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Abstract

To what extent are causal effects estimated in one region or time period informative

about another region or time? In this paper, I derive bounds on the average causal

effect in a context of interest using experimental evidence from another context. I

use differences in outcome distributions for individuals with the same characteristics

and treatment status in the original study and the context of interest to learn about

unobserved differences across contexts. Greater differences in outcome distributions

generate wider bounds. Empirically, I explore using experimental results on the return

to cash transfers to male microentrepreneurs in one Mexican city in 2006 to predict

the returns among male microentrepreneurs in urban Mexico in 2012. I show that

existing methods would lead us to be overconfident in extrapolating from the small

experiment to all of urban Mexico in 2012. Using data from a pair of remedial education

experiments carried out in urban India, I show that the methods suggested in this paper

are able to recover average causal effects in one city using results from the other where

existing methods are unsuccessful.
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1 Introduction

What do causal effects measured in one place tell us about causal effects in another place

or at another time? It is clear that not every finding applies in every context. Some au-

thors have recently protested against policy recommendations they see as based on implicit

extrapolation from a small number of experiments to a wide variety of dissimilar contexts

(Deaton (2010); Pritchett and Sandefur (2013)). Empirically, a growing body of work finds

different effects of identical policies among individuals with the same observed characteris-

tics living in different contexts (e.g. Allcott (2015); Attanasio, Meghir, and Szekely (2003)).

Unobserved differences between populations remain, even when considering individuals with

the same observed characteristics.

In this paper, causal effects from one place may be only partially informative about

effects elsewhere. I derive bounds on the average causal effect in a context of interest using

experimental evidence from another context. I use differences in outcome distributions for

individuals with the same characteristics and treatment status in the original study and the

context of interest to learn about unobserved differences across contexts1. Greater differences

in outcome distributions generate wider bounds. The bounds represent a practical solution to

the problem of assessing generalizability of experimental results from one context to another

and are easily computed using software provided by the author for any pair of contexts.

They formalize the idea that the conclusions we can draw about the average causal effect

in the context of interest and the strength of assumptions required to do so depends on the

similarity between the two contexts2.

I consider settings where we have run a randomized evaluation of a pilot program and

wish to know what we can conclude about the effect of the program in another context.

The experimental treatment group has access to the program, while the control group does

not. As part of the evaluation, we collected data on characteristics and outcomes of indi-

viduals participating in the experiment. We also have data on outcomes and characteristics

of individuals in the alternative context, possibly coming from a separate survey. Since the

program is a pilot, individuals in the alternative context do not have access to the program3.

For each distinct set of characteristics, we thus have the distributions of treated and un-

1When we do not have experiments with context-level characteristics we believe are sufficiently similar to
the context of interest, unobserved differences necessarily include differences in context-level characteristics.

2See Heckman, Moon, Pinto, Savelyev, and Yavitz (2010) and McKenzie and Woodruff (2008) who assess
the external validity of experimental results on the basis of the similarity of the experimental populations to
larger populations of interest.

3The analysis can easily be extended to the case when individuals choose their treatment status and an
experiment denies treatment to a random subset of individuals who would wish to be treated (see Bitler,
Domina, and Hoynes (2014) for an example of such an experiment).
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treated outcomes from the experiment and the distribution of untreated outcomes from the

alternative context.

The bounds I derive on the average causal effect in the context of interest for each set

of characteristics are based on the assumption that the distribution of treated outcomes for

a given untreated outcome in the context of interest is consistent with the experimental

results. This is a weak restriction on the average causal effect because the experiment does

not rule out any level of dependence between treated and untreated outcomes4. Except in

extreme cases, we expect positive dependence between treated and untreated outcomes, to

varying degrees depending on the nature of the program. Most programs cannot cause those

well-off without the program to switch places with those poorly-off in absolute terms.

I therefore develop tighter bounds, indexed by the minimum level of dependence between

an individual’s treated and untreated outcomes we are willing to consider. When treated and

untreated outcomes are perfectly dependent, differences in untreated outcome distributions

are not a problem because each untreated outcome is linked to a single treated outcome.

As we move away from perfect dependence, different associations between treated and un-

treated outcomes become possible. These different associations produce uncertainty about

the average causal effect in the new context that is increasing in the difference between the

distributions of untreated outcomes in the experiment and the context of interest. The width

of the bounds for a given minimum dependence level provide a measure of uncertainty about

the average causal effect. They also allow us to assess the assumptions on dependence be-

tween treated and untreated outcomes necessary to draw specific conclusions about the effect

of the program in the context of interest, such as its ability to exceed a cost-effectiveness

threshold.

I empirically evaluate the results of my bounding procedure compared to existing meth-

ods for extrapolating causal effects to new contexts. The current benchmark method (Hotz,

Imbens, and Mortimer (2005), henceforth HIM) also uses outcome distributions for indi-

viduals with the same characteristics to assess generalizability, but does so within a testing

framework. If we reject that the untreated outcome distributions for individuals with the

same characteristics are the same, we conclude that the experiment teaches us nothing about

causal effects in the context of interest. Otherwise, the HIM framework concludes the ex-

periment is perfectly predictive for the causal effect of interest.

I first examine the generalizability of a small experiment on the returns to loosening

credit constraints by providing cash transfers to very small-scale entrepreneurs in Leon,

4The literature on distributions of causal effects consistent with experimental results generates similarly
wide bounds on functionals of interest (Heckman, Smith, and Clements (1997); Djebbari and Smith (2008);
Fan and Park (2010); Kim (2014)).
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Mexico in 2006 documented in McKenzie and Woodruff (2008). We would like to know

what the large estimated returns (an increase in monthly profits equal to roughly 40% of

the transfer in baseline specifications) in Leon in 2006 tell us about the average return

for similarly small-scale microentrepreneurs in urban Mexico in 2012, as represented by

that year’s national microenterprise survey. The distributions of untreated outcomes are

fairly similar in the Leon and 2012 urban Mexico samples so the estimated bounds are

narrow for a wide range of assumptions on dependence between profits with and without the

transfer. Properly accounting for the unobserved differences between the populations along

with sampling variation in the small experimental sample and the national microenterprise

sample leads to wide confidence intervals around the bounds. Testing equality of control

outcome distributions, in contrast, would lead us to be overconfident in our prediction of the

average return. Perversely, using the HIM method, we would compute a narrower confidence

interval on the predicted causal effect for urban Mexico in 2012 than on the causal effect in

the original experiment.

Second, to check the predictions of different methods against measured causal effects,

I use data from randomized evaluations of a remedial education program implemented in

two Indian cities and described in Banerjee, Cole, Duflo, and Linden (2007). I find different

average causal effects for individuals with the same observed characteristics in the two cities.

The two cities’ student populations are sufficiently different that equality of their untreated

outcome distributions is rejected, which, in the HIM framework would lead us to believe we

cannot learn anything about the causal effect in one city based on experimental results from

the other. However, I show that if we assume treated and untreated outcomes are sufficiently

dependent, we can exclude a substantial range of average causal effects - such as a zero effect

- in one city using the results from the other. The observed causal effects in both cities are

consistent with predictions based on strong dependence between the treated and untreated

outcomes.

This paper extends the literature on generalizing causal effects to new contexts based on

invariance assumptions on average treated outcomes or causal effects for individuals with

the same observed characteristics (HIM, Attanasio et al. (2003); Angrist and Fernández-

Val (2013); Angrist and Rokkanen (2013); Cole and Stuart (2010); Stuart, Cole, Bradshaw,

and Leaf (2011); Pearl and Bareinboim (2014); Flores and Mitnik (2013)). In interpret-

ing differences in untreated outcome distributions as indicative of unobserved differences in

populations, I follow a long line of literature interpreting outcome quantiles as representing

the effect of unobserved heterogeneity in non-separable models (see, for example, Matzkin

(2007) and the references therein). Most directly, Athey and Imbens (2006) make use of this

interpretation when generalizing the standard difference-in-differences estimator and derive
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an estimator that is equivalent to mine under perfect dependence between the treated and

untreated outcomes. In moving from a testing framework to an approach based on quan-

tifying assumptions required to draw conclusions about causal effects, my paper relates to

work by Altonji, Elder, and Taber (2005) and Altonji, Conley, Elder, and Taber (2013).

Altonji et al. (2005) and Altonji et al. (2013) move from testing whether observed covariates

related to an outcome are also related to a candidate instrument to providing bounds on the

average causal effect whose width depends on the magnitude of the relationship between the

covariates and the instrument.

The rest of the paper is organized as follows. Section 2 describes the intuition behind

the proposed methods by means of a simple example. Readers uninterested in the technical

details behind the methods in their full generality may wish to read section 2 then skip to

the empirical results in sections 5 and 6. Beginning the theoretical discussion, section 3 sets

up the problem and notation and provides a review of existing approaches to extrapolation

on the basis of experimental results. In section 4, I present the derivation of the bounds.

Section 5 presents the empirical results for generalizing from the 2006 Leon microenterprise

experiment to urban locations in Mexico in 2012. Section 6 investigates using the results

from one of the two remedial education experiments to try to predict the results in the other

experiment. Section 7 concludes.

2 Intuition for the methodology: a simple example

To illustrate the intuition behind the methodological contributions, I begin by laying out a

simple example involving a fictional conditional cash transfer program (CCT) that incen-

tivizes parents to enroll children in school. Suppose we have obtained experimental results

that tell us the CCT program caused a large increase in the enrollment rate in location e,

from 1
3

of all children to 2
3

of all children. We observe only outcomes and no characteristics.

We would like to know what the results from location e tell us about the causal effect

we can expect in location a, where no CCT was implemented. Whereas 1
3

of children were

enrolled without the CCT program in location e, 1
2

of children are enrolled without the CCT

in location a. We would like to know what impact the difference in the no-CCT enrollment

rates will have on the average causal effect in location a. The law of total probability allows
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us to decompose the average effect of the CCT program in a, denoted ATEa, as follows.

ATEa =P (enrolled with CCT | enrolled without CCT)×P (enrolled without CCT)

+ P (enrolled with CCT | out of school without CCT)×P (out of school without CCT)

− P (enrolled without CCT)

=P (enrolled with CCT | enrolled without CCT)× 1

2

+ P (enrolled with CCT | out of school without CCT)× 1

2

− 1

2

The average causal effect in a depends on two unknown probabilities: (1) the probability

that an individual who does not enroll without the CCT would instead enroll with the CCT

and (2) the probability that an individual who enrolls in school without the CCT would also

enroll with the CCT.

