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This paper is of interest both for its methodological contribution of new tools for analyzing 
rational-expectations models and for its substantive conclusions concerning the term structure of 
interest rates during the monetary experiment of October 1979. 

The paper studies systems subject to changes in regime, interpreted here as occasional, discrete 
shifts in the parameters governing the time series behavior of exogenous economic variables. The 
specification is shown to be quite tractable both theoretically and empirically. The technique is 
used to analyze yields on three-month Treasury bills and ten-year Treasury bonds during 1962 to 
1987. A constant-parameter linear model for short-term rates is shown to be inconsistent both 
with the univariate time series properties of short rates and with the observed bivariate relation 
between long and short rates under the expectations hypothesis of the term structure. An 
alternative nonlinear model that admits the possibility of changes in regime affords a much better 
description of the univariate process for short rates. Moreover, the cross-equation restrictions 
implied by the expectations hypothesis of the term structure are consistent with the nonlinear 
specification. Indeed, the residuals of the restricted relation have a standard error of only 0.8 basis 
points. This is a third less than that of a completely unrestricted linear regression of long rates on 
short rates, and compares with an unconditional standard deviation of long rates of 142 basis 
points. 

I conclude that once the recognition by bond traders of changes in regime is taken into account, 
the expectations hypothesis of the term structure of interest rates holds up fairly well for these 
data. 

1. Introduction and summary 

This paper develops new technical tools for theoretical analysis and em- 
pirical estimation of rational-expectations models. The task is to model 
changes in regime in a way that satisfies the internal consistency requirement 
of the rational-expectations hypothesis. If the regime can change, private 
actors in the economy must assign some probability to the possibility of such 
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change, and form forecasts as best they can under the circumstances. The 
paper develops a fully integrated system for describing these forecasts and 
their influence on the behavior of endogenous variables. Despite its nonlinear 
nature, the system is shown to be quite tractable and amenable to empirical 
estimation subject to the cross-equation restrictions implied by the rational- 
expectations hypothesis. The technique is used to analyze the term structure of 
interest rates and its response to the change in Fed operating procedures 
initiated in October 1979. 

That changes in regime may be very important for the evolution of interest 
rates has been emphasized in a number of recent studies. Mankiw, Miron and 
Weil (1987) examined the effects of the establishment of the Federal Reserve 
in 1914. Peek and Wilcox (1987) considered the possibility of a change in 
policy with each new Federal Reserve chairman. The particular focus of the 
present paper is on the change in Fed operating procedure in October 1979, an 

episode studied by Antoncic (1986) Huizinga and Mishkin (1986), Hardouve- 
lis and Barnhart (1987) and Walsh (1987) among others. While all of these 
researchers have underscored the importance of changes in monetary policy, 
none developed an explicit model of how bond traders form their perceptions 
of changes in regime and what probabilities traders assign to the prospect of 
future changes. This paper, by contrast, develops a fully specified model of 
rational-expectations learning by bond traders in which parameters char- 
acterizing the process for interest rates and changes in regime can be estimated 
by full information maximum likelihood subject to the cross-equation restric- 
tions imposed by the rational-expectations hypothesis. The specification thus 
permits extension of the approach of Hansen and Sargent (1980) to environ- 
ments subject to changes in regime. 

The technique is applied to quarterly yields on three-month Treasury bills 
and ten-year Treasury bonds over the period 1962:l through 1987:3. The 
principal conclusions are as follows. (1) An AR(4) process with constant 
coefficients is inconsistent with the univariate process for short rates over this 
period. (2) The rational-expectations forecast of future short rates based on a 
constant-parameter AR(4) process for short rates is likewise inconsistent with 
the historical correlation between long and short rates under the expectations 
hypothesis of the term structure of interest rates. (3) An alternative nonlinear 
process that allows the possibility of changes in regime offers a vastly superior 
fit to the univariate data on short rates. The maximum likelihood estimates 
associate the alternative regime with the period 1979:4 through 1982:3, and 
characterize it as a period with average short rates twice as high and with a 
standard deviation four times as great as in the period preceding. (4) The 
rational-expectations forecasts of future short rates under the two regimes can 
be constructed from the maximum likelihood estimates. When the response of 
long rates to short rates is restricted to be this rational-expectations forecast, 
the residuals have a standard deviation of only 0.8 basis points. This is a third 
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less than that associated with a completely unconstrained linear OLS regres- 
sion of long rates on short rates, and compares with an unconditional standard 
deviation of long rates over this period of 142 basis points. Relaxing the 
cross-equation restrictions on the nonlinear representation does not lead to a 
statistically significant improvement in the likelihood function. 

I conclude that once the recognition by bond traders of changes in regime is 
taken into account, the expectations hypothesis of the term structure of 
interest rates holds up fairly well for these data. 

The plan of the paper is as follows. Section 2 presents the basic model of 
changes in regime, develops the rational-expectations nonlinear filter that a 
bond trader could use to learn about such changes in regime, and presents an 
algorithm for maximum likelihood estimation of parameters. Section 3 reviews 
the expectations hypothesis of the term structure of interest rates and discusses 
maximum likelihood estimation subject to the cross-equation restrictions 
imposed by rational expectations. Empirical results and substantive conclu- 
sions are presented in section 4, with concluding discussion offered in 
section 5. 

2. A model of changes in regime 

2.1. Stochastic specijcation 

Following my 1987 paper, consider a variable y, whose stochastic process is 
given by 

y,-~(s,)=cp1[Y,-1-~(~,-1)1 ++z[Yt-274%-2)1 

+ a** ++m[Yt-,-P(LJl + 4~h (2.1) 

with u, - i.i.d. N(O,l) and [l - Cpiz’ - &z2 - +. . -&zm] Z 0 for any z: ]lz]l 
zz 1. This differs from the usual linear AR(m) specification in that both the 
constant term around which the process is defined [cl(&)] and the standard 
deviation of its innovation [ a( St)] are functions of the regime operative at date 
t. The regime is indexed by the discrete-valued variable S,; for example, S, = 1 
means that the process was in regime 1 at date t. 

The assumption in this paper is that bond traders recognize the possibility 
of changes in regime and incorporate this into their forecasts for the future. To 
arrive at a rational-expectations solution of a model incorporating (2.1), we 
must (a) specify the subjective probabilities that bond traders associate with 
future regime changes, and (b) verify that these assumed probabilities are 
consistent with all information that bond traders in fact have available at date 
t. A very tractable structure for accomplishing this task is to model S, as the 
outcome of an unobserved discrete-time, discrete-state Markov process. This 



388 J. D. Hamilton, The term structure of interest rates 

paper employs the simplest example of such a specification - a two-state 
(S, = 0 or l), first-order Markov process: 

P[S, = 11&s,_, = l] =p, P[S, = 01&s_, = 11 = 1 -p, 

P[S,=llS,_,=O]=l-q, P[S,=OJS,_,=O]=q, 
(2.2) 

for which we can (without loss of generality) parameterize 

&s,)=(YO++st, u(S,)=oo+w,S,. (2.3) 

I further specify that u, is independent of St-j for all j, and normalize by 
defining state 1 to be the state with the higher variance (achieved by setting 

wi > 0). 
Three aspects of the Markov process (2.2) will be important below. First, I 

assume that bond traders do not observe the current regime S, directly, but 
instead must form inference about it based on observation of { yt}. If, 
hypothetically, one could observe the regime directly, the Markov structure 
means that S,_, would summarize all information available at date t - 1 that 
would be useful for forecasting S,: 

PIS,=s,lS,-l =s,_J 

=PIS,=s,~S,_~=s,_l,S,_~=s,_~ ,..., u,_i,u,_z ,... 1. (2.4) 

Second, note that (2.2) can be written 

with 

A= -1+p+q, 

where conditional on s,_i = 1, 

w,=l-p with probability p, 

w,= - P with probability 1 - p, 

whereas conditional on s,_i = 0, 

w,= -(l-q) 

w, = 4 

with probability q, 

with probability 1 - q. 

(2.5) 
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From these one deduces’ 

where 

1-q 
p= (1-p)+(1-q)’ 

(2.6) 

(2.7) 

Finally, notice that the unconditional distribution of S, is given by P[ S, = l] = p 
(and of course P[S, = 0] = 1 - p). 

The process defined by (2.1) and (2.2) turns out to be stationary provided 
that p and q are both strictly less than unity.’ By Wold’s decomposition, 
there exists a constant-parameter linear representation for (2.1)-(2.2) of the 
form 

J$=K+U,+@l_1+6 24 + “-, 2 r-2 (23) 

where the U,‘S are uncorrelated but not independent. What this means in 
practice is that while one could forecast the series y, on the basis of a linear 
representation such as (2.8), these forecasts are suboptimal; forecasts that 
make use of a nonlinear function of yt_ t, y,_ 2, . . . are superior. 

The optimal nonlinear forecast can be thought of as arising from a two-step 
procedure. First we ask, what is the optimal inference about the current state 
based on what we have actually observed; in other words, what is P[S, = 

1 IY,, Yt-1, *. . ]? The answer to this question is provided by the nonlinear filter 
presented shortly. One can then use the output of the filter to generate optimal 
future forecasts of y,, as is done in the present value calculations of section 3. 

The principal tool used in this investigation is a straightforward adaptation 
of the nonlinear filter introduced in my 1987 paper. That paper also describes 
the filter’s antecedents in work by Goldfeld and Quandt (1973) Liptser and 
Shiryayev (1977), Neftci (1982,1984), and Cosslett and Lee (1985). The filter 
allows us both to estimate parameters of the univariate process for y, and to 
characterize optimal forecasts of future values of y,. The latter will then be 
used in section 3 below to generate the cross-equation restrictions implied by 
the expectations hypothesis of the term structure of interest rates. 

‘These are standard results. See for example Chiang (1980, p. 160). 

*See the discussion in my 1987 paper. There I introduced a very similar process in which .v, 
represented the first difference of the raw data ji,, and the specification was suggested as an 
alternative approach to describing the nonstationarity of the raw data j,, 
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2.2. Filtering 

Suppose for the moment that we knew with certainty the particular numeri- 
cal values for the parameters (+i, &, . . . , +,,,, p, q, CQ, aI, c+,, WJ in eqs. 
(2.1)-(2.3). Even if we knew these parameters, we would still be unsure as to 
whether the process was in state 0 or 1 at date t, because the state variable s, 
is presumed unobserved by the econometrician. This subsection summarizes 
my (1987) nonlinear filter for solving the second problem of inference. 
Throughout this subsection on filtering, the parameters (+i, &, . . . , +,,,, 
p, q, ao, aI, wo, aI) are treated as known constants, and the task is solely to 
draw inference about the historical sequence of states {s,} based on the 
observed sequence of data { y,}. In the following subsection, I then show how 
the parameters (+i, c#J*, . . . , c#J~,, p, q, a,,, aI, wo, aI) can be estimated by maxi- 
mum likelihood. 

