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This paper is of interest both for its methodological contribution of new tools for analyzing
rational-expectations models and for its substantive conclusions concerning the term structure of
interest rates during the monetary experiment of October 1979.

The paper studies systems subject to changes in regime, interpreted here as occasional, discrete
shifts in the parameters governing the time series behavior of exogenous economic variables. The
specification is shown to be quite tractable both theoretically and empirically. The technique is
used to analyze vields on three-month Treasury bills and ten-year Treasury bonds during 1962 to
1987. A constant-parameter linear model for short-term rates is shown to be inconsistent both
with the univariate time series properties of short rates and with the observed bivariate relation
between long and short rates under the expectations hypothesis of the term structure. An
alternative nonlinear model that admits the possibility of changes in regime affords a much better
description of the univariate process for short rates. Moreover, the cross-equation restrictions
implied by the expectations hypothesis of the term structure are consistent with the nonlinear
specification. Indeed, the residuals of the restricted relation have a standard error of only 0.8 basis
points. This is a third less than that of a completely unrestricted linear regression of long rates on
short rates, and compares with an unconditional standard deviation of long rates of 142 basis
points.

I conclude that once the recognition by bond traders of changes in regime is taken into account,
the expectations hypothesis of the term structure of interest rates holds up fairly well for these
data.

1. Introduction and summary

This paper develops new technical tools for theoretical analysis and em-
pirical estimation of rational-expectations models. The task is to model
changes in regime in a way that satisfies the internal consistency requirement
of the rational-expectations hypothesis. If the regime can change, private
actors in the economy must assign some probability to the possibility of such
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change, and form forecasts as best they can under the circumstances. The
paper develops a fully integrated system for describing these forecasts and
their influence on the behavior of endogenous variables. Despite its nonlinear
nature, the system is shown to be quite tractable and amenable to empirical
estimation subject to the cross-equation restrictions implied by the rational-
expectations hypothesis. The technique is used to analyze the term structure of
interest rates and its response to the change in Fed operating procedures
initiated in October 1979.

That changes in regime may be very important for the evolution of interest
rates has been emphasized in a number of recent studies. Mankiw, Miron and
Weil (1987) examined the effects of the establishment of the Federal Reserve
in 1914. Peek and Wilcox (1987) considered the possibility of a change in
policy with each new Federal Reserve chairman. The particular focus of the
present paper is on the change in Fed operating procedure in October 1979, an
episode studied by Antoncic (1986), Huizinga and Mishkin (1986), Hardouve-
lis and Barnhart (1987), and Walsh (1987), among others. While all of these
researchers have underscored the importance of changes in monetary policy,
none developed an explicit model of how bond traders form their perceptions
of changes in regime and what probabilities traders assign to the prospect of
future changes. This paper, by contrast, develops a fully specified model of
rational-expectations learning by bond traders in which parameters char-
acterizing the process for interest rates and changes in regime can be estimated
by full information maximum likelihood subject to the cross-equation restric-
tions imposed by the rational-expectations hypothesis. The specification thus
permits extension of the approach of Hansen and Sargent (1980) to environ-
ments subject to changes in regime.

The technique is applied to quarterly yields on three-month Treasury bills
and ten-year Treasury bonds over the period 1962:1 through 1987:3. The
principal conclusions are as follows. (1) An AR(4) process with constant
coefficients is inconsistent with the univariate process for short rates over this
period. (2) The rational-expectations forecast of future short rates based on a
constant-parameter AR(4) process for short rates is likewise inconsistent with
the historical correlation between long and short rates under the expectations
hypothesis of the term structure of interest rates. (3) An alternative nonlinear
process that allows the possibility of changes in regime offers a vastly superior
fit to the univariate data on short rates. The maximum likelihood estimates
associate the alternative regime with the period 1979:4 through 1982:3, and
characterize it as a period with average short rates twice as high and with a
standard deviation four times as great as in the period preceding. (4) The
rational-expectations forecasts of future short rates under the two regimes can
be constructed from the maximum likelihood estimates. When the response of
long rates to short rates is restricted to be this rational-expectations forecast,
the residuals have a standard deviation of only 0.8 basis points. This is a third
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less than that associated with a completely unconstrained linear OLS regres-
sion of long rates on short rates, and compares with an unconditional standard
deviation of long rates over this period of 142 basis points. Relaxing the
cross-equation restrictions on the nonlinear representation does not lead to a
statistically significant improvement in the likelihood function.