The rationale behind (1), individuals who do not enroll without the CCT enrolling with

a CCT, is clear: the program provides cash incentives for parents to enroll children in

school and some parents respond to these incentives. The rationale behind (2), individuals

who enroll without the CCT but would not enroll with the CCT, is less straightforward.

Attanasio, Meghir, and Santiago (2012) show that CCT programs can increase wages for

children by lowering the supply of child labor. An increased wage for children works against

the enrollment incentives. Further, Attanasio et al. (2012) show that enrollment subsidies

and child wages do not have equal opposite effects on households’ enrollment decisions, as

they would if only the net child wage entered into the enrollment decision. So we can think of

some fraction of households who are more sensitive to child wages than they are to enrollment

subsidies and would respond to a CCT by having children work. To maintain the simplicity

of this example, I will refer to forces that cause children who would enroll without the CCT

but would not enroll with a CCT in place as wage effects, although in principle there may

be other ways for the CCT to cause children who would otherwise enroll to not enroll.

I will assume that P (enrolled with CCT | enrolled without CCT) in location a is consis-

tent with the experimental results. There are many possible pairs of conditional enrollment

probabilities that are consistent with the experimental results. The possible pairs are given

in Figure 1. To see why a continuum of pairs is possible, recall that

P (enrolled with CCT | enrolled without CCT)

=
P (enrolled with CCT & enrolled without CCT)

P (enrolled without CCT)
.
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Figure 1: Permissible distributions for P (enrolled with CCT | enrollment without CCT) in
location a

We see that P (enrolled with CCT | enrolled without CCT) relies on knowledge a child’s en-

rollment status with and without the CCT at the same time, knowledge that we cannot have.

If a child is in one of the treated localities, we only observe her enrollment decision with the

CCT. If she is in one of the control localities, we only observe her enrollment decision without

the CCT. The question marks in table 1 indicate the unknown fractions of the population

of location e falling into each of the four possible combinations of enrollment decisions with

and without the CCT. The sums across rows and down columns show the information we do

have from the experiment. The rows of table 1 must sum to the control group results and

the columns to the treatment group results.

Table 1: The distribution of enrollment with and without the CCT is unknown in location e

CCT

Out of school Enrolled All Control

No CCT
Out of school ? ? 2

3

Enrolled ? ? 1
3

All Treatment 1
3

2
3

Our assumptions about the way the wage effects of the CCT impact the two groups of
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children (those enrolling without the CCT and those who do not enroll without the CCT)

will generate different predictions for the causal effect of the CCT program in location a. To

see this, first consider the case where there are no wage effects or wage effects only impact

children who do not enroll without the CCT. Then there are no children who enroll without

the CCT but would not enroll when the CCT is in place. Our assumption allows us to fill

in all the entries of table 1, as shown in table 2. The probability of enrolling with the CCT

if a child is out of school without the CCT is 1
2

and the increase in the fraction enrolled in

location a is 1
4
.

Table 2: Case 1: there are no wage effects

CCT

Out of school Enrolled All Control

No CCT
Out of school 1

3
1
3

2
3

Enrolled 0 1
3

1
3

All Treatment 1
3

2
3

Now consider another assumption about the wage effects: they only impact those who

enroll without the CCT and they are so strong that all children who would enroll without the

CCT drop out. To match the distribution of control and treated group outcomes in location

e, all children who are out of school without the CCT must enroll with the CCT. Again, we

can fill in the unknown entries of table 1, as shown in table 3. In this rather unbelievable

case, we predict no change in the fraction enrolled in location a.

Table 3: Case 2: wage effects only impact those who enroll without the CCT

CCT

Out of school Enrolled All Control

No CCT
Out of school 0 2

3
2
3

Enrolled 1
3

0 1
3

All Treatment 1
3

2
3

Assuming that wage effects impact the same fraction of both groups is somewhat more

believable. To be consistent with the experimental results, this fraction must be 1
3
. The

entries of table 1 can be filled in as shown in table 4. The predicted increase in the fraction

employed is 1
6
.
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Table 4: Case 3: wage effects impact the same fraction of both groups

CCT

Out of school Enrolled All Control

No CCT
Out of school 2

9
4
9

2
3

Enrolled 1
9

2
9

1
3

All Treatment 1
3

2
3

While more believable than assuming that those enrolled with and without the CCT ex-

change places when the CCT is in place, assuming that wage effects have the same impact on

both groups is still not very convincing. Intuitively, we believe that wage effects would have

a stronger impact on enrollment decisions for children who do not enroll without the CCT.

Formally, we expect positive dependence between enrollment with the CCT and enrollment

without. In this paper, I follow Heckman et al. (1997) and measure dependence using the

rank correlation5 between treated and untreated outcomes for any individual. The first as-

sumption on wage effects we considered, that there are none or they only affect enrollment

decisions for children who would enroll without the CCT, generates the maximum possible

rank correlation between a child’s enrollment decision with and without the CCT. The third

assumption, that wage effects have the same impact regardless of enrollment status without

the CCT, generates a rank correlation of zero. As we have seen, different rank correlations

generate different predictions for the change in enrollment caused by the CCT in location a.

How close should the rank correlation we use to predict the effect of the CCT on enroll-

ment in location a be to the maximum possible? I consider two options. First, we might

specify a range of plausible values. In this example, we might be conservative and consider

rank correlations between zero and the maximum possible. Then, the gain in enrollment in

location a lies between 1
6

and 1
4
. A second option is to explore the strength of assumptions

on dependence required to draw specific conclusions about the effect of the program. For

example, we might consider what we need to assume about dependence to conclude that the

CCT will have a positive effect on enrollment. With an enrollment rate of 1
2

in location a,

a zero effect on enrollment in location a is only possible when the rank correlation between

enrollment with and without the CCT is the minimum possible, which is what occurs in the

second case we considered, when children who enroll without the CCT all drop out with the

CCT. Since this case is highly implausible, we would feel confident in our conclusion that

the CCT will have a positive effect on enrollment location a.

5The standard Pearson product-moment correlation measures only linear dependence.
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Note the key role played by the enrollment rate without the CCT in location a. If instead

of 1
2
, the enrollment rate in location a were 2

3
, choosing a rank correlation between zero and

the maximum possible would predict an increase in the enrollment rate due to the CCT

between 0 and 1
6
. We would need stronger, but still believable, assumptions on dependence

to predict a positive effect on enrollment.

In the following two sections, I generalize the intuition developed here to settings where we

also have information about observed characteristics in the two populations, where outcomes

are non-binary and where our data about locations e and a come from samples. Readers

uninterested in the details of generalization may wish to skip to the empirical results in

sections 5 and 6.

3 Econometric setup

Suppose we are interested in the causal effect of a binary treatment T ∈ {0, 1} on an

observable outcome Y ∈ Y ⊆ R. Each individual is associated with two potential outcomes:

Y1 ∈ Y1 ⊆ Y is her outcome if she receives treatment and Y0 ∈ Y0 ⊆ Y is her outcome if

she does not. Only one of these two outcomes is ever observed, the other is hypothetical.

Mathematically, the observed outcome Y can be written as:

Y = TY1 + (1− T )Y0.

Because both the observed and hypothetical outcome are defined for each individual we can

also define an individual’s own treatment effect ∆ ⊆ R:

∆ = Y1 − Y0

Our data come from two populations, indexed by D ∈ {e, a}. e is the population in which the

experimental evaluation of T was conducted and a is the alternative population of interest. d-

superscripts will index population-specific distributions and their attributes. In population e,

the experimental evaluation assigns T at random independently of all other random variables

with perfect compliance6. Therefore, we can identify the marginal distribution of untreated

outcomes in population e, F e
Y0

(y0), from the equality

F e
Y0

(y0) = F e
Y |T (y|T = 0)

6Putting perfect compliance with treatment assignment another way, the estimands of interest will be
intention-to-treat (ITT) effects, including any participation decisions. The ITT is often thought to be the
object of policy interest since compliance can rarely be mandated in policy settings.
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where F e
Y |T (y|T = 0) denotes the marginal distribution of Y conditional on the treatment

indicator being equal to zero. The equality follows from the independence of the treatment

indicator from the potential outcomes. We can also identify the marginal distribution of

treated outcomes:

F e
Y1

(y1) = F e
Y |T (y|T = 1).

We can additionally identify any functionals of the outcome distributions, which allows us

to identify the average individual-specific treatment effect ∆ in population e:

Ee[∆] = Ee[Y1 − Y0]

= Ee[Y1]− Ee[Y0]

= Ee[Y1|T = 1]− Ee[Y0|T = 0] = Ee[Y |T = 1]− Ee[Y |T = 0].

Ed stands for the expectation with respect to the distribution in D = d.

As in previous sections, I maintain the assumption that all members of the alternative

population are untreated for concreteness. So T = 0 for all individuals in population a. This

means that in population a, we identify that distribution of untreated outcomes:

F a
Y0

(y0) = F a
Y |T (y|T = 0) = F a

Y (y).

We are, however, interested in the average treatment effect in alternative population, Ea[∆],

which depends on our ability to identify Ea[Y1]:

Ea[∆] = Ea[Y1 − Y0]

= Ea[Y |T = 1]− Ea[Y |T = 0]

= Ea[Y1]︸ ︷︷ ︸
unknown

−Ea[Y ].

If the treatment effect were constant for all individuals and equal to ∆, Ea[∆] would simply

be equal to Ee[∆]. However, theory rarely implies a constant treatment effect and we can

often reject it empirically, see e.g. Heckman et al. (1997); Djebbari and Smith (2008). In

fact, theory usually predicts heterogeneity in treatment response depending on the individual

and her context’s observed and unobserved attributes.

To demonstrate the role of heterogeneity in observed and unobserved characteristics on

the average treatment effect in a, I now introduce some additional notation. Suppose we

observe a vector of covariates X ∈ X ⊆ RdX for each individual. Additionally, suppose
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there is a vector of unobserved covariates U ∈ U ⊆ RdU that we believe affects the outcome.

Concretely, we can think of the observed covariates in the remedial education example from

the introduction: the student’s grade level competency when entering third grade, class

size and gender. The unobserved covariates might be her latent ability and any parental

inputs. An equivalent representation for the potential outcomes is that treatment status and

covariates combine to produce the outcome through a function common across populations,

g : {0, 1} × X × U → R. In this representation, the potential outcomes are:

Y0 =g(0, X, U)

Y1 =g(1, X, U).