My procedure for drawing inference about { sl} is.an iterative one. Given an 
initial inference about s,_i based on data observed through date t - 1 (and 
given knowledge of the parameters [+,, &, . . . , &,, p, q, ao, aI, wo, al]), itera- 
tion t produces an inference about s, based on data observed through date t 
(this latter inference being based on the same values of [+,, &, . . . , &,,,, 
p, q, ao, aI, wo, wl] as were used in iteration t - 1 but using one more observa- 
tion on y). 

Specifically, the filter accepts as input the joint conditional probability 

and has as output 

PC S,,S,_l,..., St-m+1 Yt, Yt-1,.*., YOL 

along with, as a byproduct, the conditional likelihood of yt: 

Note well the notation: [s,, s,_i,. . ., s~._~+J refers to the m most recent 
observations on S, whereas [y,, yt_i, . . . , yo] denotes the complete history of y 
observed through date t. I further let p(x) denote Prob[X= x] for x a 
discrete-valued variable or the density function f(x) for x continuous. 

Step 1. Recalling the Markov property (2.4), calculate 

=p(s,]s,_J Xp(Sr_1,S,_2,...,SI-ml~-1,Y,-2,...,~~Vo), 
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where p(sIIsl_ r) is given by (2.2). Here (as in all the steps to follow) the 
second term on the right-hand-side is known from the preceding step of the 
filter [in this case, p(~,_r,s+~ ,..., s,_~~Y~_~,Y~_~ ,..., y,,) is known from 

the input to the filter, which in turn represents the output of the iteration at 
date t - 11. 

Step 2. Calculate the joint conditional density-distribution 

(S,, St-r,. . .v s,-J: 

p(y,, s,, s,-l,..., J,-,lyt-1, Yt-2,.-.9 Yd 

=p(yt(st,Sf__l,...rS,--m, Y,-17 Yt-2,..., Yd 

xp(s,, ~,-l,...,~,-mlYr-l~ Yt-2,..-, YIA 

where we know 

P(Ytl S,,S,_l,..., s r-m, Y,-13 Yt-2,..*, Ycl) 

of yt and 

1 

[ 

1 
= 

&( 00 + qs,) 
exp - 

2[% + +%I2 
NY, - a1sr - 4 

-&( y,_, - a1s,-1- ql> - . . . -+m(Yt-, - (YlS,-m - a,))’ I . 
Step 3. We then have 

P(Y,IYt-1, Yt-29**.9 YO) 

=f i *. * i: p(yt,s,,s,_r ,..., s,-,lY,-17 Yt-21...? YCJ. 
s,=o s,_*=o S,-m=O 

Step 4. Combining the results from steps 2 and 3, we can then calculate 

P(% s ,_l’...‘~f--mlY,,Y,-l~~~~~Yo) 

= P(Y,,s,,St-l,...,St-mlY,-1,Y,-2,...,Yo) 

P(YtlYt-1, Yt-29.a.7 Yo) . 

Step 5. The desired output is then obtained from 

p(s,,sI-r>..., s,-,+1 Yt, Y,-l,..., Yo) 

= c p(StrS,_~,...,S,-,lYt, Y,-l?..., Yoh 
G”l= 0 

J.E.D.C.- G 
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2.3. Maximum likelihood estimation of parameters 

Throughout the preceding iteration for all t = m, m + 1,. . . , T, the parame- 

ters (ai, eo, P, 4, wo, q, &, &. . . , &,) were treated as known, fixed constants. 
However, we can now see that one byproduct of the filter (generated at step 3) 
is evaluation of the conditional likelihood function associated with that choice 
of constants. The sample conditional log likelihood is 

T 

= C lnp(y,ly,_i, Yt-2,...3 Yo)? 

*=l?I 

which can be maximized numerically with respect to the unknown parameters 

(ai, 010, p9 49 WI), a13 (PI? G2r.. .? &J. 

2.4. Extensions and additional details 

The simplest approach is to start the first iteration on the filter (t = m) with 

the unconditional probability 

P(~m-1,~m-2,...,&J 

= P(%-A5?A x PL2IS,-3) x . .* XPhISo) x p(s,), 

where p(s,Is,_i) is given by (2.2) and the final term [p(s,)] is obtained from 
(2.7): 

P[S,=l]=p, P[S, = o] = 1 - p. 

For some applications, one might want to allow the possibility of a permanent 
change in regime (e.g., allow q = 1). In that case, one should not start the filter 
with the unconditional probability p = (1 - q)/[(l -p) + (1 - q)], for if q = 1, 
then p = 0, and the filter would end up setting this and all subsequent 

probabilities P[ S, = 1 Jy,, y,_ i, . . . ] equal to zero as well. Instead one could treat 
p. = P[S, = l] as an unconstrained separate parameter to be estimated by 
maximum likelihood along with (a,, (Ye, p, q, wo, wl, C#Q, c#I~, . . . , gim). In this 
paper I have imposed the restriction p. = (1 - q)/[(l -p) + (1 - q)]. 

Technically, one would only have calculated the conditional likelihood 
function at step 3 if the filter were started at t = m with p(s,,_i, 

SW 2,...,SoIYm-1,Ym-2,..., yo) as input rather than p(s,,_i, s,,_~, . . . , so) as 
suggested here. Calculating the former is considerably more effort and seems 
unlikely to make a material difference, though once one has made these 
calculations, exact maximum likelihood estimates rather than estimates that 
maximize an approximation to the conditional likelihood are easily derived. 
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Given the specification chosen for the start-up values [in which the conditional 

probability p(s,_ i, s,_ 2,. . . , soJym- 1, y,_ 2,. . . , yo) is approximated by the 
unconditional probability p(.rm_i, s,,_~~, . . . , so)], it might be best to seek to 

maximize In p(y,, y,_,, . . . , y2mIy2m_l, Y2m_2,. . . , yo>, say, rather than In 
P(Y,? YFl,. *. 3 y*lym-1, Ymp23.. .? yo) in arriving at parameter estimates. I 

nevertheless use p( y,, Yr-i, . . . , y,ly, -1,. . . , yo) in the empirical application 
in section 4. 

Clearly one can permit more complicated dynamics for the regime shift 
by replacing p(s,]s,_i) in step 1 with some parameterized function 

P(~,I~1-l,S,-2,...,~,--m’Yt-l,Y,~2,..., yo) and maximizing the likelihood 
function with respect to these parameters along with the others. The potential 
obstacle here is a numerical one. Identification of the parameters characteriz- 

ing the dynamics of S, separately from those of the Gaussian component 
depends on nonlinearities in the data (e.g., the difference between E[Y,]y,_,] 
and E[y,(y,_ i, Ye?,]). There is a practical limitation on how complicated we 
can permit the dynamics for both the regime shift and the Gaussian compo- 
nent to become and still have hope of obtaining useful results. 

It is also straightforward to replace +, in step 2 with +,(s,), and so allow the 
autoregressive coefficients to shift along with the mean and variance. Similarly, 
more than two states can be accommodated by replacing x’,,+=, in steps 3 

and 5 with c~;~,_, for n, the number of states. Again the difficulties of such 
generalizations are chiefly numerical. At iteration t, the filter is updating nT+ 
different probabilities; with 4 lags, the two-state filter is thus keeping track of 
2’ = 32 different numbers; a three-state filter would calculate 35 = 243. Ra- 
tional-expectations applications are also considerably more complicated once 
one departs from the simple parameterization of regime shifts embodied in 

(2.1)-(2.3). 
The filter was motivated as drawing an inference about the state s, based on 

currently available information, 

Pc?lY,, Y,-l,...? Yd 

= i c ... i P(SJ_ I,..., ~I_mm+llYt7Yr-1 )...) Yo). 

s,_,=o S,_2’0 St-m+1 =o 

Alternatively, one can obtain a more reliable inference about the lagged 
value of the state using currently available information. For example, using the 
output from step 4 of the basic filter, one can calculate an m-lag smoother: 

P(&JY,, Y,-l?..., Yd 

= i i *.* i P(SJ_ l,..., S,_,lY,,Y,-1)...1 YO)? 
s,=o St-, =o St-m+1 =o 
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which summarizes the optimal inference based on information available at 
date f about the state the economy was historically in at date t - m. 

A full-sample smoother is described in my 1987 paper. 

3. The expectations hypothesis of the term structure of interest rates 

3.1. Theoretical formulation 

There are three potential sources of nonlinearity in specifying a theory of 
the term structure of interest rates. The first is nonlinearities in the utility 
function - investors may care about higher moments in addition to the mean 
return associated with a portfolio, as in Roll (1971). The second is nonlineari- 
ties arising from Jensen’s inequality. For example, equating the price of a 
bond to the expected present value of its coupon payments (discounted using 
the future path of short rates) is not quite the same thing as equating the 
expected one-period yield from holding short-term and long-term bonds [see 
Cox, Ingersoll and Ross (1981)]. The third source of nonlinearity is that the 
optimal least-squares forecasts of future short-term rates may be a nonlinear 
rather than a linear function of past short rates. 

In this paper I am concerned only with the third of these issues, primarily in 
the interests of keeping the scope of the project manageable. In ignoring 
nonlinearities in the utility function, the objective is to see how far one can go 
with a model in which investors are concerned only about mean returns and 
not the variance. Nonlinearities associated with Jensen’s inequality may well 
be minor quantitatively [see Shiller (1979) and Campbell (1986)], and are 
suppressed with a straightforward application of Shiller’s (1979) linearization 
of the expectations hypothesis of the term structure of interest rates. 

Let t index the current quarter and rc the nominal quarterly yield on a 
three-month T-bill purchased at date t. In the formulas used in this section, r, 
is measured as a fraction of 1. By contrast, in the empirical estimates 
presented in section 4, r, is reported in units of 100 basis points. 