I conclude that once the recognition by bond traders of changes in regime is
taken into account, the expectations hypothesis of the term structure of
interest rates holds up fairly well for these data.

The plan of the paper is as follows. Section 2 presents the basic model of
changes in regime, develops the rational-expectations nonlinear filter that a
bond trader could use to learn about such changes in regime, and presents an
algorithm for maximum likelihood estimation of parameters. Section 3 reviews
the expectations hypothesis of the term structure of interest rates and discusses
maximum likelihood estimation subject to the cross-equation restrictions
imposed by rational expectations. Empirical results and substantive conclu-
sions are presented in section 4, with concluding discussion offered in
section 5.

2. A model of changes in regime

2.1. Stochastic specification

Following my 1987 paper, consider a variable y, whose stochastic process is
given by

Ve~ .U‘(St) =¢1[yr-1 - P'(Sr—l)] + ¢2[yt—2_ “‘(St——Z)]

+ oot [ 1(S,_)] + 0(S)v,, (2.1)

with v, ~ iid. N(0,1) and [1 — ¢,z — ¢,z — - - —¢,z™] # 0 for any z: ||z||
< 1. This differs from the usual linear AR(m) specification in that both the
constant term around which the process is defined [p(S,)] and the standard
deviation of its innovation [o(S,)] are functions of the regime operative at date
t. The regime is indexed by the discrete-valued variable S,; for example, S, =1
means that the process was in regime 1 at date ¢.

The assumption in this paper is that bond traders recognize the possibility
of changes in regime and incorporate this into their forecasts for the future. To
arrive at a rational-expectations solution of a model incorporating (2.1), we
must (a) specify the subjective probabilities that bond traders associate with
future regime changes, and (b) verify that these assumed probabilities are
consistent with all information that bond traders in fact have available at date
t. A very tractable structure for accomplishing this task is to model S, as the
outcome of an unobserved discrete-time, discrete-state Markov process. This
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paper employs the simplest example of such a specification ~ a two-state
(S, =0 or 1), first-order Markov process:

P[S,=1(S,_,=1]=p, P[S,=0|S,_,=1]=1-p,

(2.2)
P[St =11S,_,= 0] =1-gq. P[S,= 0|S,-1 = 0] =4q,
for which we can (without loss of generality) parameterize
p(S) =ay+aS,, o(S,)=w,+wS,. (2.3)

I further specify that v, is independent of S,_; for all j, and normalize by
defining state 1 to be the state with the higher variance (achieved by setting
w, > 0).

Three aspects of the Markov process (2.2) will be important below. First, I
assume that bond traders do not observe the current regime S, directly, but
instead must form inference about it based on observation of {y}. If,
hypothetically, one could observe the regime directly, the Markov structure
means that S,_; would summarize all information available at date r — 1 that
would be useful for forecasting S,:

P[S,=s,I8,_1=5,4]

=P[S, =5,]8 _1=5_1,8_3=5 202U 1-V_2r--]. (2.4)
Second, note that (2.2) can be written

s,=(1—q)+As,_;+w,
with

A=—-1+p+gq, (2.5)
where conditional on s5,_; =1,

w=1-p with probability p,

w,=—p with probability 1 — p,
whereas conditional on s5,_; =0,

w,= —(1—¢)  with probability q,
w,=gq with probability 1 — q.

t
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From these one deduces!
E[St+j|St=st] =p+>\j(S,—p), (26)
where

C(1-p)+(1-gq)°

p (2.7

Finally, notice that the unconditional distribution of S, is given by P[S,= 1] =p
(and of course P[S,=0]=1 - p).