The individual-specific treatment effect is

∆ = Y1 − Y0 = g(1, X, U)− g(0, X, U),

which will in general depend on both X and U . Our target, Ea[∆] can be written as:

ATEa =Ea[Y1 − Y0]

=

ˆ
X×U

g(1, x, u)− g(0, x, u)dF a
X,U(x, u)

where F a
X,U(x, u) denotes the joint distribution of observed and unobserved covariates in

population a. Note that F a
X,U(x, u) in general differs from F e

X,U(x, u). Iterating expectations,

ATEa can be written in three equivalent ways:

ATEa =

ˆ
X

[ˆ
U
g(1, x, u)− g(0, x, u)dF a

U |X(u|x)

]
dF a

X(x) (1)

=

ˆ
X

[ˆ
R2

(y1 − y0) dF a
Y0,Y1|X(y0, y1|x)

]
dF a

X(x) (2)

ˆ
X

[ˆ
R
δdF a

∆|X(δ|x)

]
dF a

X(x) (3)

Equations (1) and (2) show that ATEa depends on the distribution of Y0, Y1|X,D = a,

which itself depends on the distribution of U |X,D = a. Equation (3) makes the connection

to the distribution of treatment effects for individuals with a particular value of the observed

covariates. Note that the equivalence of equations (1) and (2) shows that the invariance to

the population indicator of the function generating outcomes is without loss of generality,

since the dimension of U is unrestricted and could include a separate indicator for each

population, analogous to defining the d-index of F d
Y1,Y0,X

(y1, y0|x) as an element of U .

12



3.1 Previous methods

Within this general setup, I now describe previous methods for using the distributions from

the experimental population to identify the average treatment effect in the alternative pop-

ulation.

3.1.1 Conditional independence of the gains

The standard approach to extrapolating the results of social experiments has been to reweight

the average treatment effects conditional on each value of the observed covariates by the

distribution of observed covariates in the population of interest. That is:

ATEa =

ˆ
X
Ee[Y1 − Y0|x]dF a

X(x). (4)

This estimator is justified on the basis of the following assumptions (Allcott (2015)):

X a ⊆ X e (5)

∆ ⊥⊥ D|X (6)

where X a denotes the support of X in the alternative population, X e denotes the support

in the experimental population and ⊥⊥ denotes statistical independence7. (5) is a standard

condition required for non-parametric extrapolation. (6) is the key identification assumption.

Note that under (6), ∆ = Y1 − Y0 is independent of any difference between the conditional

distributions of untreated outcomes, F a
Y0

(y0|x) and F e
Y0

(y0|x). With a bounded outcome, the

conditional distributions of control outcomes may be such that (6) is impossible. For one

extreme example, consider the case where Y ∈ {0, 1}, and the outcomes in population in

population e are as in section 2, with Ee[Y0] = 1
3

and Ee[Y1] = 2
3
. Ee[∆] = 1

3
. If Y = 1 for

all individuals in population a, (6) cannot hold. Predictions will also depend on the scaling

of Y , for example, whether it is measured in levels or logs8.

Even more substantively, differences in the conditional distributions of control outcomes

are indicative of some unobserved differences between the experimental population and the

7The estimator in equation (4) can be justified on the basis of a weaker mean-independence assumption,
but I will focus on the assumptions considered in the literature.

8(4) is analogous to the counterfactual portion of a difference-in-differences estimator, where the assump-
tion is that the mean difference in outcomes is conditionally independent of the population indicator. Hence,
these standard criticisms of difference-in-differences estimators as non-invariant to scaling of the outcome
and possibly delivering predictions outside the support of the outcome variable, as described in Athey and
Imbens (2006) for example, apply here as well.
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population of interest. To see this, note that:

F d
Y0|X(y0|x) = F d

g(0,x,U)(g(0, x, U)).

Then

F a
Y0|X(y0|x) 6= F e

Y0|X(y0|x) =⇒ F a
U |X(u|x) 6= F e

U |X(u|x).

If the elements of U whose difference in conditional distribution produce the difference in the

conditional distribution of control outcomes also influence the individual-specific treatment

effect, (6) will not hold.

3.1.2 Conditional independence of the potential outcomes

Due to some combination of these criticisms, the primary assumption used in the theoretical

literature on extrapolation of experimental results combines (5) with the assumption that

the joint distribution of potential outcomes is independent of the population conditional on

the observed covariates:

(Y0, Y1) ⊥⊥ D|X (7)

or equivalently, that all unobserved covariates determining the outcome are independent of

the population indicator:

U ⊥⊥ D|X

It is straightforward to show that (7) implies Ea[Y1|x] = Ee[Y1|x] so that we can identify

the average treatment effect in the population of interest by reweighting the expectation

of the treated outcome from the experimental population conditional on covariates by the

distribution of covariates in the population of interest and subtracting the expected control

outcome from the population of interest:

ATEa =

ˆ
X
Ee[Y1|x]dF a

X(x)− Ea[Y0].

For (7) to hold, the conditional distributions of control outcomes must be the same in

the two populations. Therefore Hotz et al. (2005) and papers following them have suggested

testing equality of the distributions or their moments. Two issues come up when testing

F e
Y0|X(y0|x) = F a

Y0|X(y0|x) and using the result to conclude whether or not we can generalize
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results from the experiment to the population of interest. First, considering the small sample

sizes of many social experiments, we may often be underpowered to reject equality of the

conditional outcome distributions, as raised in Flores and Mitnik (2013). Second, if we do

reject the null hypothesis, we must conclude that the experiment tells us nothing about

ATEa. Again, this may be an issue of sample size: with large samples from both the

experimental population and the population of interest we will in all likelihood reject the

null. Furthermore, there is an issue of degree. Suppose we have two alternative populations

of interest a and a′ and our samples are large enough to reject both F e
Y0|X(y0|x) = F a

Y0|X(y0|x)

and F e
Y0|X(y0|x) = F a′

Y0|X(y0|x) but F a
Y0|X(y0|x) is quite similar to F e

Y0|X(y0|x) while F a′

Y0|X(y0|x)

is quite different, it seems inappropriate to conclude that the results from e are equally (and

completely) uninformative in predicting the average causal effect in both a and a′. In the

following section, I depart from the testing framework and derive bounds on the average

causal effect in the population of interest as a function of the differences in the conditional

distributions of control outcomes between the population of interest and the experimental

population. I conclude this section with a simple example.

3.2 Example: remedial education in India

To make the above discussion concrete, I now describe a simple parametric model using the

example of remedial education India. Suppose students from the city of Mumbai represent

the experimental population, e, and students from the city of Vadodara the alternative

population, a, where we would like to predict the average treatment effect. We will leave the

observed covariates X as a vector, but break the vector U into the two components discussed

above, latent skill S and parental input I. g(·) is a linear production function with different

parameters depending on treatment status

g(0, X, S, I) = β0 + β′0XX + β0SS + β0II = Y0

g(1, X, S, I) = β1 + β′1XX + β1SS + β1II = Y1
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Note that once we assume linearity, the commonality of g(·) across populations is no longer

without loss of generality. In this case, the individual-specific treatment effect, ∆, is

∆ =Y1 − Y0

=(β1 − β0)

+ (β′1X − β′0X)X

+ (β1S − β0S)S

+ (β1I − β0I)I

Our objective is to identify:

ATEa =Ea[Y1 − Y0]

=(β1 − β0)

+ Ea [(β′1X − β′0X)X]

+ Ea [(β1S − β0S)S]

+ Ea [(β1I − β0I)I]

The four elements of ATEa are, respectively, a treatment effect common to all students, the

average deviation from the common treatment effect due to observables in population a, the

average deviation from the common effect due to latent skill in population a and the average

deviation from the common effect due to the parental input. When β′1X 6= β′0X , there is

treatment effect heterogeneity due to observable covariates and when β1S 6= β0S or β1I 6= β0I

there is treatment effect heterogeneity due to unobservables.

ATEe alone will in general be biased as an estimator for ATEa, with the bias taking the

following form:

ATEe − ATEa =(β′1X − β′0X)(Ee[X]− Ea[X])

+ (β1S − β0S)(Ee[S]− Ea[S])

+ (β1I − β0I)(E
e[I]− Ea[I])

The bias depends on the differences between sites in the marginal distributions of character-

istics along which treatment effects are heterogeneous.

In this simple example, we need Ea[S|x] = Ee[S|x] if β1S 6= β0S and Ea[I|x] = Ee[I|x] if

β1I 6= β0I for conditional independence of the gains, (6), to hold. We need Ea[S|x] = Ee[S|x]

if (β0S, β1S) 6= (0, 0) and Ea[I|x] = Ee[I|x] if (β0I , β1I) 6= (0, 0) for conditional independence
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of the potential outcomes, (7), to hold. We will return to this parametric model to build

intuition for key points in the next section as well.

4 Bounds on ATEa using differences in the untreated

outcome distributions

4.1 Identification

In investigating the role of the conditional untreated outcome distributions in determining

the average causal effect in the population of interest, recall first that since we can already

identify Ea[Y0] (simply the expected outcome in the population of interest), what we need

to identify Ea[Y1] − Ea[Y0] is the counterfactual Ea[Y1]. The expected value of the treated

outcome in the population of interest can be written as follows:

Ea[Y1] =

ˆ
X



ˆ
R



ˆ
R
y1 dF

a
Y1|Y0,X(y1|y0, x)

︸ ︷︷ ︸
unidentified


 dF a

Y0|X(y0|x)
︸ ︷︷ ︸

identified


 dF a

X(x)︸ ︷︷ ︸
identified

(8)

We are missing information on the distribution of treated outcomes that individuals with a

particular untreated outcome would experience in the population of interest. Since no one

is treated in the population of interest, for information on this object, we must turn to the

experimental population.

For the experiment to tell us anything about F a
Y1|Y0,X(y1|y0, x), we must first impose two

support conditions.

Assumption 1. The support of X in the population of interest is a subset of the support in

the experimental population: X a ⊆ X e.

Assumption 2. The support of Y0|X = x in the population of interest is a subset of the sup-

port in the experimental population for all values of X in the support of X in the population

of interest: Suppa(Y0|X = x) ⊆ Suppe(Y0|X = x) ∀x ∈ X a.

Assumption 1 is the same as employed in the previous literature (see equation (5)). As-

sumption 2 will be needed to nonparametrically tie differences in the conditional distributions

of untreated outcomes to differences in the conditional distributions of treated outcomes. I

will explore alternative assumptions when these are violated in an extension.