Consider an (n/4)-year bond to be redeemed at date t + n for $1 and 
paying a semiannual coupon of C beginning at date t + 2. The perfect-fore- 
sight present value of such a bond is defined as 

c c c 
I/(,1) E -- 

f 1 + 3 - + --3------- 

rI 0 + r,+,> 
/=0 

,fJ,(l + rt+,) ,jloo” + rt+,> 
c 1 

+...+,1_,--- + n_T-- 

l-I (I+?+,) ,-&(l+rW) 
/=o 

(3.1) 

Note that for constant interest rates (r,+, = F for all j with certainty), the 
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present value would equal the par value (Kc’) = 1) when its semiannual 
coupon (C) equals the return from rolling over two three-month T-bills 
(r2 + 27). Setting C = (r2 + 2?) and taking a first-order Taylor series expan- 
sion of (3.1) around r, = rt+l = . . . = rt_i-n~__, = 7 yields3 

- -kII+: 
(1 + q3 

-;I+ [r,+3-lll 

1 - . . . -- 
(1 +ry I[r,+n-2 - 71 + hnm 1 - fll. (3.2) 

Shiller’s linearization of the expectations hypothesis of the term structure 
equates the current price of the bond Pr(“) with the expected present value: 

PC”) = E,,‘,:‘“’ + ,#,(“) 
I (3.3) 

where +(“) denotes a potential term premium on long-term bonds. 
I now use the definition of the ‘yield to maturity’ to rewrite the price of the 

bond in terms of its yield to maturity. The yield to maturity (Rj”‘) for this 
(n/4)-year bond, measured at a semiannual rate, is defined by 

c c 1 

[l + Rj”‘12 
+ 

” 
.+ 

[I + Rj”‘] n’2 1 + RI”‘] n’2 

C 1 C 
=-+ 

R’“’ t [l + R;“‘] n’2 [ 1 l-- 
R(“, ’ (3.4) 

Again taking a first-order Taylor series expansion around RI”) = C = (7 2 + 27), 
we obtain 

-1 
p(n) E 1 + ~ f i;2+2r + (i2+2~t(l+i~n x [Rj”‘-r2--231. (3.5) 1 

‘This differs slightly from Shiller’s (1979, p. 1198) expression 

For Shiller’s data sets, coupons are paid every period, whereas for mine, coupons are paid every 
other period. For a pure discount bond, a linearization of the term structure makes the present 
value a simple unweighted average of future short rates, whereas when coupons are paid every 
period one obtains Shiller’s geometrically declining weights [see Shiller, Campbell and Schoenholtz 
(1983, p. 177)]. The case I analyze, with coupons paid every other period, is a hybrid of the two. 
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Note that ‘yield to maturity’ RI”) IS not a holding-period yield; rather, it is 
simply an accounting construct calculated from the current price Pr(“) and 
coupon (C) of the bond. The yield to maturity is thus of course known with 
certainty at date t. 

Equating (3.5) with the expectation of (3.2) plus $Jn) yields4 

i 

1 
x Erb/+ ?+,I + ___ (1 + ?)2 Eh+* + Tt+31 

1 
+ ‘.. + (I + F),,-2 EJ5cn4 + T,in-ll 

i 

-r*- (r*+2r) l- [ (1 :J Y’“‘. (3.6) 

It would be nice to have completely specified all of the factors that influence 
the long rate RI”), and pretend that eq. (3.6) holds with an R2 of 1 and no 
error term. Unfortunately, such a pretension would be quite hopeless, given 
errors arising from linearization, measurement, nonconstant risk premia, and 
information available to bond traders but not the econometrician. In the 
empirical analysis to follow, I will assume that the actual yield to maturity on 
long-term bonds differs from the value predicted in (3.6) by an error term u,. I 
specify that u, follows a Gaussian white noise process that is independent of 
the process for short rates. 

One could attempt a more realistic and refined analysis of this error term, 
for example, through explicit modeling of the response predicted by CAPM to 
the changes in the variance of returns implied by a shift from state 0 to state 1. 
I do not attempt such an exercise here, in order to keep the scope of the 
project manageable. Instead, my primary objective is to see how far one can go 
with a linearized model in which only expected returns matter to investors and 
in which the econometrician has available all the information used by bond 
traders in forming their forecasts of future short rates.’ 

4Altematively. eq. (3.6) can be derived directly from Shiller’s (1979) eq. (1). as I show in the 
appendix. 

5 For an analysis of conditional heteroskedasticity and risk aversion, see Engle, Lilien and 
Robins (1987). Explicit treatments of information available to bond traders but not the 
econometrician were provided by Flavin (1984) and Hamilton (1985). 
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The model to be estimated is thus 

R:“’ = K + @,bt + r,+~] + fl%bi+, + ~,+3] + B4%+4 + rr+s] 

+ . . . +Bn-2Et[~t+n-2 + rt+n-l]) + u,, (3.7) 

where 

p=L 
1+r’ 

(3.8) 

(3.9) 

and K reflects any constant term premium built into the term structure. 

3.2. Empirical implementation - The case of a linear process assumed for short- 
term interest rates 

Before examining the estimation of the term structure relation under the 
nonlinear model described in section 2, I first review the standard linear case 
as developed by Sargent (1979) and Hansen and Sargent (1980). Suppose that 
short-term rates are modeled as a stable, linear AR(4) process: 

rI = k, + a,r,_, + a,r,_, + a,r,_, + a,r,_, + e,,,. (3.10) 

This can be written in vector form 

Thus 

E[r,+,lr,, r,-l, 5-27 5-31 

=c,+ [ 1 0 0 O]A’ [‘t rt-1 C-2 q-3]‘, (3.12) 

where c, is a constant and Aj denotes the (4 x 4) matrix of coefficients in 
(3.11) raised to the jth power. Substituting (3.12) into the term structure eq. 
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(3.7) yields6 

xp, ‘r-1 5-2 5-3]‘+eR*,. (3.13) 

Expressions (3.10) and (3.13) characterize the cross-equation restrictions relat- 
ing the parameters of the univariate process for r, to the predicted relation 
between the long-rate (RI”)) and the short rate under the hypothesis of no 
changes in regime. 

3.3. Empirical implementation - The case of a nonlinear process assumed for the 
short-term interest rate 

I now consider the case where short-term rates r, follow a nonlinear process 
of the type described in section 2. Letting r, =y,, that system can be conve- 
niently written 

(3.14) 

z, = &z,_1+ $2z,_2 + +3z,-3 + +4z,-4 + b, + +m4~ (3.15) 

u I - N(U), 

with transition probabilities for S, given by (2.2). From (3.14) optimal 
forecasts of r ,+, given an arbitrary information set s2, are given by 

E[r,+,lfi,] =ao+alE[%+,lfJt] f E[zr+jl’t]. (3.16) 

Our ultimate task is to evaluate (3.16) when bond traders’ information is 
confined to current and past observations on short rates, 

Q,= {r,,rt-l ,... }. 

This is most easily evaluated when we first consider (3.16) under a hypotheti- 
cal alternative scenario in which the information set included observation of 
the regime directly, 

Q:= {rtrrr_l,...,S,,S,-l,...}, 

60ne can of course ‘simplify’ the sum in (3.13) as [I - /3”.4”][Z + A][Z - j3zA2]-‘, though this is 
no faster computationally and produces algorithmic difficulties when A has a root near p-l. The 
algorithm was coded so as to exploit the identity matrix sub-block of A when multiplying A’- ’ 
byA. 
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which amounts to assuming that the hypothetical forecaster also observes 
z,, z,_r, . . . directly. 

Under this hypothetical scenario, we see from (2.6) that 

E,[S,+,IV] =p+f’(s,-P). (3.17) 

Likewise, from eq. (3.15) and reinterpretation of (3.12) 

E[ ‘t+j IQ:] = [I o o o]A’[zt zt-1 21-2 %3]‘, (3.18) 

where 

$1 $2 +3 $4 

A= [ 10 0 

0 1 0 
0. I 0 

0 0 1 0 

Substituting (3.17) and (3.18) into (3.16) and using (3.14) gives 

E[r,+jlQ:] =a,+ar{~+X’(~,-n)} 

+[I o o o]Aj (3.19) 

Now, the critical feature of (3.19) that makes rational-expectations applica- 
tions of the process so straightforward is that (3.19) is linear in 
sr, s,_ r, s~_~, s,_~. This means that when one wishes to calculate the forecast of 
r I+J given the information set 9, = { ‘;, rt_1,. . . }, one simply replaces 

s,, s,-1, S,-2r s,-3 in expression (3.19) with their conditional expectation given 
fit, 7 or in other words, replace s,_~ with the inference drawn from iteration t 

‘In general 

E[y,q~~~ /Y.f(Y*-) 

[ f(z,x) dY dr 1 
The term in brackets is 

/ 
Y .f (Y. z, x) 

f(zg x) 
dy =E[Y(Z,X]. 1 

In the case where X is a subset of the vector Z, this in turn equals E[ Y 1 Z]. Where this expectation 
is a linear function as well, 

we obtain 
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of the basic filter of section 2: 

+[l 0 0 old’ 

! 
r,-ao-al.PIS,=l(r,,r,_, ,... ] 

X 
‘t-1 - a() - a1 *P[S,_,=lIr,,r,_, ,... ] 

. r1-2 - a0 - (Y~ .P[S,_,= l(r,,r,_, ,... ] 
(3.20) 

r,_, - a0 - (Y~ .P[s,~,=llr,,r,_,,...] 

Substituting (3.20) into (3.7) gives 

R$“‘=K + 6rY1(1+X)b-(ph)40] +[S=l,,. r 
R 

1 - w>’ t f, ,-1,“’ 
] 

+[S 0 0 O]x [[I+A]+/32[A2+A3] 

+ . . . +pn-2[An-2 +A”-l]] 

r 
X 

,-l-~o-~l .P[S,_,=lIr,,r,~,,...l +E 

rrp2 - ao- 

r r-3 - a0 - al .P[S,_,=llr,,r,_,,...l 1 cy,.P[SI_2=1Jrr,rr_l,...l R’r’ 
(3.21) 

Maximum likelihood estimation subject to the cross-equation restrictions is 
then achieved as follows. From the j-lag smoother derived from step 4 at 
iteration t of the basic filter, we can calculate the values P[S,_, = 11 r,, r,_ 1,. . .] 
appearing in (3.21). For given values of (Ye, al, p, q, +I, $I~, G3, G4, wo, aI, uER 
and K, (and imposing 6 and p a priori), E~,~ can thus be calculated as another 
byproduct of the basic filter. One then adds - : ln(27) - ln(n,) - ei,,/(2oz) 

to ln[p(rrlrr_,, rr-2,...r ro)] from step 3 of the basic filter to arrive at the 
conditional log likelihood of the bivariate process for {r,, R,} as restricted by 
the hypothesis of rational expectations. The resulting expression can then be 
maximized numerically with respect to the parameters (Ye, (Ye, p, q, +1, c#J~, c#J~, 

+ 47 aor al? OEER and uR. 
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4. Empirical results 

The analysis was conducted on quarterly U.S. data for 1962:1-1987:3. The 
series for the short-term rate (I;) is the three-month Treasury bill rate as of the 
first business day of the quarter, reported on an effective yield basis at a 
quarterly rate.8 The long rate (here denoted R,) is the yield to maturity as of 
the first business day of the quarter on a ten-year Treasury bond at a 
semiannual rate.’ These series are presented in table 1. Note that as a 
consequence of the units (r, is the percentage earned over three months and R, 
is the percentage earned over six months), R, tends on average to be twice as 
large as rr. 