The process defined by (2.1) and (2.2) turns out to be stationary provided
that p and ¢ are both strictly less than unity.? By Wold’s decomposition,
there exists a constant-parameter linear representation for (2.1)-(2.2) of the
form

yo=xk+u+0u,_,+8u_,+ -, (2.8)

where the u,’s are uncorrelated but not independent. What this means in
practice is that while one could forecast the series y, on the basis of a linear
representation such as (2.8), these forecasts are suboptimal; forecasts that
make use of a nonlinear function of y,_,, y,_,,... are superior.

The optimal nonlinear forecast can be thought of as arising from a two-step
procedure. First we ask, what is the optimal inference about the current state
based on what we have actually observed; in other words, what is P[S,=
1Y ¥i—1---1? The answer to this question is provided by the nonlinear filter
presented shortly. One can then use the output of the filter to generate optimal
future forecasts of y,, as is done in the present value calculations of section 3.

The principal tool used in this investigation is a straightforward adaptation
of the nonlinear filter introduced in my 1987 paper. That paper also describes
the filter’s antecedents in work by Goldfeld and Quandt (1973), Liptser and
Shiryayev (1977), Neftci (1982,1984), and Cosslett and Lee (1985). The filter
allows us both to estimate parameters of the univariate process for y, and to
characterize optimal forecasts of future values of y,. The latter will then be
used in section 3 below to generate the cross-equation restrictions implied by
the expectations hypothesis of the term structure of interest rates.

!These are standard results. See for example Chiang (1980, p. 160).

*See the discussion in my 1987 paper. There I introduced a very similar process in which y,
represented the first difference of the raw data J, and the specification was suggested as an
alternative approach to describing the nonstationarity of the raw data 7,.
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2.2. Filtering

Suppose for the moment that we knew with certainty the particular numeri-
cal values for the parameters (¢, ¢,,...,9,, P, g, ay, ), Wy, @;) in egs.
(2.1)-(2.3). Even if we knew these parameters, we would still be unsure as to
whether the process was in state 0 or 1 at date ¢, because the state variable s,
is presumed unobserved by the econometrician. This subsection summarizes
my (1987) nonlinear filter for solving the second problem of inference.
Throughout this subsection on filtering, the parameters (¢, ¢s,..., ¢,
D, g, 6, 0y, wgy, ;) are treated as known constants, and the task is solely to
draw inference about the historical sequence of states {s,} based on the
observed sequence of data { y,}. In the following subsection, I then show how
the parameters (¢, ¢5,--., d,, P, 4, A, &y, Wy, W) can be estimated by maxi-
mum likelihood.

My procedure for drawing inference about {s,} is-an iterative one. Given an
initial inference about s,_; based on data observed through date 1 —1 (and
given knowledge of the parameters [¢,, ¢,,..., ¢, P, ¢, &g, &, Wy, @1]), itera-
tion ¢ produces an inference about s, based on data observed through date ¢
(this latter inference being based on the same values of [¢, ¢,..., D,
D, g, 0y, 0y, Wy, w,] as were used in iteration ¢ — 1 but using one more observa-
tion on y).

