse responses are calculated by differencing two simulations of the model from periods

100 to 150, both of which use identical random shocks except in period 101 in which a one standard deviation negative draw is

added to the random sequence, and then computing the average difference over 100 simulations.

• The population N can then be solved for from N = H +B +R
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This leaves s and V 0, which are solved for jointly to match the target price and satisfy three
equilibrium conditions for steady state:
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G Additional Simulation Results

G.1 Downward Shocks

Figure A15 shows the impulse response to a downward shock directly analogous to Figure 5. As in
the data, there is very little detectable asymmetry between an upward and downward shock because
the semi-elasticity of demand is locally smooth. Across all 14 calibrations, the impulse response is
36 months for both a downward and upward shock. However, for a very large shock, downward may
show slightly more concavity because the elasticity of demand rises sharply when relative price is
extremely low.

G.2 Deterministic, Non approximated Shock

To ensure that the impulse response is not being driven by the third order perturbation solution
method, I solve a deterministic version of the model by Newton’s method. The model starts in steady
state and at time zero is it with a surprise one-time shock to ⌘ of size �⌘ and then deterministically
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Figure A16: Impulse Response Functions: Deterministic Shock in Rule of Thumb Model
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Notes: This figure shows impulse responses analogous to Panel A of Figure 5 with an exactly-solved deterministic model. The

impulse responses are created by running a simulation with a surprise one-time shock to ⌘ of size �
⌘

at time zero.

returns to steady state as xt reverts back to zero. I then plot deterministic impulse responses for a
variable X as log (Xt/Xss) where Xss is its steady state value. This results in the IRFs in Figure
A16, which are comparable to Figure 5. Across all 14 calibrations, the maximum period of the
deterministic one time shock IRF and the stochastic IRF are within one month of each other. The
perturbation solution thus seems quite accurate.

G.3 Detailed Intuition For Staggered Pricing Model

The full dynamic intuition with staggered pricing is more nuanced than the static intuition presented
above because the seller has to weigh the costs and benefits of perturbing price across multiple
periods. The intuition is clearest when one considers why a seller does not find it optimal to deviate
from a slowly-adjusting price path by listing his or her house at a level closer to the new long-run
price after a one-time permanent shock to fundamentals.

After a positive shock to prices, if prices are rising slowly why do sellers not list at a high price,
sell at that high price in the off chance that a buyer really likes their house, and otherwise wait
until prices are higher? Search is costly, so sellers do not want to set a very high price and sit on
the market for a very long time. Over a shorter time horizon, the probability of sale and profit are
very sensitive to perturbing price when a house’s price is relatively high but relatively insensitive
to perturbing price when a house’s price is relatively low. This is the case for two reasons. First,
despite the fact that the probability of sale is lower when a house’s price is relatively high, demand
is much more elastic and so a seller weights that period’s low optimal price more heavily. Second,
on the equilibrium path, prices converge to steady state at a decreasing rate, so the sellers lose more
buyers today by setting a high price than they gain when they have a relatively low price tomorrow.
Consequently, in a rising market sellers care about not having too high of a price when their price
is high and do not deviate by raising prices when others are stuck at lower prices.

After a negative shock to prices, if prices are falling slowly and search is costly, why do sellers
not deviate and cut their price today to raise their probability of sale and avoid search costs if
selling tomorrow means selling at a lower price? Although the fact that the elasticity of demand
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is higher when relative price is higher makes the seller care more about not having too high of a
relative price when their price is higher, there is a stronger countervailing effect. Because prices
converge to steady state at a decreasing rate on the equilibrium path, sellers setting their price
today will undercut sellers with fixed prices more than the sellers are undercut in the future. They
thus gain relatively fewer buyers by having a low price when their price is relatively high and leave
a considerable amount of money on the table by having a low price when their price is relatively
low. On net, sellers care about not having too low of a price when they have the lower price and
do not deviate from a path with slowly falling prices.

Another way of putting these intuitions is that the model features a trade-off between leaving
money on the table when a seller has the relatively low price and gaining more buyers when a seller
has the relatively high price. On the upside, since price resetters raise prices more than future price
setters and since they care more about states with more elastic demand, the loss from losing buyers
when a resetters have the relatively high price is stronger. On the downside, since price resetters
cut prices more than future price resetters, the money left on the table by having a lower price when
their prices are relatively low is stronger.
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