In all the specifications investigated, the short rate (rl) is modeled as a 
function of past short rates, and the long rate (R,) is modeled as a function of 
present and past short rates. The alternative specifications arise from choosing 
linear or nonlinear representations for one or both of these functions, and 
from whether or not the cross-equation restrictions implied by rational expec- 
tations are imposed. The linear representations for r, and R, take the form 

rt = k, + a,r,_, i- a,r,-, + a3rtp3 + adpA + e,, ,, e,., -N(O:a,:), 

(4.1) 

and the associated cross-equation restriction is 

[bo 4 b, &]=[a o o o] 

x [[z+A] + p2[A2+A3] 

+ . . . +p38[A38 + A39l], (4.3a) 

‘The raw data (rr,) were Treasury bill discount rates reported at an annual rate and measured 
in units of 100 basis points. The conversion used was r, = 9125 x rrJ(36,OOO - 91 X rr,). Data for 
rrl are from the series RMGBS3D. carried on a daily basis in the data banks of the Board of 
Governors of the Federal Reserve System going back to 1962. I am grateful to David Wilcox and 
Bonnie Garrett for assistance in obtaining these series. Note that the formulas of section 3 
measured r, as a fraction of 1, whereas in this section on empirical results it is reported in units of 
100 basis points. All numerical calculations have been adjusted appropriately. 

‘This is the Treasury’s ‘constant maturity’ series, inferred by term structure interpolation from 
bonds whose maturity is closest to ten years from a given sample date. The raw data were reported 
at an annual rate and were converted to a semiannual rate by dividing by 2. The source for the 
data is the series RMGNBlOD (see preceding footnote). 
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Table 1 

Data used in analysis: yield to maturity on three-month T-bills (quarterly rate) and yield to 
maturity on ten-year Treasury bonds (semiannual rate). 

Date (I) Three-month bills (r,) Ten-year bonds (R,) 

1962:l 0.6891 1.3500 
1962:2 0.6994 1.3700 
1962:3 0.7456 1.4600 
1962:4 0.6968 1.3650 

1963:l 0.7354 1.4400 
1963:2 0.7405 1.4500 
1963:3 0.7662 1.5000 
1963:4 0.8615 1.6850 

1964:l 0.9028 1.7650 
1964:2 0.9028 1.7650 
1964:3 0.8899 1.7400 
196414 0.9080 1.7750 

1965:l 0.9751 1.9050 
1965:2 1.0061 1.9650 
1965:3 0.9777 1.9100 
1965:4 1.0242 2.0000 

1966:l 1.1563 2.2550 
1966:2 1.1537 2.2500 
1966:3 1.1901 2.3200 
1966:4 1.3695 2.6650 

1967:l 1.2420 2.4200 
196712 1.0165 1.9850 
1967:3 1.0501 2.0500 
1967:4 1.1278 2.2000 

1968:l 1.2940 2.5200 
1968:2 1.3174 2.5650 
1968:3 1.3616 2.6500 
1968:4 1.3252 2.5800 

_ 
1969:l 
1969:2 
1969:3 
1969:4 

____- -. 
1.5809 
1.5416 
1.7197 
1.8509 

3.0700 
2.9950 
3.3350 
3.5850 

197O:l 2.0485 3.9600 
1970:2 1.6332 3.1700 
1970:3 1.6699 3.2400 
1970:4 1.5077 2.9300 

1971:l 1.2550 
1971:2 0.9338 
1971:3 1.3382 
1971:4 1.1667 

._____ 
2.4450 
1.8250 
2.6050 
2.2750 
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Table 1 (continued) 

Date (1) Three-month bills (r,) Ten-year bonds ( R , ) 

1972:l 0.9441 1.8450 
1972:2 0.9700 1.8950 
1972:3 1.0605 2.0700 
1972:4 1.1563 2.2550 

1973:l 1.3408 2.6100 
1973~2 1.6646 3.2300 
1973:3 2.0432 3.9500 
1973:4 1.8220 3.5300 

1974:l 1.9430 3.7600 
1974:2 2.1515 4.1550 
1974:3 1.8799 3.6400 
1974:4 1.7249 3.3450 

1975:l 1.7800 3.4500 
1975:2 1.4503 2.8200 
1975:3 1.5495 3.0100 
1975:4 1.6830 3.2650 

:976:1 1.3356 2.6000 
1976:2 1.2862 2.5050 
1976:3 1.3773 2.6800 
1976:4 1.2940 2.5200 

1977:l 1.1252 2.1950 
1977~2 1.1641 2.2700 
1977:3 1.2888 2.5100 
197714 1.5312 2.9750 

197x:1 1.5913 3.0900 
1978:2 1.6253 3.1550 
1978:3 1.7931 3.4750 
1978:4 2.0643 3.9900 

1979:l 2.4433 4.7050 
1979:2 2.4779 4.7700 
1979:3 2.3158 4.4650 
1979:4 2.6405 5.0750 

198O:l 3.1827 6.0850 
1980:2 3.9601 7.5150 
1980:3 2.0802 4.0200 
1980:4 2.9888 5.7250 

1981:l 3.8562 7.3250 
1981:2 3.2367 6.1850 
1981:3 3.8562 7.3250 
1981:4 3.8343 7.2850 

1982:l 2.9726 5.6950 
1982:2 3.4722 6.6200 
1982:3 3.2853 6.2750 
1982:4 1.8983 3.6750 



404 J. D. Hamilton, The term structure of interest rates 

Table 1 (continued) 

Date (t) 

19x3:1 
19X3:2 
1983:3 
19x3:4 

Three-month bills (r,) 

2.0485 
2.23X9 
2.2627 
2.2654 

Ten-year bonds (R,) 

3.9600 
4.3200 
4.3650 
4.3700 

1984:l 2.3344 4.5000 
19X4:2 2.5152 4.8400 
1984:3 2.5311 4.8700 
1984:4 2.6619 5.1150 

1985:l 2.024X 3.9150 
19X5:2 2.1093 4.0750 
1985:3 1.7721 3.4350 
19x5:4 1.8141 3.5150 

19X6:1 1.8325 3.5500 
1986:2 1.6306 3.1650 
1986:3 1.5416 2.9950 
19X6:4 1.3330 2.5950 

19X7:1 1.4268 2.7750 
19X7:2 1.4242 2.7700 
1987:3 1.4503 2.8200 

where 

a1 a2 a3 a4 

A=1 i 0 

0 1 

; 0 0 1 ;. 1 0 

(4.3b) 

Throughout the analysis, 6 = [(Y’ + 2?)/(1 + 7][1 - l/(1 + Y)40]-1 and p = 
l/(1 + 7) were imposed a priori on the basis of the sample mean of the short 
rate (F = 0.016964) over 1962:1-1987:3; thus S = 0.0686974 and p = 0.9833189. 

The nonlinear representation for r, takes the form 

r, = a0 + qS, + z I, (4.4a) 

z, = qqZ(_.1 + G2zr-2 + @3Z(-3 + +4z,-4 

+[[oo+wIS,]uI, q-N&U), 

P[.s,= IIS,.., = 11 =p, 

(4.4b) 

(4.4c) 

(4.4d) 
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The corresponding nonlinear representation for R, is 

R,=KR+~Ort+~lr,_l+~2rl_2+P3rr-3+Yo’P[~,=llr,,r,-,,...l 

+~t.P[S,_,=l(r,,r,_, ,... ]+yy2.P[~t-2=lIr,7~-~~...l 

+Ys.PIS,_,=l(r,,r,_,,...l+&R,l, &R,~-N(O~~,~R), (4.5) 

where P[S,_,=lJr,,r,_,,... ] is calculated from step 4 of the basic filter 
associated with the nonlinear univariate process for rt [system (4.4)]. The 
associated cross-equation restrictions are 

[P, Pl P2 P,] =[a o o 01 x [V+Al+P2[A2+A31 

+ . . . +j338[A38+A39]], (4.6a) @I $2 $3 $4 

A= ! 1 0 0 
0 10 

0 I 
0’ 

(4.6b) 

0 0 1 0 

Ml + A)[1 - (m)40j 
Yo = 

(y po 

1-(j3A)2 - l ’ 
(4.6~) 

Yj = -alPjY j= 2,3,4, 

x= -1+p+q. 

(4.6d) 

(4.6e) 

The basic results for the various specifications are summarized in table 2 
and discussed in detail below. 

Table 2 

Summary of fit achieved by alternative specifications. 

Model 
Short rate 

(Tr) 

Long rate 

(R,) 

Cross-equation 
restrictions? 

Number of 
parameters 

Log 
likelihood” 

Linear 

Ieq. (4.7)1 

Linear 

[eq. (4.9)1 

Nonlinear 
[table 31 

Nonlinear 
[table 6) 

Nonlinear 
[table 61 

Linear 

[eq. (4.U 

Linear 

[eq. (4.W 

Linear 

req. (4.811 

Nonlinear 

[es. (4.11)1 

Nonlinear 

[eq. (4.12)1 

No 12 450.27 

Yes 8 436.86 

No 16 482.12 

Yes 12 508.26 

No 20 514.18 

“The constant term - N ln(2n) has been omitted from all entries 
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Model 1: Unrestricted linear representations for both r! and R, 

The benchmark case is the unrestricted linear representation (4.1) and (4.2). 
OLS estimation for t = 1963:1-1987:3 yields (standard errors in parentheses): 

rr = 0.1627 + 0.7138r,_, - O.O04r,_, + 0.469r,_, 
(0.0827) (0.0992) (0.114) (0.114) 

-0.2676r,_, + e,,,, 
(0.0984) 

c?~,, = 0.311, 

R, = 0.07298 + 1.88043r, + O.O0465r,_, + O.O0719r,_, 
(0.00336) (0.00399) (0.00457) (0.00457) 

- O.O0121r,_, + ea, I, 
(0.00396) 

See, = 0.0125. 