Turning now to the question of identification of F a
Y1|Y0,X(y1|y0, x) using information from

the experiment, we first observe that there are many possible covariate-and-untreated-

outcome-conditional distributions FY1|Y0,X(y1|y0, x) associated with the covariate-conditioned
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marginal untreated outcome F e
Y0|X(y0|x) and treated outcome distributions F e

Y1|X(y1|x). Specif-

ically, FY1|Y0,X(y1|y0, x) is a valid conditional distribution for the marginal distributions

F e
Y0,X

(y0|x) and F e
Y1|X(y1|x) if

FY1|Y0,X(y1|y0, x) = C1(F e
Y0,X

(y0|x), F e
Y1|X(y1|x)|x)

where C : [0, 1]2 → [0, 1] is a copula function (see appendix A for the definition), and

C1(v, w|x) = ∂C(v,w|x)
∂v

. Informally, a copula function is a bivariate CDF where both ar-

guments are defined on the unit interval which fully determines a dependence structure

between the untreated and treated outcomes in the experimental population for individu-

als with the same covariates. A copula function combined with the marginal distributions

of untreated (F e
Y0,X

(y0|x)) and treated outcomes (F e
Y1|X(y1|x)) defines a joint distribution

(FY0,Y1|X(y0, y1|x)) consistent with those marginal distributions. FY1|Y0,X(y1|y0, x) is the con-

ditional distribution associated with the joint distribution FY0,Y1|X(y0, y1|x). Let C denote

the set of valid copula functions.

I will assume that the distribution of treated outcomes conditional on an untreated

outcome and observed covariates in the alternative population of interest is consistent with

the experimental results.

Assumption 3. Consistency of the conditional distribution of treated outcomes in the pop-

ulation of interest with the experimental results:

F a
Y1|Y0,X(y1|y0, x) = C1(F e

Y0|X(y0|x), F e
Y1|X(y1|x)|x)

for some copula function C ∈ C.

Assumption 3 states that we must be able to express the distribution of the treated out-

come conditional on an untreated outcome and covariates as one of the conditional distribu-

tions consistent with the distributions of untreated and treated outcomes in the experiment.

To make Assumption 3 more concrete, I illustrate two examples of copula functions

and show how they define a joint distribution of potential outcomes FY0,Y1|X(y0, y1|x). Let

Qe
Y0|X(α|x) denote the α-quantile of Y0|X in the experimental population and Qe

Y1|X(α|x) the

α-quantile of Y1|X in the experimental population. Figures 2 and 3 show two possible copulas

and the joint distributions they define. The arrows in the figures represent dependence

relationships between F e
Y0|X(y0|x) and F e

Y1|X(y1|x) defined by the copulas. The horizontal

arrows in figure 2 represent the joint distribution Y0, Y1|X in the experimental population

when the treatment preserves individuals’ ranks in the outcome distributions perfectly. In

the example of remedial education in India, the highest-scoring student without a remedial
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education teacher assigned to her school would still be the highest-scoring student with a

remedial education teacher assigned. The crossing arrows in figure 3 represent the case when

the treatment reverses ranks: the highest scoring student without the treatment would be

the lowest-scoring student without the treatment.

Figure 2: Perfect positive dependence of F e
Y0|X(y0|x), F e

Y1|X(y1|x)

Control outcomes Treated outcomes


...

Qe
Y0|X(.95|x)

...

Qe
Y0|X(.5|x)

...

Qe
Y0|X(.05|x)

...







...

Qe
Y1|X(.95|x)

...

Qe
Y1|X(.5|x)

...

Qe
Y1|X(.05|x)

...




1

A joint distribution F e
Y0,Y1|X(y0, y1|x) consistent with the experimental marginal distribu-

tions of control and treated outcomes also determines the extent of heterogeneity in treatment

effects for individuals with covariates x. When the treatment perfectly preserves individuals’

ranks in the outcome distributions, treatment effect heterogeneity due to unobservables is

minimized (Cambanis, Simons, and Stout (1976)). That is, conditional on x, the individual-

specific treatment effects ∆ have the the smallest magnitude possible. In contrast, when the

treatment inverts individuals’ ranks in the outcome distributions, the treatment effects have

the largest possible magnitude.

The relationship between Y0|X and Y1|X under perfect positive dependence is known as

comonotonicity, which is defined as follows.

Definition 1. Comonotonicity. When two random variables V and W are comonotonic

FV,W (v, w) = min {FV (v), FW (w)} .

A necessary condition for Assumption 3 is that if the control outcomes conditional on a

value of the covariates have the same distribution in the experimental population and the
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Figure 3: Perfect negative dependence of F e
Y0|X(y0|x), F e

Y1|X(y1|x)

Control outcomes Treated outcomes


...

Qe
Y0|X(.95|x)

...

Qe
Y0|X(.5|x)

...

Qe
Y0|X(.05|x)

...







...

Qe
Y1|X(.95|x)

...

Qe
Y1|X(.5|x)

...

Qe
Y1|X(.05|x)

...




1

population of interest, the conditional treated outcomes have the same distribution as well.

That is,

F a
Y0|X(y0|x) = F e

Y0|X(y0|x) =⇒ F a
Y1|X(y1|x) = F e

Y1|X(y1|x).

A sufficient condition but stronger than necessary condition is that the distribution of

the treated outcomes be the same across populations once we have conditioned on a value

of the control outcome and the observed covariates, an assumption also used in Athey and

Imbens (2006). Formally:

Y1 ⊥⊥ D|Y0, X (9)

This is the relevant condition to answer the hypothetical, what would the conditional dis-

tribution of treated outcomes have been in the experiment had the distribution of control

outcomes been the same as in the population of interest (see Fortin, Lemieux, and Firpo

(2011))? In terms of the underlying unobservables, a sufficient condition for (9), in turn, is:

U ⊥⊥ D|g(0, x, U) = y0, X = x.

Finally, we require existence of the expectation of Y1 in e.

Assumption 4. Y1 has finite expectation in e: Ee [|Y1|] <∞.
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Combining assumptions 1, 2, 3 and 4, we state the following result.

Proposition 1. Under assumptions 1, 2, 3 and 4:

Ea[Y1 − Y0|x] ∈
[{

min
C∈C

ˆ
R

(ˆ
R
y1dC1(F e

Y0
(y0|x), F e

Y1
(y1|x)|x)

)
dF a

Y0
(y0|x)

}
− Ea[Y0|x],

{
max
C∈C

ˆ
R

(ˆ
R
y1dC1(F e

Y0
(y0|x), F e

Y1
(y1|x)|x)

)
dF a

Y0
(y0|x)

}
− Ea[Y0|x]

]

Bounds on the unconditional average treatment effect in the population of interest can

then be recovered by weighting the minimal and maximal conditional average treatment

effects by the distribution of covariates in the population of interest.

ATEa ∈
[ˆ
X

min Ea[Y1 − Y0|x]dF a
X(x),

ˆ
X

max Ea[Y1 − Y0|x]dF a
X(x)

]
(10)

All of the objects in proposition 1 are identified, with the exception of the copula C. We

minimize and maximize over the set of possible copulas C to obtain the bounds. The bounds

defined in proposition 1 are sharp by construction, since each element of C defines a valid

possible conditional distribution F a
Y1|Y0,X(y1|y0, x).

By considering the full set of possible copulas, we consider copulas that may not be

credible, however. In particular, the dependence structure shown in figure 3 is not realistic

in most applications. In the remedial education example, it is clearly unrealistic to believe

that the highest-performing students when no remedial education teacher is assigned to their

school become the lowest-performing when a remedial education teacher is assigned. Unless

remedial education is so effective that a poor-performing student without treatment becomes

the best-performing student, the best-performing student without treatment’s rank in the

outcomes distribution is likely unaffected: she is not assigned to work with the remedial

education teacher and remains the highest-performing. We typically anticipate some positive

dependence between outcomes with and without treatment for any one individual, with the

degree of dependence (and thus of unobserved treatment effect heterogeneity) depending on

the application.

We therefore index copulas by the degree of dependence in the joint distributions of

control and treated outcomes they generate. We use Normalized Spearman’s ρ, defined

below, to measure dependence.

Definition 2. For any two random variables V and W , Normalized Spearman’s ρ is given
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by:

ρ(V,W ) =
CorC(R(V ), R(W ))

CorM(R(V ), R(W ))

where R(V ) = FV (v) when V is continuously distributed and R(V ) = FV (v)+FV (v−)
2

when V

takes a finite number of values and equivalently for W . The notation FV (v−) denotes P (V <

v) and equivalently for W . CorC(R(V ), R(W )) refers to the product-moment correlation

between R(V ) and R(W ) under copula C:
´ (

R(V )− 1
2

) (
R(W )− 1

2

)
dC(FV (v), FW (w)).

CorM(R(V ), R(W )) is the product-moment correlation between R(V ) and R(W ) under

comonotonicity:
´ (

R(V )− 1
2

) (
R(W )− 1

2

)
d (min {FV (V ), FW (w)}).

The definition of Normalized Spearman’s ρ coincides with the standard calculation of

Spearman’s ρ in the numerator (see Nešlehová (2007)). In the denominator, when V and W

are continuously distributed,
´ (

R(V )− 1
2

) (
R(W )− 1

2

)
d (min {FV (V ), FW (w)})=1 so that

the calculation is completely standard. However, when V and W take a finite number of

values,
´ (

R(V )− 1
2

) (
R(W )− 1

2

)
d (min {FV (V ), FW (w)}) may be less than 1. So the only

difference with the standard calculation is the normalization in the discrete case.

We can produce bounds on Ea[Y1−Y0|x] subject to the restriction that we only consider

copula functions generating dependence greater than a specified level. This is represented in

the following assumption and proposition.

Assumption 5. C is an element of C(ρL), the set of copula functions such that ρ(Y0, Y1|X =

x) ≥ ρL where ρL ∈ [0, 1] .

Proposition 2. Under Assumptions 1, 2, 3, 4 and 5:

Ea[Y1 − Y0|x] ∈
[{

min
C∈C(ρL)

ˆ
R

(ˆ
R
y1dC1(F e

Y0
(y0|x), F e

Y1
(y1|x)|x)

)
dF a

Y0
(y0|x)

}
− Ea[Y0|x],

{
max

C∈C(ρL)

ˆ
R

(ˆ
R
y1dC1(F e

Y0
(y0|x), F e

Y1
(y1|x)|x)

)
dF a

Y0
(y0|x)

}
− Ea[Y0|x]

]
.