Specifically, the filter accepts as input the joint conditional probability

P(So1 82y S mlViots Yimaseeen Yo,
and has as output
P(Se Sem1seees Sioma1 Vo Vimts5 Yo)
along with, as a byproduct, the conditional likelihood of y,:

P(VedVi1> Yiarees o)

Note well the notation: [s,,5,_q,...,5,_,,.1) refers to the m most recent
observations on S, whereas [y,, ¥,_1,..., Jy] denotes the complete history of y
observed through date ¢. I further let p(x) denote Prob[X = x] for x a
discrete-valued variable or the density function f(x) for x continuous.
Step 1. Recalling the Markov property (2.4), calculate

p(s,, Si—1sers st—mlyt—l’ Yic2sees yO)

= p(stlsr—l) X p(st—l’ Sp—25e0s st—mlyl-l’ Yi—2seees y0)9
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where p(s,|s,_,) is given by (2.2). Here (as in all the steps to follow) the
second term on the right-hand-side is known from the preceding step of the
filter [in this case, P(S,_1,S,_2s-+«> Si—m|Vie1> Vi—2s++-» Vo) 15 known from
the input to the filter, which in turn represents the output of the iteration at
date r —1).

Step 2. Calculate the joint conditional density-distribution of y, and
(S, S_1e-0 S0

> - m
P( V> Sps Smtseees SimlVem1s Vemzse o Yo)
=P(WilSts Sicrs s Smms Yee1> Yim2s--+2 Vo)

XP(Si Si—1rev o> SmmlVec1s Yem2s--os Vo),
where we know
p(ytlsl’ st—l""’sr—m’ yl'-l’ yt—z""’ yO)

1 1
= eXp| 3 -5, a
T (ot an) P 2[w0+wls’]2((y, 15— @)

2
—¢1()’1—1 ST ao) - —¢m(yt—m TS T 0‘0)) .

Step 3. We then have

PV AYi—1s Yemzsvos Vo)

1 1 1
= Z Z Z p(yt’sl’sl—-l""’sl—-mlyl—l’yI—Z"“’yO)‘

5,=0s,_,=0 Si—m=0
Step 4. Combining the results from steps 2 and 3, we can then calculate
P(Sis S— 15 SmmlVes Y15+ 45 o)

— p(yn S,, st—l"“’ St—m'yr—l’ yr—2’~--5 )’0)
PV lViz1s Ye2s+es Yo) '

Step 5. The desired output is then obtained from

p(S,, sl~1""’sl—m+liyt’ Ye—tr-es J’o)

1
= Z p(st’si—l""’st—mlyt’ Yi—1r--+» )’0)-
s 0

t—m

JEDC—G
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2.3. Maximum likelihood estimation of parameters

Throughout the preceding iteration for all t=m, m+1,..., T, the parame-
ters (ay, ay, P, 4, W, Wy, 01, 5, ..., P, ) Were treated as known, fixed constants.
However, we can now see that one byproduct of the filter (generated at step 3)
is evaluation of the conditional likelihood function associated with that choice
of constants. The sample conditional log likelihood is

Inp(yr, Yro1s-es YmlVme1> Ym—2s+-+5 Yo)

Inp( WY1 Yeeasre-or Yo

i
I~

14

which can be maximized numerically with respect to the unknown parameters
(al’ a09 P’ qy wo, wl, ¢1’ ¢2’ Py qu)

2.4. Extensions and additional details

The simplest approach is to start the first iteration on the filter (1 = m) with
the unconditional probability

P(Sm—p Sm—z’---sso)
= p(sm—1|SIn72) X (S ol Sp—3) X - Xp(sl|so) X p(s,),

where p(s;|s;_,) is given by (2.2) and the final term [p(s,)] is obtained from
2.7):

P[S,=1]=p, P[S;=0]=1-p.