(4.7) 

(4.8) 

Model 2: Restricted linear representations for r, and R, 

Eq. (4.8) indicates that 99.99% of the variance of the long rate can be 
accounted for by a linear regression on the short rate. Is this close dependence 
what one would expect if investors were rationally forecasting short rates on 
the basis of a linear representation such as (4.7)? 

To investigate this possibility, I estimated the system (4.1)-(4.2) subject to 
the constraints (4.3):‘O 

r, = 0.01487 + 0.99299Or,_, - O.O0141r,_, + O.O05Olr,_, 
(0.0353) (0.00241) (0.00414) (0.00397) 

-O.O00888r,_, + e,,,, 
(0.00211) 

See, = 0.35657, 
(0.0262) 

(4.9) 

R, = 0.07300 + 1.8805r, + O.O0474r,_, + O.O0755r,_, 
(0.00328) 

-O.O0161r,_, + eR,t, gee, = 0.012503 . 
(0.000888) 

(4.10) 

The parameters reported without standard errors in eq. (4.10) were generated 
from the parameters reported in eq. (4.9) by use of (4.3). 

“Maximization was achieved by a Davidon-Fletcher-Powell routine. Standard errors were 
derived from the numerically evaluated second derivatives of the log likelihood function. I would 
like to thank Kent Wall for use of his DFP routine and Steve Stern for use of his second derivative 
program. 
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Note from table 2 that the standard likelihood ratio statistic for comparing 
the restricted and unrestricted linear specifications is 2(450.27 - 436.86) = 
26.82. This is distributed as x2(4) under the null hypothesis that the restric- 
tions correctly characterize the data. The null hypothesis is thus rejected with a 
p-value” of 2.16 X 10P5. The data are grossly inconsistent with the cross-equa- 
tion restrictions implied by the expectations hypothesis of the term structure. 

A comparison between the restricted estimated (4.9)-(4.10) and the unre- 
stricted estimates (4.7)-(4.8) reveals why. If one were willing to believe that 
the short rate basically follows a random walk [as the restricted estimates in 
eq. (4.9) try to construe it to be], one would predict [as in eq. (4.10)] precisely 
the response of long rates to short rates as is found in the unrestricted 
regression [eq. (4.8)]. However, the actual process for short rates [eq. (4.7)] is 
too far from being a random walk to make this scenario plausible; the leading 
coefficient is too small and coefficients at lags 3 and 4 too large to be 
consistent with a simple random walk. Thus the behavior of long rates 
suggests that investors were not basing their forecasts on the assumption of a 
linear process for short rates. 

Model 3: Unrestricted nonlinear representation for r,, unrestricted linear repre- 
sentation for R, 

Not only is the response of long rates to short rates difficult to reconcile 
with the linear specification (4.1); I now show that the univariate behavior of 
short rates alone also offers overwhelming evidence against (4.1) in favor of a 
nonlinear model incorporating the possibility of changes in regime. 

The nonlinear Markov model of changes in regime was fit to univariate data 
on r, by means of the basic filter evaluation of the conditional log likelihood 
function as described in section 2. Maximum likelihood estimates are reported 
in table 3.12 Note that data on long rates (R,) were not used at all in 
constructing the parameter estimates in table 3. 

These estimates speak to a very dramatic shift in the time series properties 
of short-term interest rates between states 0 and 1. State 1 is characterized by 
an average level of interest rates nearly twice as high as that in state 0 
(‘~a + 0~~ = 2.8 versus CQ = 1.6). Even more dramatic is the four-fold increase in 
the standard deviation of the Gaussian component of the process (o,, + wi = 
0.73 versus w0 = 0.18). 

l1 The p-value (also referred to as the marginal significance level) represents the probability that 
as large a difference would have been found given that the null hypothesis is true; p < 0.05 is the 
standard criterion for rejecting the null hypothesis. 

“The probabilities p and 9 were parameterized as exp[ - BP’] and exp[ - f?;,]. This is desirable 
not to force the estimates to he within this interval (since this leaves the maximrzation routine free 
to push p or 9 arbitrarily close to 0 or l), but rather to ensure that the search procedure always 
evaluates a well-defined likelihood function. 
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Table 3 

Maximum likelihood estimates of nonlinear Markov model as estimated from the behavior of 
three-month Treasury bill yields (r,). 

Parametera 
Maximum likelihood Standard 

estimate error 

00 1.633 0.208 

a1 1.188 0.230 

P 0.9087 0.0818 

4 0.9899 0.0102 

*o 0.1752 0.0135 

Wl 0.5574 0.166 

@I 0.8778 0.103 

(P2 0.0675 0.150 

$3 0.1692 0.152 

$4 - 0.2108 0.0952 

“Parameters are defined by eq. (4.4) and were estimated solely on the basis of observations on 
short rates {r,) for I = 1962:1-1987:3. 

From the output of step 4 at iteration f of the basic filter, we can assign 
probabilities to whether the process was in regime 0 or regime 1 at date t 
based on information available at the time P[ S, = 1 Ir,, r,_ 1,. . , ro]. This series 
is reported in the column labelled ‘j = 0’ in table 4. We can further obtain 
from step 4 a refined assessment of the probable state of the process in the 
preceding four quarters P[S,_, = 1 jr,, rr_1,. . . , ro], also reported in table 4. The 
maximum likelihood estimates associate the shift in regime between the two 
states very dramatically with the new monetary policy adopted in October of 
1979. If one were only looking at the behavior of short rates, the change was 
not apparent at the time (P[S1979:4 = 1 1r.197934,. . .] = O.OOSS), but by January 1, 
1980, evidence of a regime shift was fairly convincing (P[S19soz1 = 1 lrl98o:1,. . .] 
= 0.7553). This recognition in 198O:l would incidentally cause one to signifi- 
cantly revise upward the likelihood that in fact the regime change had begun 
the preceding quarter (P[S,,,,,, = 1 It-,,,,,,, . . . ] = 0.3371). By 1980:3, one would 
conclude that the shift in regime was indeed more likely than not to have 
begun in 1979:4 (P[St,,,:, = 1 /r198o:3,. . . ] = 0.5628). The shift back to the 
original regime was immediately apparent to the filter in 1982:4. 

The period 1979:4-1982:3 is thus identified as a time of dramatically higher 
and more volatile short-term interest rates than that seen before or since. Fig. 
1 makes this point visually, depicting the short-term rate against the imputed 
regime of higher, more volatile interest rates. This dating of an apparent shift 
in the process for short-term interest rates corresponds precisely with a 
profound change in Federal Reserve operating procedures. Beginning in 
October 1979 and ending in October 1982, the Federal Reserve adopted a 
policy of targeting nonborrowed reserves, allowing interest rates to fluctuate 
across a broad range. Outside of this period, the policy has basically been one 
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Table 4 

Inferred probability, using parameters of unrestricted univariate process for short-term rates (table 
3) and based on information available at date t, that the economy was in the high interest rate, 
high volatility state at date t (column j = 0), along with inference using table 3 parameters and 
based on information available at t about the historical state the economy had been in at dates 

t - 1, f - 2, t - 3, and r - 4 (columns j = 1,2,3,4). 

Date 

(f) 

1963:l 
1963:2 
1963:3 
1963:4 

1964:l 
1964:2 
1964:3 
1964~4 

1965:l 
1965:2 
1965:3 
1965:4 

1966:l 
1966:2 
1966:3 
1966:4 

1967:l 
1967:2 
1967:3 
1967:4 

1968:l 
1968:2 
1968:3 
1968:4 

1969:l 
1969:2 
1969:3 
1969:4 

197O:l 
1970:2 
1970:3 
1970:4 

1971:l 
1971:2 
1971:3 
1971:4 

1972:l 
1972:2 
1972:3 
1972:4 

j=O 

0.0253 
0.0069 
0.0022 
O.OQll 

0.0009 
0.0008 
O.OOQ8 
0.0008 

0.0008 
0.0008 
0.0008 
0.0008 

0.0010 
0.0008 
0.0008 
0.0012 

0.0010 
0.0019 
0.0010 
0.0010 

0.0018 
O.OQlO 
0.0009 
O.OOQ8 

0.0026 
0.0012 
0.0018 
0.0014 

0.0030 
0.0116 
0.0032 
0.0019 

0.0014 
0.0044 
0.0211 
0.0063 

0.0037 
0.0017 
0.0012 
0.0012 

P[S,_, = 1 (r,, r,_ I’..’ I 

J=l j=2 j=3 J=4 

0.0247 0.0324 0.0379 0.0372 
0.0063 0.0061 0.0142 0.0143 
0.0016 0.0014 0.0014 0.0033 
0.0005 0.0003 0.0003 0.0003 

0.0002 0.0001 0.0001 O.OQOl 
0.0002 0.0001 0.0000 0.0000 
0.0002 0.0001 o.OcOo 0.0000 
0.0002 0.0000 0.0000 0.0000 

0.0002 0.0000 0.0000 O.OQOO 
0.0002 0.0000 0.0000 0.0000 
0.0002 0.0000 0.0000 0.0000 
0.0002 0.0000 0.0000 0.0000 

0.0002 0.0000 0.0000 O.OQoO 
0.0002 0.0000 0.0000 0.0000 
0.0002 O.OQOCl o.oOOo 0.0000 
0.0002 0.0000 0.0000 0.0000 

0.0004 O.OOQl 0.0000 0.0000 
o.OQO7 o.OtN3 0.0000 0.0000 
0.0004 0.0002 O.OOQl 0.0000 
0.0002 0.0001 0.0000 0.0000 

o.ooo4 0.0001 0.0000 0.0000 
0.0004 0.0001 0.0000 0.0000 
o.OcO2 0.0001 o.oOQO 0.0000 
0.0002 O.OOQl 0.0000 0.0000 

O.OC@l 0.0001 0.0000 0.0000 
0.0006 0.0001 0.0000 0.0000 
0.0004 0.0002 0.0000 0.0000 
0.0005 o.OOQ1 0.0000 0.0000 

0.0007 0.0002 0.0000 0.0000 
0.0080 0.0020 0.0007 0.0001 
0.0025 0.0018 0.0004 0.0002 
O.OQll 0.0009 0.0007 0.0001 

______ 

0.0007 0.0004 0.0003 0.0002 
0.0022 0.0011 0.0007 0.0005 
0.0086 0.0041 0.0020 0.0013 
0.0057 0.0024 0.0011 0.0005 