Bounds on the unconditional ATEa can be computed in the same way as under propo-

sition 1 (equation (10)). C(1) is a singleton and the bounds shrink to a point. We now

investigate the structure underlying the potential outcomes as a means of interpreting the

results and assumptions.
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4.1.1 1-dimensional unobservables generate comonotonicity

Suppose an individual’s control and treated potential outcomes, Y0 and Y1, are both gen-

erated by a single unobserved characteristic of the individual so that U is one-dimensional

and the structural functions g(0, x, u) and g(1, x, u) are each weakly increasing in u. It is a

standard result that this implies comonotonicity of the potential outcomes (see, for example,

the proof of proposition 5.16 in McNeil, Frey, and Embrechts (2005)).

Athey and Imbens (2006) use this characterization of Yt (however, in their difference-in-

differences setting T indexes time, rather than treatment), along with assumptions 1, 2 and

3 and the condition U ⊥⊥ T to yield an estimator they refer to as the changes-in-changes

model with conditional independence (see section 4.2 of Athey and Imbens (2006)). U ⊥⊥ T

by design in the experiment (T is randomly assigned independently of any other random

variable), so the changes-in-changes model with conditional independence is a valid estimator

for the point defined under proposition 2 when ρL = 1. When outcomes are continuous,

Athey and Imbens (2006) point out that assumption 3 is implied by monotonicity in u of

the function generating outcomes and thus does not need to be separately imposed.

Example. To gain some intuition for the identifying power of assuming g(0, x, u) and

g(1, x, u) are strictly increasing in 1-dimensional u, we return to the parametric example

introduced in section 3.2. Assume the parental input I is excluded from the production

function so unobservables are one-dimensional9 and the potential outcomes can be written

as

Y0 = β0 + β0XX + β0SS

Y1 = β1 + β1XX + β1SS

In this section I illustrate that with a one-dimensional unobservable, the way in which the

distributions of observables F e
X,Y (x, y) in the experimental population change with treatment

9This is not the only way to generate 1-dimensional unobservables in the linear production function
described in section 3.2. We could make use of a single index specification for the unobservables where

Y0 = β0 + β0XX + β0SS + β0II

Y1 = β1 + β1XX + κ(β0SS + β0II)

Alternatively, if S and I have a Pearson product-moment correlation of 1, we can write I as a linear
function of S (I = bS) so that:

Y0 = β0 + β0XX + (β0S + β0Ib)S

Y1 = β1 + β1XX + (β1S + β1Ib)S
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status can be mapped into differences in the treatment and control structural functions.

This knowledge of the changes in the structural function can be applied to differences in

the distributions of observables in the control state, F e
X,Y0

(x, y0) and F a
X,Y0

(x, y0), across

populations to recover Ea[Y1].

Let α = F e
Y0|X(y0|x) for a given value of y0. Consider the α quantiles of Y1|X and Y0|X

in e:

Qe
Y1|X(α|x) = β1 + β′1Xx+ β1SQ

e
S|X(α|x)

Qe
Y0|X(α|x) = β0 + β′0Xx+ β0SQ

e
S|X(α|x)

Making use of the linear functional form, we can subtract the x-subgroup, t-specific mean

from each quantile to remove the common and x-specific structural effects:

Qe
Y1|X(α|x)− Ee[Y1|x] = β1S

(
Qe
S|X(α|x)− Ee[S|x]

)

Qe
Y0|X(α|x)− Ee[Y0|x] = β0S

(
Qe
S|X(α|x)− Ee[S|x]

)

By dividing the e treatment group α-quantile-specific deviation from the x-subgroup specific

mean from the corresponding α-quantile-specific deviation in the e control group, we obtain

the ratio of the effects of the latent skill S in the treated and control states.

Qe
Y1|X(α|x)− Ee[Y1|x]

Qe
Y0|X(α|x)− Ee[Y0|x]

=
β1S

(
Qe
S|X(α|x)− Ee[S|x]

)

β0S

(
Qe
S|X(α|x)− Ee[S|x]

)

=
β1S

β0S

(11)

Knowing the ratio of the effects of latent math skill across treatment and control states

allows us to map differences in the distributions of latent skill and pre-test score F e
X,S(x, s)

and F a
X,S(x, s) identified by differences in the joint distributions of the control outcomes

F e
X,Y0

(x, y0) and F a
X,Y0

(x, y0) into differences in the observed treatment group distribution in

e, F e
X,Y1

(x, y1), and the unknown treated group distribution in a, F a
X,Y1

(x, y1). Specifically,

consider:

Ea[Y0|x]− Ee[Y0|x] = β0S (Ea[S|x]− Ee[S|x]) .

Then we can use the change in the effect of unobservables from equation (11) to identify the
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unknown expected value of the treated outcome conditional on covariates x.

Ea[Y1|x]− Ee[Y1|x] =
β1S

β0S

(Ea[Y0|x]− Ee[Y0|x])

Ea[Y1|x] =
β1S

β0S

(Ea[Y0|x]− Ee[Y0|x]) + Ee[Y1|x]

Finally, the conditional average treatment effect is obtained by subtracting the conditional

expectation of the test score in the population of interest.

Ea[Y1 − Y0|x] =
β1S

β0S

(Ea[Y0|x]− Ee[Y0|x]) + Ee[Y1|x]− Ea[Y |x]

4.1.2 Multidimensional heterogeneity

However, when we introduce multidimensional heterogeneity, we can no longer cleanly apply

the knowledge we gain from the experiment about how the structural function g(t, x, u)

changes with treatment to the differences in F e
X,Y0

(x, y0) and F a
X,Y0

(x, y0).

Example. This is easy to see in the parametric illustration when we reintroduce independent

variation in I. Consider the treatment-to-control ratio of α-quantile deviations from the x-

specific subgroup means in the experimental population:

Qe
Y1|X(α|x)− Ee[Y1|x]

Qe
Y0|X(α|x)− Ee[Y0|x]

=
Qe
β1SS+β1II

(α|x)− Ee[β1SS + β1II|x]

Qe
β0SS+β0II

(α|x)− Ee[β0SS + β0II|x]

Whereas previously this ratio simplified to the treatment-to-control ratio of effects of latent

skill on the test score at the end of third grade, it no longer identifies any specific change

in the structural function. Put more generally, the α-quantile of Yt|x in the experimental

population now provides no structural information.

We will see in the next section that for very small deviations from 1-dimensional unob-

served heterogeneity, the bounds on the average treatment effect in the population of interest

expand substantially, depending on the extent of difference in the conditional distributions

of the control outcomes between the population of interest and the experimental popula-

tion. Only when unobserved heterogeneity is exactly, and not approximately, 1-dimensional

do differences in the conditional distributions of the control outcomes not lead to a loss in

identification. This motivates considering the bounds from proposition 2 and investigating

how they change with ρL.
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4.2 Estimation

In estimation, I will consider the case when outcomes and covariates are discrete or dis-

cretized. I will illustrate both possibilities in the empirical work. When outcomes and

covariates are discrete, we can represent the optimization over the restricted space of copu-

las C(ρL) as a linear programming problem. In particular, the bounds on the average causal

effect in context a for individuals with covariates x admit a representation as the solution

to a discrete optimal transportation problem with a non-standard cost function and an ad-

ditional linear constraint on dependence (see Villani (2009) for a comprehensive discussion

of optimal transportation problems). Very efficient algorithms are available to solve linear

programs (see e.g. Boyd and Vandenberghe (2004)), so the bounds can be computed quickly

using software provided by the author.

A similar representation as a continuous optimal transportation problem exists when

outcomes are continuous, but there is no analogous tractable method to compute the solution,

which involves optimization over an infinite-dimensional space (C(ρL)). It may be possible to

represent C(ρL) with a sieve space Cn(ρL), which would be finite-dimensional and compact,

becoming dense as n → ∞. Exploring this possibility is left to future research. I therefore

impose the following assumption on outcomes and covariates.

Assumption 6. Finite support of the potential outcomes and covariates. Let J,K ∈ N.
Y0 and Y1 take values in Y0 = {y0,1, . . . , y0,j, . . . , y0J} and Y1 = {y1,1, . . . , y1,k, . . . , y1K},
respectively. Further, X takes values in a finite set X .

4.2.1 Linear programming representation

I first describe the linear programming representation of the bounds in Proposition 2. I leave

conditioning on x implicit to economize on notation. Given ρL, the upper bound is obtained

by solving the following linear programming problem with solution τU(ρL) (the lower bound,

τL(ρL) is obtained by replacing the max operator with min).
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τU(ρL) = max
C(ρL)

Ea[Y1 − Y0]

= max
{P e(y0j ,y1k)}k=1,...,K

j=1,...,J

J∑

j=1

K∑

k=1

y1k
P a(y0j)

P e(y0j)
× P e(y0j, y1k) (12)

−
J∑

j=1

y0jP
a(y0j) (13)

subject to

K∑

k=1

P e(y0j, y1k) = P e(y0j) ∀j ∈ {1, ..., J} (14)

J∑

j=1

P e(y0j, y1k) = P e(y1k) ∀k ∈ {1, ..., K} (15)

J∑

j=1

K∑

k=1

(
R(y0j)−

1

2

)(
R(y1k)−

1

2

)
P e(y0j, y1k)

≥ ρL

[
max

{P e(y0j ,y1k)}k=1,...,K
j=1,...,J

J∑

j=1

K∑

k=1

(
R(y0j)−

1

2

)(
R(y1k)−

1

2

)
P e(y0j, y1k)

]

(16)

P e(y0j, y1k) ≥ 0 ∀j ∈ {1, ..., J}, k ∈ {1, ..., K}

Maximization is with respect to the elements of the matrix defining the joint distribution

of Y0 and Y1 in population e, {P e(y0j, y1k)}k=1,...,K
j=1,...,J . Line (13) is simply a normalization

so that the value of the objective function of the problem can be interpreted as Ea[Y1 −
Y0]. Constraints (14) and (15) require that the minimizing/maximizing joint distribution

be consistent with the marginal outcome distributions in e. Constraint (16) enforces that

Normalized Spearman’s ρ (see Definition 2) applied to the potential outcomes Y0 and Y1,

ρ(Y0, Y1), may not be below ρL. Constraints (14), (15) and (16) make maximizing over the

elements of the joint distribution of Y0 and Y1 equivalent to maximizing over the restricted

space of copulas, C(ρL) (proof in Appendix B).