For some applications, one might want to allow the possibility of a permanent
change in regime (e.g., allow g = 1). In that case, one should not start the filter
with the unconditional probability p =(1 — ¢)/[(1 —p)+ (1 —g)], forif g=1,
then p=0, and the filter would end up setting this and all subsequent
probabilities P[S, = 1}y,, y,_1,...] equal to zero as well. Instead one could treat
po = P[S; =1] as an unconstrained separate parameter to be estimated by
maximum likelihood along with («;, ay, p, ¢, wy, @1, O1, $5,...,@,,). In this
paper 1 have imposed the restriction po=(1—¢)/[(1 —p)+ (1 — gq)].
Technically, one would only have calculated the conditional likelihood
function at step 3 if the filter were started at t=wm with p(s,_,,
Sppe2s-s 80| Ym—1> Ym—2s---» Yo) as input rather than p(s,,_,S,,_2,...,5,) as
suggested here. Calculating the former is considerably more effort and seems
unlikely to make a material difference, though once one has made these
calculations, exact maximum likelihood estimates rather than estimates that
maximize an approximation to the conditional likelihood are easily derived.
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Given the specification chosen for the start-up values [in which the conditional
probability p(s,,_1, 252 S0 Vm-1> Ym—2>---» Yo) 1S approximated by the
unconditional probability p(sm 1> Sm-25---58p)], 1t might be best to seek to

maximize In p(Yr, Yr_15- > VamlVam—1> Vam—2r-++» Yo)» say, rather than In
PV Yr_15-++3 YmlVm—1> Ym_2-+--» Yp) 1N arriving at parameter estimates. I
nevertheless use P( ¥z, Yr—15-+-» YmlVm_1:---» Yo) In the empirical application

in section 4.

Clearly one can permit more complicated dynamics for the regime shift
by replacing p(s,|s,_;) in step 1 with some parameterized function
PCS, 8,15 8,20 vs Sy_ms Yie1s Ye_2s-++5 ¥o) and maximizing the likelihood
function with respect to these parameters along with the others. The potential
obstacle here is a numerical one. Identification of the parameters characteriz-
ing the dynamics of S, separately from those of the Gaussian component
depends on nonlinearities in the data (e.g., the difference between E[y,|y, ]
and E[y,|y,_,, »2.]). There is a practical limitation on how complicated we
can permit the dynamics for both the regime shift and the Gaussian compo-
nent to become and still have hope of obtaining useful results.

It is also straightforward to replace ¢; in step 2 with ¢,(s,), and so allow the
autoregressive coefficients to shift along with the mean and variance. Similarly,
more than two states can be accommodated by replacing Z =0 in steps 3
and 5 with Z" o for n  the number of states. Again the diffiéulties of such
generahzanons are chleﬂy numerical. At iteration ¢, the filter is updating n”*!
different probabilities; with 4 lags, the two-state filter is thus keeping track of
23 = 32 different numbers; a three-state filter would calculate 3° = 243. Ra-
tional-expectations applications are also considerably more complicated once
one departs from the simple parameterization of regime shifts embodied in
2.1)-(2.3).

The filter was motivated as drawing an inference about the state s, based on
currently available information,

P8V Vio1re--5 Vo)

1 1 1
= Z Z T Z p(st’sl—l""’Sl"m+1|.yt’y[*l""’y())'
Si— =0 Sp— 220 314m+1=0

Alternatively, one can obtain a more reliable inference about the lagged
value of the state using currently available information. For example, using the
output from step 4 of the basic filter, one can calculate an m-lag smoother:

PO ml¥es Vi yoeees Vo)

1

1 1
= 2 Z z p(snst—l”"’st—mlyn Vie1seoos yO)a

-1=0 Si-m+1=0
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which summarizes the optimal inference based on information available at
date ¢ about the state the economy was historically in at date ¢ — m.
A full-sample smoother is described in my 1987 paper.

3. The expectations hypothesis of the term structure of interest rates

3.1. Theoretical formulation

There are three potential sources of nonlinearity in specifying a theory of
the term structure of interest rates, The first is nonlinearities in the utility
function - investors may care about higher moments in addition to the mean
return associated with a portfolio, as in Roll (1971). The second is nonlineari-
ties arising from Jensen’s inequality. For example, equating the price of a
bond to the expected present value of its coupon payments (discounted using
the future path of short rates) is not quite the same thing as equating the
expected one-period yield from holding short-term and long-term bonds [see
Cox, Ingersoll and Ross (1981)]. The third source of nonlinearity is that the
optimal least-squares forecasts of future short-term rates may be a nonlinear
rather than a linear function of past short rates.