__- 
0.0029 0.0026 0.0011 0.0005 
0.0010 OSK08 0.0007 0.0003 
0.0004 0.0002 o.OQo2 0.0002 
0.0003 0.0001 0.0001 0.0000 
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Table 4 (continued) 

Date 

(0 j=o 

P[S,_,=lIr,,r,_., ,... ] 
__-___ 

j=l j=2 j=3 j=4 

1973:l 0.0015 0.0004 0.0001 0.0000 0.0000 
1973:2 0.0051 0.0011 0.0003 0.0001 0.0000 
1973:3 0.0196 0.0088 0.0018 0.0004 0.0001 
1973:4 0.0098 0.0089 0.0041 0.0009 0.0002 

1974:l 0.0030 0.0022 0.0020 0.0009 0.0002 
197412 0.0025 0.0010 0.0008 0.0007 0.0003 
1974:3 0.0016 0.0008 0.0003 0.0003 0.0002 
1974:4 0.0012 0.0005 0.0003 0.0001 0.0001 

1975:l 0.0010 0.0003 
197512 0.0015 0.0005 
1975:3 0.0014 0.0004 
1975:4 0.0015 0.0004 
__.~ -- __- -.- 
1976:1 0.0021 0.0010 
197612 0.0012 0.0005 
1976:3 0.0010 o.OQO3 
1976:4 0.0008 0.0002 

0.0001 
0.0002 
0.0001 
0.0001 

- 
o.Om3 
0.0003 
0.0001 
0.0001 

0.0001 
0.0001 
0.0000 
0.0000 

0.0001 
0.0001 
0.0001 
0.0000 

0.0000 
0.0000 
o.oooo 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 

1977:l 0.0011 0.0003 0.0001 0.0000 0.0000 
1977~2 0.0009 0.0002 0.0001 o.oOQo 0.0000 
1977:3 0.0012 0.0002 0.0001 0.0000 0.0000 
197714 0.0036 0.0007 0.0001 0.0000 0.0000 

1978:l 0.0015 0.0008 0.0002 0.0000 0.0000 
1978:2 0.0010 0.0003 0.0002 0.0000 0.0000 
1978:3 0.0013 0.0003 O.OQOl 0.0000 0.0000 
1978:4 0.0049 O.OQlO 0.0002 0.0001 0.0000 

1979:l 0.0373 0.0155 0.0029 0.0005 0.0002 
191912 0.0101 0.0092 0.0038 0.0007 0.0001 
1979:3 0.0038 0.0031 0.0029 0.0012 0.0002 
1979:4 0.0088 0.0034 0.0028 0.0026 0.0012 

198O:l 0.7553 0.3371 0.1273 0.1039 0.0973 
1980:2 1.0000 0.9933 0.4131 0.1571 0.1374 
1980:3 0.8776 l.OOQO 0.9962 0.5628 0.0981 
1980:4 1.0000 0.9976 1 .OOoo 0.9953 0.6007 

1981:l 
1981:2 
1981:3 
1981:4 

1982:l 
1982:2 
1982:3 
1982:4 

1.0000 
1.0000 
1.0000 
1 .ocOo 

_____ 
0.9934 
0.9995 
0.9976 
0.3909 

l.OQCQ 
1.0000 
1.0000 
1.0000 

1.0000 - 
0.9994 
0.9976 
1.0000 

0.9974 
1.0000 
1.0000 
1.0000 

-__ 
1 .ooOa 
1.0000 
0.9976 
1.0000 

l.OQOO 
0.9976 
1.0000 
1.0000 

1.0000 
1.0000 
1 .oOOo 
1.0000 

0.9970 
1.0000 
0.9981 
1 .oOOo 

1 .oooo 
1.0000 
1.0000 
1.0000 

1983:l 0.1333 0.1326 1 .oOOO 1.0000 1 .oooo 
1983:2 0.1089 0.1052 0.1046 1 .oooo 1.0000 
1983:3 0.0323 0.0313 0.0301 0.0299 1.0000 
1983:4 0.0080 0.0073 0.0070 0.0068 0.0068 
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Table 4 (continued) 

411 

Date 

(0 j=O 

P[S,_, = llr,, r,-1 ,... I 

j=l j=2 j=3 j=4 

1984:l 0.0029 0.0020 0.0018 0.0018 0.0017 
1984:2 0.0045 0.0017 0.0011 0.0010 0.0010 
1984:3 0.0021 0.0012 0.0004 0.0003 0.0003 
1984:4 0.0027 0.0009 0.0005 0.0002 0.0001 

1985:l 0.0994 0.0745 0.0264 0.0151 0.0047 
1985:2 0.0282 0.0273 0.0209 0.0072 0.0042 
1985:3 0.0238 0.0225 0.0219 0.0187 0.0053 
1985:4 0.0102 0.0086 0.0082 0.0079 0.0097 

1986:l 0.0030 0.0023 0.0019 0.0018 0.0018 
1986:2 0.0014 0.0008 0.0006 0.0005 0.0005 
1986:3 0.0010 0.0003 0.0002 0.0001 0.0001 
1986:4 0.0012 o.oOQ4 0.0002 0.0001 0.0001 

1987:l 0.0013 0.0003 O.OQOl 0.0000 0.0000 
1987:2 0.0010 0.0003 0.0001 0.0000 0.0000 
1987:3 0.0010 0.0002 0.0001 0.0000 0.0000 

of targeting the Federal funds rate.” This change in Fed operating procedures 
is widely recognized by monetary economists as ‘one of the more dramatic 
events in the recent history of monetary policy’ [Spindt and Tarhan (1987, p. 
107)] and has been the object of a large number of scholarly studies, including 
Antoncic (1986) Huizinga and Mishkin (1986) Hardouvelis and Barnhart 
(1987), Spindt and Tarhan (1987) and Walsh (1987). It is of great interest that 
the dates of the change in Fed policy correspond precisely with the values 
imputed by the filter to changes in the regime governing interest rates. 

The statistical evidence for a process characterized by such changes in 
regime in preference to the linear representation (4.1) is overwhelming. For 
purposes of comparison with the other models in table 2, one can think of 
combining the nonlinear process for short rates of table 3 with an unrestricted 
linear representation for long rates [eq. (4.8)]. Note that by fitting four 
additional parameters relative to a linear representation for r, (model l), a 
striking improvement in the likelihood is achieved. The standard likelihood 
ratio statistic is 2 X [482.12 - 450.271 = 63.7. One usually treats this14 as x2(4), 

“Targeting the level of borrowed reserves amounts to pretty much the same thing; see 
Goodfriend and Whelpley (1986) and Spindt and Tarhan (1987). 

14A complication arises here in that under the null hypothesis that al = w, = 0, the parameters 
p and 9 are unidentified. See the discussion in my 1987 paper. The Lagrange multiplier test 
reported shortly is immune to these objections and gives equally dramatic results. 
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Fig. I 

for which a value only half as large would have led to rejection of this 
fixed-parameter linear model with a p-value of lo- 6. 

The strength of this rejection is largely due to the overwhelming evidence of 
different residual variances associated with the two regimes. It is instructive to 
compare briefly evidence for heteroskedasticity of the kind predicted by my 
model with that implied by other popular specifications. 

The first panel of table 5 reports Lagrange multiplier tests of the null 
hypothesis of a constant-parameter linear model with homoskedastic errors 
against three separate alternatives: (i) a specification in which the variance of 
residuals depends on the lagged level of interest rates [as in Marsh and 
Rosenfeld (1983)]; (ii) a specification in which the variance of residuals 
depends on the lagged squared residual [as in Engle’s (1982) ARCH model]; 
and (iii) a specification in which the variance of residuals depends on the 
lagged output of my nonlinear filter. The null hypothesis would be overwhelm- 
ingly rejected in comparison with any of these three alternatives, though the 
statistical evidence is strongest when the null is compared against the third 
specification. 

To what extent might the evidence for ARCH and level-dependent hetero- 
skedasticity be due to the change in regime associated with Fed operating 
procedure? Some preliminary evidence on this issue is presented in the bottom 
panel of table 5. When we restrict the analysis to the period prior to 1979:4 
(when my model would imply homoskedastic errors), we still find evidence of 
conditional heteroskedasticity from both specifications (i) and (ii). Neverthe- 
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Table 5 

Comparison of alternative specifications of conditional heteroskedasticity. 

I. Full sample period 

(A) OLS estimate of process for short rate (t = 1963:1-1987:3) 

r,=O.163 +0.714r,_, -0.004r,~2+0.469r,_x-0.268r,_,+E, 

(B) Tests for conditional heteroskedasticity of residuals (t = 1963:2-1987:3) 

(i) Variance depends on lagged level of interest rate 

$ = -0.2374 + O.l928r,_,, TR2 = 26.21 - x’(1) 
(0.0617) (0.0326) 

(ii) Variance depends on lagged squared residuals (ARCH) 

g2 = 0.0519 + 0.4697Z2_ 
’ (0.0268) (0.09Ol)r ” 

TR2 = 21.62 - x2(1) 

(iii) Variance depends on laggedfilter output (regime change) 

i~=0.0398+0.4845P[.S_,=l~r,_l ,... 1, TR2 = 27.15 - x2(1) 
(0.0262) (0.799) 

II. Pre-1979 period 

(A) OLS estimate of process for short rate (t = 1963:1-1979:3) 

r, = 0.179 + l.O38r,_, - O.l76r,_, + 0.314r,_, - 0.296r,_, + i, 

(B) Tests for conditional heteroskedasticity of residuals (t = 1963:2-1979:3) 

(i) Variance depends on lagged level of interest rate 

6’ = - 0.0122 + 0.0288 r , , 13 TR2 = 5.30 - x2(1) 
(0.0175) (0.0122) 

(ii) Variance depends on lagged squared residuals (ARCH) 

i2 = 0.02099 + 0.241t2_ 
’ (0.00599) (o.121)1 ’ 

TR2 = 3.85 - x2(1) 

less, the evidence is far less compelling than the comparable tests that include 
the entire sample period - the tests for the pre-1979 data reject the null 
hypothesis of homoskedastic errors at the 5% level but not the 1% level; by 
contrast, when the full sample period is used, p-values are well below 10P6. 
Moreover, the parameterization of the conditional heteroskedasticity implied 
by either process (i) or (ii) seems to change dramatically upon inclusion of the 
post-1979 data. The implied coefficient relating 2: to r,_ 1 increases by a factor 
of 7, or a move of 13 standard deviations (= [0.1928 - 0.0288]/0.0122) relative 
to the value implied by the pre-1979 formulation. 