The coefficients on the elements of {P e(y0j, y1k)}k=1,...,K
j=1,...,J are

{
y1k

Pa(y0j)

P e(y0j)

}k=1,...,K

j=1,...,J
. To-

gether with constraint (15), this shows the role of the distributions of control outcomes

{P a(y0j)}j=1,...,J and {P e(y0j)}j=1,...,J in determining the bounds. If P a(y0) = P e(y0),
Pa(y0)
P e(y0)

= 1 and constraint (15) implies that the counterfactual Ea[Y1] = Ee[Y1] 10. All

10
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else equal, in order to maximize the objective function, we would like to assign higher prob-

ability to high values on the support of Y1 (high k) when
Pa(y0j)

P e(y0j)
is large and to low values on

the support of Y1 (low k) when
Pa(y0j)

P e(y0j)
is small. However, constraint (16) limits our ability

to do so.

Example. Table 5 shows the choice variables and constraints 14 and 15 in the context

of the remedial education in India example where the city of Mumbai is treated as e and

Vadodara as a. As will be discussed in more detail in section 6, I do not use the test score

directly as an outcome, but rather the discrete grade level competency of third graders when

completing third grade. In table 5, I condition on a competency level of zero on entering

third grade. The row and column labeled “All” represents the constraints on the marginal

distributions P e(y0|x) and P e(y1|x). Without further constraints, the values of the choice

variables are restricted only by the requirement that the sums across rows (for the untreated

outcomes) equal the probability in the column labeled “All control” and that the sums down

the columns (for the treated outcomes) equal the probability in the row labeled “All treated.”

Table 5: Choice variables - P e(y0j, y1k|competency on entering third grade = 0), e =Mumbai

Remedial education

Competency on exiting grade 3

0 1 2 3 All control

N
o

re
m

ed
ia

l
ed

C
om

p
et

en
cy 0 P e(0, 0) P e(0, 1) P e(0, 2) P e(0, 3) 0.73

1 P e(1, 0) P e(1, 1) P e(1, 2) P e(1, 3) 0.17

2 P e(2, 0) P e(2, 1) P e(2, 2) P e(2, 3) 0.07

3 P e(3, 0) P e(3, 1) P e(3, 2) P e(3, 3) 0.03

All treated 0.66 0.2 0.1 0.04

Proof.

J∑

j=1

K∑

k=1

y1kP
e(y0j , y1k)

=

J∑

j=1

y1k

K∑

k=1

P e(y0j , y1k)

=
J∑

j=1

y1kP
e(y1k) = Ee[Y1]

where the second equality follows from substituting in constraint (15).
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Table 6 shows the coefficient on each choice variable P e(y0j, y1k) when Mumbai is treated

as e and we condition on students’ grade-level competency being zero on entering third grade.

We can see that the differences in the distributions of control outcomes mean that we would

maximize the objective function by ascribing the highest treatment effects to individuals

with Y0 = 1 and the lowest treatment effects to individuals with Y0 = 3.

Constraint (16) on the dependence between Y0 and Y1 in Mumbai limits our ability to do

so arbitrarily. Recall that ρL governs the allowed deviations from 1-dimensional heterogene-

ity. To gain some intuition for the joint distributions implied by different values of ρL, table

7 shows the joint distribution implied by ρL = 1 when Mumbai is treated as e and we condi-

tion on students’ grade-level competency being zero on entering third grade. When ρL = 1,

the 1-dimensional heterogeneity case, the majority of the mass in the joint distribution lies

on the principal diagonal. Most individuals (88%) have a treatment effect of zero, with a

few individuals experiencing a positive treatment effect of at most 1 competency level.

Table 6: Contribution of choice variables to the objective -
P e(y0j, y1k|competency on entering third grade = 0), e =Mumbai

Remedial education

Competency on exiting grade 3

0 1 2 3

N
o

re
m

ed
ia

l
ed

C
om

p
et

en
cy 0 0 0.71 2×0.71 3×0.71

1 0 2.26 2×2.26 3×2.26

2 0 1.16 2×1.16 3×1.16

3 0 0.60 2×0.60 3×0.60

4.2.2 Sample counterparts estimator

The solutions to the linear programming representation conditional on observed covariates

x and minimum rank correlation ρL, τLx (ρL) and τUx (ρL) when minimizing and maximizing re-

spectively, are functions of the population objects {P e(y0j|X = x)}j=1,...,J , {P e(y1k|X = x)}k=1,...,K

and {P a(y0j|X = x)}j=1,...,J . We can write

τLx (ρL) = φL
(
{P e(y0j|X = x)}j=1,...,J , {P e(y1k|X = x)}k=1,...,K , {P a(y0j|X = x)}j=1,...,J ; ρL

)

(17)
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Table 7: P e(y0j, y1k|competency on entering third grade = 0), ρL = 1 e =Mumbai

Remedial education

Competency on exiting grade 3

0 1 2 3 All Control

N
o

re
m

ed
ia

l
ed

C
om

p
et

en
cy 0 0.66 0.07 0 0 0.73

1 0 0.13 0.04 0 0.17

2 0 0 0.06 0.01 0.07

3 0 0 0 0.03 0.03

All Treatment 0.66 0.2 0.1 0.04

where φL : ∆(Y0)×∆(Y1)×∆(Y0)→ R and ∆(Z) denotes the unit simplex on an arbitrary

finite set Z. We can similarly write

τUx (ρL) = φU
(
{P e(y0j|X = x)}j=1,...,J , {P e(y1k|X = x)}k=1,...,K , {P a(y0j|X = x)}j=1,...,J ; ρL

)

(18)

where φU : ∆(Y0) × ∆(Y1) × ∆(Y0) → R. In terms of φL(·) and φU(·), the bounds on the

unconditional ATEa (τ(ρL)) with ρL specified are as follows.

τ(ρL) ∈ [τL(ρL), τU(ρL)]
[∑

x∈X
φL
(
{P e(y0j|X = x)}j=1,...,J , {P e(y1k|X = x)}k=1,...,K , {P a(y0j|X = x)}j=1,...,J ; ρL

)
P a(x),

∑

x∈X
φU
(
{P e(y0j|X = x)}j=1,...,J , {P e(y1k|X = x)}k=1,...,K , {P a(y0j|X = x)}j=1,...,J ; ρL

)
P a(x)

]

The bounds can be estimated by replacing population objects with their sample counterparts,

denoted with hats.

[τ̂L(ρL), τ̂U(ρL)] =
[∑

x∈X
φL
({

P̂ e(y0j|X = x)
}
j=1,...,J

,
{
P̂ e(y1k|X = x)

}
k=1,...,K

,
{
P̂ a(y0j|X = x)

}
j=1,...,J

; ρL
)
P̂ a(x),

∑

x∈X
φU
({

P̂ e(y0j|X = x)
}
j=1,...,J

,
{
P̂ e(y1k|X = x)

}
k=1,...,K

,
{
P̂ a(y0j|X = x)

}
j=1,...,J

; ρL
)
P̂ a(x)

]
.
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4.3 Inference

Imbens and Manski (2004) provide confidence intervals with a fixed asymptotic coverage

probability of containing the true value of a partially-identified parameter under the high-

level assumption that the joint distribution of the bounds on the parameter is bivariate

Gaussian. These could in principle be used to compute confidence intervals covering the

true value of the average causal effect in context a, conditional on a specific value for ρL,

with fixed probability. However, the asymptotic distribution of the bounds is not available

in closed form, so I compute them using the bootstrap. The distribution of the bounds in

bootstrap samples will be asymptotically normal, satisfying the assumption in Imbens and

Manski (2004), under the following assumption.

Assumption 7. (i) Sampling. (Yi, Ti) for i = 1, . . . , N e in population e are i.i.d. con-

ditional on Xi = x. (Yi, Ti) for i = 1, . . . , Na, in population a are i.i.d, where Ti =

0 ∀i conditional on Xi = x. (ii) For each x in X , there exists a neighborhood of Vx of(
{P e(y0j|X = x)}j=1,...,J , {P e(y1k|X = x)}k=1,...,K , {P a(y0j|X = x)}j=1,...,J

)
such that

φL
(
{P e(y0j|X = x)}j=1,...,J , {P e(y1k|X = x)}k=1,...,K , {P a(y0j|X = x)}j=1,...,J ; ρL

)

and

φU
(
{P e(y0j|X = x)}j=1,...,J , {P e(y1k|X = x)}k=1,...,K , {P a(y0j|X = x)}j=1,...,J ; ρL

)

(defined in equations 17 and 18) are differentiable on Vx for all ρL in [0, 1].

Proposition 3. Suppose Assumptions 1, 2, 3, 5, 611 hold. Let P be the set of distri-

butions for which Assumption 7 holds. Then, limN→∞ infP∈P,τ(ρL)∈[τL(ρL),τU (ρL)]P (τ(ρL) ∈
CIN(ρL))≥ 1− α.

5 Transfers to Mexican microenterprises

McKenzie and Woodruff (2008) (henceforth MW) document the results of an experiment they

carried out in 2006 (baseline Oct. 2005) in Leon, Mexico. The experiment was intended to

investigate the returns to measured profits of loosening credit constraints for small scale

male microentrepreneurs by giving the microentrepreneurs transfers. The authors collected

data over the course of five quarterly waves, including the baseline. A treated group of

entrepreneurs was randomly assigned to receive a transfer and, conditional on assignment to

11Assumption 6 implies Assumption 4.
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receiving a transfer, randomly assigned a wave to receive the transfer. The transfers were

valued at 1,500 pesos (about $140). Half the transfers were randomly determined to be

in-kind, which meant that a member of the survey team accompanied the entrepreneur to

purchase equipment or inputs of his choice.

To ensure that the transfers be significant relative to each firm’s scale of operation, the

authors restricted their initial sample to entrepreneurs with a capital stock valued at less

than 10,000 pesos and no paid employees. Entrepreneurs had to be working full-time on

their firm (35 or more hours per week). They further restricted the sample to entrepreneurs

working in retail between the ages of 22 and 55. In baseline specifications, the authors find

that the transfers increase average monthly profits by about 40% of the transfer.

I explore the extent to which we can generalize this striking finding to microentrepreneurs

with the same characteristics in urban Mexico in 2012. The Leon experiment is uniquely

suited to this exercise because the questionnaire used in the experiment was based on the

national microenterprise survey: Encuesta Nacional de Micronegocios (ENAMIN). This en-

sures that variables are measured in approximately the same way, which has been shown to

be important when using information from one dataset to learn about counterfactual po-

tential outcomes in another - in this case treated outcomes (see e.g. Heckman, Ichimura,

and Todd (1997); Diaz and Handa (2006)). I exclude entrepreneurs from the 2012 ENAMIN

using the same criteria as MW, additionally requiring that the entrepreneurs be working in

urban areas since ENAMIN also captures entrepreneurs in rural area. Since sample selection

already chooses a restricted set of individuals, I do not condition on any covariates in the

analysis.