In this paper I am concerned only with the third of these issues, primarily in
the interests of keeping the scope of the project manageable. In ignoring
nonlinearities in the utility function, the objective is to see how far one can go
with a model in which investors are concerned only about mean returns and
not the variance. Nonlinearities associated with Jensen’s inequality may well
be minor quantitatively [see Shiller (1979) and Campbell (1986)], and are
suppressed with a straightforward application of Shiller’s (1979) linearization
of the expectations hypothesis of the term structure of interest rates.

Let ¢ index the current quarter and r, the nominal quarterly yield on a
three-month T-bill purchased at date . In the formulas used in this section, v,
is measured as a fraction of 1. By contrast, in the empirical estimates
presented in section 4, r, is reported in units of 100 basis points.

Consider an (n/4)-year bond to be redeemed at date ¢+ n for $1 and
paying a semiannual coupon of C beginning at date 7 + 2. The perfect-fore-
sight present value of such a bond is defined as

o C C C
Vit=s— T 3
[MG+r.,) TIQ+7,) T10+7.,)
j=0 j=0 j=0
C 1

+ - 4 ) + P . (31)
[T(+r.,) I+,
j=0 /=0

Note that for constant interest rates (r,. =r for all j with certainty), the

+J



J.D. Hamilton, The term structure of interest rates 395

present value would equal the par value (V" =1) when its semiannual
coupon (C) equals the return from rolling over two three-month T-bills
(F%+ 2F). Setting C=(7*+ 27) and taking a first-order Taylor series expan-
sion of (3.1) around r,=r,,,= -+ =r,,,_, =F yields’

1
vim=1- ‘1’“_:_;[[’;"‘7] +[r =7l

3[[ e ™ r [rl+3_;]]

(1+)

- s (1+ )nﬂl [[l+n— r]+[ Hin- f]] (32)

Shiller’s linearization of the expectations hypothesis of the term structure
equates the current price of the bond P™ with the expected present value:

P’(n)__: Eer(n)+¢(") (33)

where ¢'") denotes a potential term premium on long-term bonds.

I now use the definition of the ‘yield to maturity’ to rewrite the price of the
bond in terms of its yield to maturity. The yield to maturity (R{") for this
(n/4)-year bond, measured at a semiannual rate, is defined by

P + ¢ + o+ ¢ + :

O 1+RP 14 RM] [1+R™]" " [1+RM]™?
= ¢ ! [1 ¢ 34
- Rsn) + [1 +R(,n)]n/2 - R(n) ( . )

Again taking a first-order Taylor series expansion around R{" = C = (72 + 2F),
we obtain

-1 1
+
F2+2F (F242R)Q+F)"

P,"”zl+[ x [R - 72— 2F]. (3.5)

3This differs slightly from Shiller’s (1979, p. 1198) expression
n
1
Vim=1- Y = [ryo 7.
=1 (1+7)
For Shiller’s data sets, coupons are paid every period, whereas for mine, coupons are paid every
other period. For a pure discount bond, a linearization of the term structure makes the present
value a simple unweighted average of future short rates, whereas when coupons are paid every
period one obtains Shiller’s geometrically declining weights [see Shiller, Campbell and Schoenholtz
(1983, p. 177)]. The case I analyze, with coupons paid every other period, is a hybrid of the two.
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Note that ‘yield to maturity’ R{"™ is not a holding-period yield: rather, it is
simply an accounting construct calculated from the current price P and
coupon () of the bond. The yield to maturity is thus of course known with
certainty at date ¢.