I conclude that (a) both regime shifts and ARCH or level effects seem to be 
present in the data, though the regime shift is by far the most dramatic source 
of conditional heteroskedasticity over the full sample period; and (b) if we 
tried to model this conditional heteroskedasticity solely on the basis of 
specification (i) or (ii) we would have to allow for a discrete shift during 
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Table 6 

Maximum likelihood estimates of nonlinear Markov model as estimated from joint behavior of 
three-month Treasury bill yields (r,) and ten-year Treasury bonds (R,) subject to cross-equation 

restrictions. 

Parametera 
Maximum likelihood 

estimate 
Standard 

error 

1.884 5.127 
1.3156 0.0760 
0.996819 0.000784 
0.998106 0.000803 
0.17429 0.00791 
0.2245 0.0309 
0.99126 0.00193 
0.00138 0.00295 
0.00619 0.00274 
0.000141 0.00157 
0.05058 0.00298 
0.007880 0.000610 

aPa.rameters are defined by eqs. (4.4) and (4.5) and were estimated on the basis of observation 
of both short rates (r,) and long rates {R,} for 1= 1962:1-1987:3 with the cross-equation 
restrictions (4.6) imposed. 

1979-82 of the coefficients characterizing the dependence of the variance on 
lagged levels of the interest rate or on the lagged squared residuals.15 

Model 4: Restricted nonlinear representations for r, and R, 

The question then is whether this nonlinear process for short rates can also 
better account for the behavior of long rates as well. The system (4.4)-(4.5) 
was estimated subject to (4.6). Maximum likelihood estimates of parameters 
are reported in table 6, and the inferred probabilities for regime shifts given in 
table 7. The implicit process for the long rate is 

R, = 0.05058 + 1.88732^,,, + O.O0865i,_,,, -I- O.O116i,_,,, 
(0.00298) 

+ O.O00258i,_ 3,, +2.4548P[S,=l]r, ,... ]+E~,~, ZER = 0.007880, 
(0.000610) 

(4.11) 

2 ,_j,,=r,-1.3156P[S,_,=1]r ,,... 1, 
(0.0760) 

15Failure to model this shift in regime may account for the finding of an explosive ARCH 
process by Engle, Lilien and Robins (1987), in which the sum of the ARCH coefficients exceeded 
unity. They tested (in their table 1, p. 402) for a change in the constant term between the 
specifications labeled I.B.ii and II.B.ii in my table 5, but not for differences in the autoregressive 
coefficients. 



J.D. Hamilton, The term structure of interest rates 415 

Table 7 

Inferred probability, using parameters of process estimated subject to cross-equation restrictions 
(table 6) and based on information available at date t, that the economy was in the high interest 
rate, high volatility state at date t (column j = 0), along with inference using table 6 parameters 
and based on information available at t about the historical state the economy had been in at 

datest-1, t-2, t-3,and r-4(columnsj=1,2,3,4). 

Date 

(I) 

KS,-, =llr,,r,_,,...] 

j=O j=l J=: j=3 j=4 

1963:l 0.2090 
1963:2 0.1034 
1963:3 0.0482 
1963:4 0.0242 
___- _~ 

1964:l 0.0109 
1964:2 0.0048 
1964:3 0.0021 
1964:4 0.0009 

0.2090 
0.1034 
0.0482 
0.0242 

0.0109 
0.0048 
0.0021 
o.Oc09 

0.2098 
0.1034 
0.0482 
0.0242 

- 

0.0109 
0.0048 
0.0021 
0.0009 

0.2106 0.2114 
0.1047 0.1061 
0.0482 0.0499 
0.0242 0.0242 

0.0109 0.0109 
0.0048 0.0048 
0.0021 0.0021 
0.0009 0.0009 

196S:l 
1965:2 
1965:3 
1965:4 

1966:l 
1966:2 
1966:3 
1966:4 

o.OQO4 
0.0002 
0.0001 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 

0.0004 
0.0002 
0.0001 
O.OOCO 

0.0000 
0.0000 
0.0000 
0.0000 

0.0004 0.0004 
0.0002 0.0002 
0.0001 0.0001 
0.0000 0.0000 

0.0000 0.0000 
O.OQOO 0.0000 
0.0000 0.0000 
0.0000 0.0000 

0.0004 
0.0002 
0.0001 
0.0000 

0.0000 
0.0000 
0.0000 
O.oooO 

1967:l 0.0000 0.0000 0.0000 0.0000 0.0000 
1967:2 0.0000 0.0000 O.OOOG 0.0000 0.0000 
1967:3 0.0000 0.0000 0.0000 0.0000 0.0000 
1967:4 O.OOCKI 0.0000 0.0000 o.oOQo 0.0000 

1968:l 0.0000 0.0000 O.OOQO 0.0000 0.0000 
1968:2 0.0000 O.OOOG 0.0000 0.0000 0.0000 
1968:3 0.0000 0.0000 0.0000 O.CQOO 0.0000 
1968:4 0.0000 0.0000 0.0000 0.0000 0.0000 

1969:l 
1969:2 
1969:3 
1969:4 

197O:l 
1970:2 
1970:3 
1970:4 

0.0001 
O.OWO 
0.0000 
0.0000 

0.0001 
0.0003 
0.0001 
0.0001 

1971:l 0.0001 0.0001 o.oc01 0.0001 0.0001 
1971:2 0.0001 0.0001 0.0001 0.0001 0.0001 
1971:3 0.0013 0.0005 0.0005 0.0005 0.0005 
1971:4 0.0008 O.OOQ8 0.0003 0.0003 0.0003 

0.0000 
0.0000 
0.0004 
0.0000 

0.0000 
0.0003 
0.0001 
0.0001 

0.0000 
0.0000 
0.0000 
0.0000 

o.oooo 
0.0000 
o.oooo 
0.0000 

0.0000 
o.oooo 
o.oooo 
0.0000 

0.0000 
0.0001 
0.0001 
0.0001 

0.0000 
0.0001 
0.0001 
0.0001 

0.0000 
0.0000 
0.0000 
0.0000 

1972:l 0.0007 0.0007 0.0007 0.0003 0.0003 
1972:2 0.0003 0.0003 0.0003 0.0003 0.0001 
1972:3 0.0002 0.0002 0.0001 0.0001 0.0001 
191214 0.0001 0.0001 0.0001 0.0001 0.0001 
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Date 

(1) 

1973:l 
1973:2 
1973:3 
1973:4 

j=O 

O.OOQl 
o.OQO4 
0.0017 
0.0014 

Table 7 (continued) 

P[S,_,=lIr,,r,_, ,... ] 

j=l j=2 

0.0001 0.0001 
0.0002 0.0001 
0.0011 0.0005 
0.0014 0.0009 

J=3 j=4 

0.0001 0.0001 
0.0001 O.OOQl 
0.0003 0.0003 
0.0004 0.0003 

1974:l 0.0007 0.0007 0.0007 0.0005 0.0002 
1974:2 0.0006 0.0006 0.0006 0.0006 0.0004 
1974:3 o.OOQ7 o.OQO7 0.0007 0.0006 0.0006 
1974:4 o.OQO4 0.0004 0.0004 0.0004 o.OOQ4 

1975:l 0.0002 0.0002 0.0002 0.0002 0.0002 
1975:2 o.OOQ4 0.0004 o.cOO4 0.0003 0.0003 
1975:3 o.cKm2 o.m2 0.0002 0.0002 0.0002 
197514 0.0001 0.0001 0.0001 0.0001 0.0001 

1976:l 0.0003 0.0002 0.0002 0.0002 0.0002 
197612 0.0001 0.0001 0.0001 0.0001 0.0001 
1976:3 0.0001 0.0001 0.0001 0.0001 0.0000 
1976:4 0.0000 0.0000 0.0000 0.0000 0.0000 

1977:l 0.0000 O.OQOO 0.0000 0.0000 0.0000 
1977~2 O.OGQO 0.0000 0.0000 0.0000 0.0000 
197713 0.0000 0.0000 0.0000 0.0000 0.0000 
1977:4 0.0001 0.0000 0.0000 0.0000 0.0000 

1978:l 0.0000 O.oooO 0.0000 0.0000 0.0000 
1978:2 0.0000 O.OOOiI 0.0000 0.0000 0.0000 
1978:3 0.0000 0.0000 0.0000 0.0000 O.OGOil 
1978:4 0.0001 O.OOOQ 0.0000 0.0000 0.0000 

1979:l 0.0010 0.0004 0.0001 0.0001 
197912 0.0005 o.cOO5 0.0002 0.0001 
1979:3 0.0003 0.0003 0.0003 O.Oml 
1979:4 0.0007 0.0005 0.0005 0.0005 

198O:l 0.0331 
1980:2 0.9857 
1980:3 0.2716 
1980:4 0.9999 

0.0000 
o.oooo 
o.ooQo 
0.0002 

0.0164 0.0113 0.0112 0.0111 
0.8539 0.4184 0.2854 0.2839 
l.OOOo 0.8707 0.4565 0.3116 
0.9628 1.0000 0.8644 0.4448 

1981:l 1.0000 1.0000 0.9632 1.0000 0.8643 
1981:2 1.0000 1.0000 l.OOQO 0.9643 1.0000 
1981:3 l.OQOO l.oooO 1.0000 l.oooO 0.9643 
1981:4 1.0000 1.0000 1.0000 1.0000 1.0000 

1982:l 0.9978 1.0000 1.0000 1.0000 1.0000 
1982:2 0.9998 0.9998 1.0000 1.0000 l.OQOO 
1982:3 0.9997 0.9997 0.9997 1.0000 1.0000 
1982:4 0.2635 l.OOOQ 1.0000 1.0000 1.0000 

1983:l 0.1748 0.1748 1.0000 1.0000 1.0000 
19X3:2 0.1326 0.1326 0.1326 1.0000 1.0000 
1983:3 0.0632 0.0632 0.0632 0.0632 1.0000 
1983:4 0.0286 0.0286 0.0286 0.0286 0.0286 
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Table 7 (continued) 

Date 

(f) j=O 

PIS,_,=lIr,,r,_l,...l 

j=l j=2 j=3 j=4 

1984:l 0.0136 
1984:2 0.0094 
1984:3 0.0041 
1984:4 0.0023 

1985:l 0.1724 
1985:2 0.0908 
1985:3 0.1672 
1985:4 0.0823 

0.0136 
0.0093 
0.0041 
0.0023 

____ 
0.1724 
0.0908 
0.1672 
0.0823 

0.0136 
0.0093 
0.0041 
0.0023 

0.1714 
0.0908 
0.1672 
0.0823 

0.0136 
0.0093 
0.0041 
0.0023 

___- 
0.1713 
0.0903 
0.1672 
0.0823 

0.0136 
0.0093 
0.0041 
0.0023 

0.1708 
0.0902 
0.1662 
0.0823 

1986:l 0.0378 0.0378 0.0378 0.0378 0.0378 
1986:2 0.0285 0.0285 0.0285 0.0285 0.0285 
1986:3 0.0140 0.0140 0.0140 0.0140 0.0140 
1986:4 0.0111 0.0111 0.0111 0.0111 0.0111 

19x7:1 0.0054 0.0054 0.0054 0.0054 0.0054 
1987:2 0.0024 0.0024 0.0024 0.0024 0.0024 
1987:3 0.0011 0.0011 0.0011 0.0010 0.0010 

where P[S,, = 1 Ir,, . . .] is from column j of table 7. Parameters reported in 
(4.11) without standard errors were calculated from values in table 6 using eq. 
(4.6). 