I trim profit reports of more than 20,000 pesos in both samples. This trimming keeps

slightly more observations than MW who exploit the panel structure and base their trimming

procedure on percentile changes in reported profits. Since ENAMIN is a cross-section, I can-

not implement a similar procedure and therefore choose a specific value for trimming. Results

are robust to choosing different values for trimming. After implementing the trimming, I

am left with 903 observations from the ENAMIN sample and 207 unique microentrepreneurs

from the experiment.

Figure 4 (this and subsequent figures are collected at the end of the paper) shows the

outcome distributions in ENAMIN and the control group from the experiment, which provide

one key ingredient for the bounds. Since heaping is a substantial issue in reported profits,

particularly in ENAMIN, I first smooth profits using a kernel density estimator with a

Gaussian kernel and a bandwidth of 750 pesos before discretizing to 500 peso (about $50)

bins. Figure 4 shows that the experimental control group and the ENAMIN sample have

similar outcome distributions, although the ENAMIN sample has substantially more very
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low profit realizations.

We now explore implications of the differences in the distributions of untreated profits

for what we can learn about the average return to cash transfers in urban Mexico in 2012 on

the basis of the findings in MW. Figure 5 shows bounds (in black) on the average monthly

return to providing cash transfers as a function of the minimum rank correlation between

untreated and treated outcomes allowed, ρL. The bounds shrink to a point when the rank

correlation between profits with and without transfers is the maximum possible. Imbens

and Manski (2004) 95% confidence regions (in translucent gray) are computed using 100

bootstrap replications for each ρL, clustering at the firm level for the experiment12. The

information in the plot is repeated in table 8.

We can draw two conclusions from the results. First, the overall similarity of the control

outcome distributions yield narrow bounds on the average return to transfers for male mi-

croentrepreneurs in urban Mexico in 2012 for a wide range of possible dependence between

outcomes with and without cash transfers. And, second, the experimental sample size is

sufficiently small that the 95% confidence interval includes a zero effect on monthly profits

at all levels of dependence. We cannot reject a zero effect because the confidence interval

around the bounds takes into account three sources of uncertainty: 1) the small sample

size of the experiment (207 entrepreneurs), 2) the fact that our information on the distri-

bution of control outcomes in urban Mexico in 2012 also comes from a finite sample (903

entrepreneurs) and 3) the difference in the distribution of untreated profits, particularly for

low profit reports.

Previous work (discussed in detail in section 3.1.2) suggested taking into account the

differences in the distributions of untreated outcomes by testing their equality (Hotz et al.

(2005)). The small size of the experimental sample renders us unable to reject equality of

the distributions (the p-value from a Kolmogorov-Smirnov-based test is 0.92). Having been

unable to reject the equality of the untreated outcome distributions due to the small size of

the experimental sample, we would predict the average profits for male microentrepreneurs

in urban Mexico in 2012 to be equal to the average profits for the treated group measured

in the experiment, with the same confidence interval as in the experiment. The confidence

interval for the difference in treated and untreated profits would be smaller because the

sample from ENAMIN is larger so we would be able to reject a zero effect on transfers,

ignoring the existence of differences in the distributions of control outcomes. I am able to

separately quantify the uncertainty due to the difference in the control outcome distributions

and the uncertainty due to the small sample in the Leon experiment13. Considering that the

12This requires replacing the individual-level indicator i with a cluster-level indicator g in Assumption 7.
13I do not take into account the substantial sample attrition that affected the experiment and is explored
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small sample size of the experiment led MW to be cautious in drawing conclusions from their

results in-sample, it seems unintuitive that we should be able to draw stronger conclusions

about the returns in all urban Mexico. Of course, we do not know the returns to transfers

in urban Mexico in 2012, so we now turn to a setting where we can compare predictions and

measured causal effects.

Table 8: Bounds on the average return to cash transfers in urban Mexico in 2012 using
experimental data from McKenzie and Woodruff (2008)

Rank correlation 0.5 0.6 0.7 0.8 0.9 1

ATEa lower bound 0.008 0.020 0.034 0.052 0.077 0.222

ATEa upper bound 0.436 0.427 0.416 0.392 0.354 0.222

95% Imbens and Manski (2004)

confidence interval lower bound -0.264 -0.247 -0.245 -0.224 -0.174 -0.125

95% Imbens and Manski (2004)

confidence interval upper bound 0.726 0.723 0.693 0.705 0.638 0.569

6 Remedial education in India

Banerjee et al. (2007) (henceforth BCDL) evaluated a remedial education program imple-

mented by the same NGO, Pratham, in two Indian cities: Mumbai and Vadodara. Under the

program, Pratham provides government schools with a teacher to work with 15-20 students

in the third and fourth grade who have been identified as falling behind. The teacher works

with these students for about half the school day.

BCDL carried out the experimental evaluations in Mumbai and Vadodara over the course

of three years, from 2001 to 2003. The last year was primarily used to investigate the

persistence of effects of the program on learning, so I focus on the first two. In Mumbai,

the experiment was carried out only among third graders in the first year of the evaluation,

while in the second year there were compliance issues, with only two-thirds of Mumbai

schools agreeing to participate. In Vadodara, both grade levels were represented in each of

the first two years but during the first year communal riots disturbed part of the school year.

in MW. MW conclude that the possibility of differential attrition between the experimental treatment and
control groups would not dramatically affect their results. Taking into account the possibility of differential
attrition would lead to wider bounds on the average return to the transfers than reported in figure 5 and
table 8.
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Because of the compliance issues in Mumbai year 2 and the shorter duration of the program

in Vadodara year 1, it is harder to interpret the programs being evaluated in the two cities

as actually being the same in these periods. Therefore, I consider the Mumbai population as

made up of third graders surveyed during the first year of the experiment and the Vadodara

population as third graders surveyed in the second year of the experiment.

The researchers administered different achievement tests for both math and verbal skills

in the two samples, which poses a challenge in applying the bounds proposed here or existing

extrapolation methods in this dataset. Along with different questions, the two tests featured

different numbers of questions as well, with 30 questions on the Mumbai test and 50 on

the Vadodara test. As an alternative to using the raw test scores, I take advantage of the

fact that the test scores were mapped to the students’ grade level competency. Grade level

competency measures whether the student successfully answered questions showing mastery

of the subjects taught in each grade. This measure of achievement is used in the Annual

Status of Education Report, also affiliated with Pratham, to compare achievement across

Indian states. One final complication is that students may not achieve all competencies

below their maximum competency. For simplicity, I consider the maximum competency as

the outcome of interest.

With the exception of the test score and competency at baseline, relatively little data on

students are available consistently across the two samples. Tables 9 and 10 show summary

statistics for the maximum competency at baseline in the two populations as well as students’

class size and gender. The populations are relatively balanced on gender, while Mumbai

classes are notably larger than those in Vadodara. BCDL find no evidence of treatment

effect heterogeneity on either of these characteristics, so I ignore them and focus on the

maximum competency level at baseline.

Table 9: Vadodara

Variable Mean Std. Dev.

Pre-test: maximum math competency 0.276 0.361

Pre-test: maximum verbal competency .613 .678

Male 0.497 0.5

Number of students in class 62.109 26.516

N 5819

Table 11 shows the difference across cities in the unconditional effect of the remedial edu-

cation program on the average maximum math grade level competency. The first line shows
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Table 10: Mumbai

Variable Mean Std. Dev.

Pre-test: maximum math competency 0.543 0.641

Pre-test: maximum verbal competency 1.991 1.113

Male 0.473 0.499

Number of students in class 89.506 40.233

N 4429

the average effect in Vadodara. In Vadodara, the program raised students’ maximum grade

level competency in math by 0.16 grade levels. The third line shows the unconditional bias

in using the average treatment effect in Mumbai as an estimator for the average treatment

effect in Vadodara. The average effect in Mumbai is estimated at 0.059 grade levels, 0.103

less than the Vadodara ATE and the difference is significant.

Table 11: City-specific average effects on maximum math grade level competency

Post-test: maximum math competency

Mumbai 0.020

(0.026)

Treatment 0.162∗∗∗

(0.024)

Treatment*Mumbai −0.103∗∗∗

(0.036)

Constant 0.709∗∗∗

(0.017)

Observations 10,248

R2 0.005

Notes: ∗∗∗Significant at the 1 percent level.

∗∗Significant at the 5 percent level.

∗Significant at the 10 percent level.

Table 12 shows the equivalent results for the maximum verbal competency. Here the av-

erage effect again differs across cities, but the difference is not significant. For this reason, I
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focus on examining the ability of extrapolation methods to account for the significant differ-

ence in the effect of the remedial education program on the maximum grade-level competency

in math across cities.

Table 12: City-specific average effects on maximum verbal grade level competency

Post-test: maximum verbal competency

Mumbai 0.947∗∗∗

(0.028)

Treatment 0.071∗∗∗

(0.026)

Treatment*Mumbai 0.049

(0.039)

Constant 1.230∗∗∗

(0.018)

Observations 10,248

R2 0.199

Notes: ∗∗∗Significant at the 1 percent level.

∗∗Significant at the 5 percent level.

∗Significant at the 10 percent level.

6.1 Using Mumbai to predict Vadodara

We now move to trying to use the results from Mumbai and the Vadodara control group to

predict the average outcome level in the Vadodara treatment group. We can think of this as

the policy-making exercise of using the results from Mumbai year 1 to try to infer the average

treatment effect on math test scores of implementing the remedial education program among

Vadodara third graders in the following year. As in previous work, I find that the average

treatment effect in Vadodara predicted using by reweighting Mumbai average treatment

effects conditional on grade level competency on entering third grade is biased, with the bias

equal to half the Vadodara average treatment effect (bias of 0.081 grade level competencies

with a standard error of 0.033).