Eq. (4.11) is able to account for even more of the variance of long rates than 
was provided by the unrestricted linear specification (4.8); the R2 in eq. (4.11) 
is 0.99997. Indeed, this improved characterization of the long rate is suffi- 
ciently important that the restricted nonlinear model is able to achieve a much 
higher value for the likelihood even than model 3, which used four more 
parameters than model 4 in order to permit the short rate to follow a 
completely unrestricted nonlinear process and long rates a completely unre- 
stricted linear process. Of course, there is no contest between the restricted 
nonlinear model 4 and the unrestricted linear model 1; both use the same 
number of parameters, but twice the log likelihood ratio is over 100. 

We saw that a chief difficulty of the restricted linear model was that the 
response of the long rate to the short rate is too strong. Investors seemed to be 
attributing more persistence to the process for short rates than is warranted on 
the basis of a linear representation such as (4.7). That the success or failure of 
the expectations hypothesis of the term structure of interest rates depends 
critically on how one treats the possibility of unit or near unit roots has been 
recognized by many of the researchers in this field; see, for example, Sargent 
(1979) Shiller (1981) and Flavin (1983). The persistence of the nonlinear 
process for interest rates in table 6 results from the high probability of 
remaining in the current regime (p and q are close to 1) and from the near 
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unit root of @J(L) in the Gaussian component. These specifications in table 6 
are within two standard errors of the unrestricted nonlinear estimates in table 

3. Thus, a key feature that allows the restricted nonlinear model to fit the data 
so well is that the prospect of persistent changes in regime is statistically fairly 

plausible and would also motivate a strong response of long rates to short 
rates such as we observe in the data.16 

One other difference between the restricted and unrestricted parameter 
estimates for the nonlinear models that is statistically insignificant but never- 
theless worth commenting on concerns the comparison between tables 4 and 7. 
If one uses the restricted parameters of table 6 to draw inference about the 
historical regimes, the evidence of a return to the original regime (S, = 0) after 
1983:l is much less compelling. This finding might be summarized as follows: 
given the observed behavior of the long rate, investors were apparently using a 
model for forecasting changes in regime that still assigned a nonnegligible 
probability to the continuation of the high interest rate, high volatility regime 
as late as 1985:3. 

Model 5: Unrestricted nonlinear representations for r, and R, 

Not only does model 4 account for an overwhelming percentage of the 
variance of long rates, it moreover does so in a way that is consistent with the 
univariate process assumed for short rates and the rational-expectations hy- 
pothesis of the term structure. Here I note that specification 4 would be 
accepted in preference to other, nonlinear alternatives. The simplest way to 
construct such an alternative is to estimate eq. (4.5) by OLS with no restric- 
tions on B or y and with P[S,_, = 1 (r,, . . ] given by table 7. The restrictions 
(4.6) can then be tested directly. This of course yields the numerically identical 
result as does an unrestricted regression of the residuals from (4.11) on the set 
of explanatory variables in (4.5). I report the regression in the latter form for 

ease of interpretation: 

R, - k, = 0.000482 + O.O0235r, - O.O0141r,_ 1 - O.O00306r, _z 

(0.00275) (0.00335) (0.00354) (0.00309) 

- O.O0129r,_ 3 - 0.0168@,,, - O.O0588i,+ 
(0.00286) (0.0114) (0.0140) 

+0.0141& + O.Olll&, + u,, & = 0.00742, 
(0.0137) (0.00949) (4.12) 

“The near-unit root complicates the numerical estimation of a,,, which enters the likelihood 
function in step 2 of the basic filter as (1 -4, - & - 4s - $~~)cq~. Since moderately sized 
confidence intervals for (1 ~ $I, - $I~ - +a - $1~4) contain zero, virtually any value for (xa might be 
consistent with the data, as reflected in the high standard error for ir, in table 6. I had the best 
success in numerically maximizing the likelihood by parameterizing this constant term as C$ = 
(1 - +, - $J? - & - $~)a~. with n$ treated as an unrestricted parameter 
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where & _, , f denotes P[S,_, = 1 ]rt, rr_i,. . . ] from column j of table 7. The 

resulting x2(8) test statistic (2 X [514.18 - 508.261) = 11.84) leads to ready 

acceptance of these restrictions (p = 0.16). 
To summarize, the cross-equation restrictions implied by the expectations 

hypothesis of the term structure of interest rates would be rejected if one 
assumed a linear process for short rates, but accepted if one used a nonlinear 
specification. I conclude that once recognition by bond traders of changes in 
regime is taken into account, the expectations hypothesis of the term structure 
seems to explain these data quite well. 

5. Discussion 

This paper presented a model of the term structure of interest rates in which 
the processes for interest rates were explicitly specified and estimated by full 
information maximum likelihood. This approach is in contrast to a number of 
recent tests of the expectations hypothesis of the term structure, which make 
no attempt to model the process on interest rates directly and may seem to be 
specification-free. I would like to comment briefly on the implications for the 
latter approach if the model presented here indeed describes the truth. 

One set of results is represented by the observation by Shiller, Campbell and 
Schoenholtz (1983) that the forward rates implicit in the term structure have 
essentially no predictive power for future short rates, ” a result that might be 
interpreted as offering evidence against the expectations hypothesis. Suppose 
that short-term interest rates are really driven by the process in tables 3 or 6. 
Both the Gaussian and the Markov component behave much like a random 
walk [though we will not see this if we simply fit a constant-parameter linear 
model as in eq. (4.7)]. Changes in the short rate are very difficult to forecast, 
and the forward rates implicit in the term structure will be dominated by 
measurement error. Thus, if the restricted nonlinear model in table 6 (which 
by construction satisfies the expectations hypothesis) had really generated the 
data, then the results of Shiller, Campbell and Schoenholtz are precisely what 
one would have expected. 

A second approach that seems to make minimal assumptions about specifi- 
cation regresses the excess one-period holding yields of securities of different 
maturities on information that was available at the date these bonds were 
purchased [e.g., Campbell and Shiller (1984), Mankiw and Summers (1984), 
Fama and Bliss (1987)]. Application of this approach requires careful specifi- 
cation of the conditional heteroskedasticity of the process. For example, 
Engle, Lilien and Roberds (1987, pp. 399-400) reported that the estimated 
average excess holding yield falls to a third of its earlier estimated value once 
the estimation procedure takes into account the ARCH character of the 
residuals. I have argued above that heteroskedasticity corrections for both 

“Fama (1984) and Fama and Bliss (1987) offer conflicting evidence. 
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ARCH effects and regime changes seem necessary for these data. There is 
further a ‘Mexican peso problem’ [Krasker (1980)] in evaluating post-1982 
data on excess holding yields, as evidenced by the lingering probabilities 
imputed to investors of a return to the 1979-82 regime (table 7). 

More remains to be done. Future research should account more carefully for 
the role of inflation [as in Engel (1984)], measurement error, and approxima- 
tion error associated with Shiller’s linearization when applied to the recent 
huge swings in interest rates. But it seems fair to conclude on the basis of this 
research that the expectations hypothesis of the term structure continues to 
merit serious consideration by scholars. 

Here I show that my eq. (3.6) can alternatively be derived directly from 
Shiller’s (1979) eq. (1) by a careful reinterpretation of variables. Let r index 
semiannual data in contrast to t in the text which indexed quarterly data. 
Thus 7 is associated with the quarterly observations t and t + 1; 7 + 1 with 
t + 2 and t + 3; and so on. Similarly, a bond with n periods to go when the 
indexation is by quarters has n* = n/2 periods to go when the indexation is 
semiannual. Following Shiller’s convention that superscripts with parentheses 
denote indexes, while superscripts without parentheses denote exponentiation, 
(3.4) would be written 

p(n*) = 
7 5’ ,l+R;n*),n*[l-$]. 

The six-month holding period yield associated with this bond is 

H’“*‘= 
p,‘:;-“_ P,‘“*’ + c 

7 

p$-.*j ’ 

which is approximated by Shiller’s eq. (7): 

ff’“*‘F 
R’,“” - y,,R!‘y; ‘) 

T l-y,. ’ 

where 

y(l - yn*-1) 
Y,* = 1-y”’ ’ 

(A.11 

(A.4 
1 1 

Y=G-Z= 1 + r* + 27. 
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Compare this with the six-month holding yield from rolling over two 
three-month Treasury bills: 

IQ”*) = (1 + r,)(l + 1,+J - 1 

= -r* + (1+ F)r,+, + (1 + r)r,. 

The model posits that the expected six-month 
constant risk factor #‘*): 

or 

E 7 H;“*, = E&r/*) + $,‘“*‘, 

(A.3) 

holding yields differ by a 

(A.4) 

R!“” - y,,.E,R!“;;‘) 

l-y,. = 
-r* + (1 f ?)r, + E,(l + ‘)rr+r + #“*). 

Define 

r* = -F*+ (1+ r)r,+ E,(l+ ‘)r,+r, T (A.6) 

and write (A.5) as 

R!“” = y,e E,Ry;,‘) + [l - y,*] [ r,* + p*q , (A.7) 

which is the same equation Shiller arrived at on p. 1197, from which his eq. (1) 
is derived. By the law of iterated projections, his eq. (1) gives the solution to 
my expression (A.7): 

(1 -y) n*-1 
R?*’ = (1 _ yO*> & yk E,[r,*,,] + &‘*). (A.8) 

Using (A.2) (A.6) and n* = n/2, (A.8) becomes (3.6) as claimed. 
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