The first step in the extrapolation methodology developed in Hotz et al. (2005) is testing

equality of the distributions of maximum grade level competency in math for the two control
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groups. Visual inspection of the conditional distributions in figure 6 shows that they are quite

different. Table 13 confirms this impression statistically. The table shows the distributions of

grade level competency in math on leaving third grade in the control groups in both cities in

the BCDL experiments conditional on their grade level competency in math on entering third

grade. The last column of the panel labeled Vadodara shows the p-value associated with a

χ2 test of equality of each conditional distributions representing a grade level competency on

entering third grade. The test rejects at the 5% level for all values grade level competencies

on entering third grade. Following the Hotz et al. (2005) methodology, we would conclude

that we cannot learn anything about the causal effect in Mumbai from the causal effect in

Vadodara: the students in the two cities are too different.

Table 13: Controls - P( competency on exiting grade 3 | competency on entering grade 3)
Mumbai

Post-competency

0 1 2 3 N

Pre-competency

0 0.73 0.17 0.07 0.03 1246

1 0.39 0.28 0.19 0.13 468

2 0.28 0.20 0.28 0.23 254

3 0.12 0.22 0.14 0.53 51

Vadodara

Post-competency

0 1 2 3 N P(M = V)

Pre-competency

0 0.52 0.38 0.08 0.02 2094 <2.2e-16

1 0.28 0.50 0.15 0.07 647 3.834e-12

2 0.18 0.39 0.22 0.22 51 0.03195

3 - - - - 0 -

Turning to the bounds developed in this paper, figure 7 plots bounds on the predicted

values of the average effect of the remedial education program on maximum math grade

level competencies in Vadodara as a function of the minimum rank correlation, ρL, between

outcomes with and without the remedial education for individuals with the same grade level

competency on entering third grade. The bounds are plotted in black, while the translucent

gray region represents a 95% Imbens and Manski (2004) confidence interval, based on 100

38



bootstrap replications14. Table 14 replicate the key results from figure 7 in tabular form.

A notable feature of the bounds is that they widen quickly with only small deviations

from the maximum possible rank correlation. This is due to the fact that the conditional

distributions of control outcomes differ substantially between Mumbai and Vadodara, as we

saw in figure 6 and table 13. A zero average treatment effect in Vadodara can only be

rejected using the Mumbai results if ρL > .925. The light gray line plots the measured

average effect of remedial education on maximum grade level competency in math from

table 11, while the dashed lines show the 95% confidence interval. In terms of the prediction

of the average increase in maximum grade level competency in math, we see that though

the point estimate with maximum rank correlation under-predicts the sample mean of the

maximum competency on leaving 3rd grade in Vadodara, the two estimates are fairly close

and the difference between the two is not statistically different from zero. Simply allowing

for 1-dimensional heterogeneity goes a long way toward accurately predicting the Vadodara

results.

Table 14: Bounds on the change in average grade level competency in Vadodara using
experimental results from Mumbai and untreated outcomes from Vadodara

Rank correlation 0.5 0.6 0.7 0.8 0.9 0.925 0.95 1

ATEa lower bound -0.145 -0.107 -0.062 -0.017 0.030 0.042 0.058 0.109

ATEa upper bound 0.366 0.364 0.345 0.321 0.287 0.278 0.268 0.109

95% Imbens and Manski (2004)

confidence interval lower bound -0.193 -0.155 -0.107 -0.058 -0.017 -0.011 0.007 0.039

95% Imbens and Manski (2004)

confidence interval upper bound 0.427 0.431 0.410 0.395 0.353 0.342 0.316 0.179

6.2 Using Vadodara to predict Mumbai

Figure 8 and table 15 show the results of using Vadodara to predict Mumbai. The results

show the difficulty that arises when there are some observed characteristics in the region for

which we want to predict the average causal effect that are not present in the experimental

results (Assumption 1). As shown in table 13, Vadodara does not include any students who

enter grade three with a third grade level competency while Mumbai includes a small fraction

of such students. The results in figure 8 assign these students the lower bound of the support

14Additional replications, to be added, would smooth out the irregularities in the confidence intervals.
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of the maximum grade level competency (0) when computing the lower bound on the average

causal effect in Mumbai and the upper bound of the support of the competency (3) when

computing the upper bound. As a result, we can only reject zero average treatment effect

in Mumbai using the Vadodara results under an even smaller range of rank correlations

between outcomes with and without the remedial education program (< .975). Setting

the mean treated outcome at zero competency for students with a competency of three on

entering third grade is almost surely too severe even when computing the lower bound on the

average treatment effect in Mumbai. I am currently exploring alternatives such as assuming

that the distribution of treated outcomes for this group first-order stochastically dominates

the distribution for students entering third grade with a grade-level competency of two.

Table 15: Bounds on change in average grade level competency in Mumbai using experimen-
tal results from Vadodara and untreated outcomes from Mumbai

Rank correlation 0.5 0.6 0.7 0.8 0.9 0.925 0.975 1

ATEa lower bound -0.063 -0.051 -0.039 -0.020 0.006 0.019 0.049 0.089

ATEa upper bound 0.370 0.338 0.304 0.265 0.223 0.209 0.180 0.165

95% Imbens and Manski (2004)

confidence interval lower bound -0.120 -0.098 -0.087 -0.067 -0.036 -0.028 -0.002 0.027

95% Imbens and Manski (2004)

confidence interval upper bound 0.421 0.383 0.352 0.309 0.260 0.253 0.227 0.226

7 Conclusions

The methods derived in this paper offer researchers a formal and tractable way of assessing

the extent to which experimental results generalize to contexts outside the original study.

More broadly, this paper provides a first step away from seeing generalizability as an all-or-

nothing proposition. I empirically demonstrated the problems with testing for unobserved

differences across contexts among individuals with the same observed characteristics and

taking the test results as sanctioning or prohibiting extrapolation to a particular context. In

the Mexican microenterprise example, the test grants the researcher license to extrapolate

broadly based on a very small experiment. In the remedial education example, testing leads

us to conclude that the experimental results from one site teach us nothing about causal

effects in the other.
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In contrast, the bounds developed here quantify our uncertainty about effects in the

context of interest due to unobserved differences across the contexts. In the Mexican mi-

croenterprise case, the narrow bounds showed us that the Leon 2006 results appear largely

representative of effects for similar entrepreneurs in urban Mexico in 2012. However, the

small size of the experiment should make us cautious about extrapolating, which shows up

in the wide confidence intervals around the bounds. In the remedial education example, the

bounds showed that under assumptions of strong dependence between a student’s grade-level

competency with and without a remedial education teacher assigned to her school, we can

learn quite a bit about about the effect of remedial education in one city using results from

the other. The experimental effects in the two cities are consistent with the assumption of

strong dependence.

Since experimental sites must often be chosen for reasons of cost or convenience, the

methods proposed in this paper have broad applicability. In addition to assessing what can

be learned about causal effects in new contexts on the basis of existing experimental results,

they may be used when researchers have some leeway to select experimental sites. Based

on an assumed distribution for treated outcomes, a researcher could estimate prospective

bounds on causal effects in contexts of interest with different possible experimental sites15 .

15This procedure would be akin to the power calculations commonly undertaken in determining the nec-
essary sample size for an experiment, but for identification.
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A Definition of copula

A copula function C : [0, 1]2 → [0, 1] satisfies:

1. Boundary conditions:

(a) C(0, v) = C(u, 0) = 0 ∀ u, v ∈ [0, 1]

(b) C(u, 1) = u and C(1, v) = v ∀ u, v ∈ [0, 1]

2. Monotonicity condition:

3. C(u, v) + C(u′, v′)− C(u, v′)− C(u′, v) ∀ u, v, u′, v′ s.t. u ≤ u′, v ≤ v′

B Proof of equivalence of bounds in proposition 2 and

linear programming representation

Proof. By the definition of a copula, any C ∈ C defines a joint distribution FY0,Y1(y0, y1) =

C(FY0(y0), FY1(y1)) satisfying FY0,Y1(y0,∞) = F e
Y0

(y0) and FY0,Y1(∞, y1) = F e
Y1

(y1). This

is exactly what is required by constraints 14 and 15. The equivalence of the bounds in

Proposition 2 and the full linear programming representation follows immediately from the

definition of ρ(V,W ) and constraint 16.
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Figure 4: Distribution of profits: McKenzie and Woodruff (2008) control group and 2012
ENAMIN

Note: distribution of profits in 2005 pesos for control firms in McKenzie and Woodruff (2008)
and the 2012 Encuesta Nacional de Micronegocios, using the same sample selection criteria
as in McKenzie and Woodruff (2008). The distribution of profits is smoothed using a kernel
density estimator with a Gaussian kernel and a bandwidth of 750 pesos before discretizing
to 500 peso bins.
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Figure 5: Bounds on the average return to cash transfers in urban Mexico in 2012 using
experimental data from McKenzie and Woodruff (2008)

Note: For each lower bound on the dependence between profits with and without cash
transfers, ρL, the solid black region shows the bounds on the return to cash transfers in urban
Mexico in 2012 for microentrepreneurs selected according to the criteria in McKenzie and
Woodruff (2008), ATEa, derived from the experimental results in McKenzie and Woodruff
(2008). The translucent gray region is a Imbens and Manski (2004) 95% confidence interval
for ATEa, based on 100 bootstrap replications, clustered at the firm level.
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Figure 6: controls - grade level competency on exiting 3rd grade conditional on grade level
competency on entering 3rd grade
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Figure 7: Bounds on the change in average grade level competency in Vadodara using ex-
perimental results from Mumbai and untreated outcomes from Vadodara

Note: For each lower bound on the dependence between a student’s maximum grade level
competency with and without a remedial education teacher assigned to her school, ρL, the
solid black region shows the bounds on the average gain in maximum grade level competency
in Vadodara, ATEa, derived from the experimental results in Mumbai. The translucent
gray region is a Imbens and Manski (2004) 95% confidence interval for ATEa, based on 100
bootstrap replications. The light gray line shows the point estimate of the actual average
gain in Vadodara, using the experimental results. The dashed line shows a 95% confidence
interval for the actual average gain.

49



Figure 8: Bounds on change in average grade level competency in Mumbai using experimental
results from Vadodara and untreated outcomes from Mumbai

Note: For each lower bound on the dependence between a student’s maximum grade level
competency with and without a remedial education teacher assigned to her school, ρL, the
solid black region shows the bounds on the average gain in maximum grade level competency
in Mumbai, ATEa, derived from the experimental results in Vadodara. The translucent
gray region is a Imbens and Manski (2004) 95% confidence interval for ATEa, based on 100
bootstrap replications. The light gray line shows the point estimate of the actual average
gain in Mumbai, using the experimental results. The dashed lines show the 95% confidence
interval on the actual average gain.
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