Equating (3.5) with the expectation of (3.2) plus ¢ yields*

FR4 27 I
R = — |11~ —
147 (1+7)

X

1
Ex[rz+rr+l]+ zEz[rz+2+rt+3]

(1+7)

1

+ (1 +F)n—-2 Et[rt+n2+rl+nl])

=2 _ (=2 = _ 1 ! n
—F=(r +2r)[1 “_(1+F)"] A (3.6)

It would be nice to have completely specified all of the factors that influence
the long rate R{"), and pretend that eq. (3.6) holds with an R? of 1 and no
error term. Unfortunately, such a pretension would be quite hopeless, given
errors arising from linearization, measurement, nonconstant risk premia, and
information available to bond traders but not the econometrician. In the
empirical analysis to follow, I will assume that the actual yield to maturity on
long-term bonds differs from the value predicted in (3.6) by an error term u,. I
specify that u, follows a Gaussian white noise process that is independent of
the process for short rates.

One could attempt a more realistic and refined analysis of this error term,
for example, through explicit modeling of the response predicted by CAPM to
the changes in the variance of returns implied by a shift from state O to state 1.
I do not attempt such an exercise here, in order to keep the scope of the
project manageable. Instead, my primary objective is to see how far one can go
with a linearized model in which only expected returns matter to investors and
in which the econometrician has available all the information used by bond
traders in forming their forecasts of future short rates.’

“Alternatively, eq. (3.6) can be derived directly from Shiller’s (1979) eq. (1), as I show in the
appendix.

>For an analysis of conditional heteroskedasticity and risk aversion, see Engle, Lilien and
Robins (1987). Explicit treatments of information available to bond traders but not the
econometrician were provided by Flavin (1984) and Hamilton (1985).



J.D. Hamilton, The term structure of interest rates 397
The model to be estimated is thus
Rﬁn) =k+ 8(Ex[’1+ ":+1] + BzE;["Hz + ":+3] + ,B4Ez[rz+4 + rz+5]
+ o 4B b)) H (3.7

where

-1

, (3.8)

B= (3.9)

— s
r

—
+

and « reflects any constant term premium built into the term structure.

3.2. Empirical implementation — The case of a linear process assumed for short-
term interest rates

Before examining the estimation of the term structure relation under the
nonlinear model described in section 2, I first review the standard linear case
as developed by Sargent (1979) and Hansen and Sargent (1980). Suppose that
short-term rates are modeled as a stable, linear AR(4) process:

r= kr+ ayra + azt > + asly,_s + a4r1—4+ € (3-10)

This can be written in vector form

r, k, a, a, ay a,l||lr_, e, ,
1| = 0 + 1 0 0 0 r_o + 0 (3‘11)
r_s 0 0 1 0 O {|r_; 0
4 0 0 0 1 O0lLr_, 0
Thus
E[rz+j|rr’ ESTR/ETR rx—3]
=c¢;+[1 0 0 0]4/[n rny nea ns), (3.12)

where ¢; is a constant and A’ denotes the (4 X 4) matrix of coefficients in
(3.11) raised to the jth power. Substituting (3.12) into the term structure eq.
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(3.7) yields®
RM=k,+[6 0 0 0]
X[[T+A4]+ B[ A2+ 4]+ - +87 4" 2+ 4"V
X[t i hia hos) teg (3.13)

Expressions (3.10) and (3.13) characterize the cross-equation restrictions relat-
ing the parameters of the univariate process for r, to the predicted relation
between the long-rate (R{") and the short rate under the hypothesis of no
changes in regime.

3.3. Empirical implementation — The case of a nonlinear process assumed for the
short-term interest rate

I now consider the case where short-term rates 7, follow a nonlinear process
of the type described in section 2. Letting r, = y,, that system can be conve-
niently written

r,=a,+ oS, +z, (3.14)
Z = ¢lzt~1 + ¢22t~2 + ¢321—3 + ¢4zt—4 + [wO + wlst]vt’ (3'15)
v, ~ N(0,1),

with transition probabilities for S, given by (2.2). From (3.14), optimal
forecasts of 7, ; given an arbitrary information set {2, are given by

E[r,,;12,] = ag+ o, E[S,,;12,] + E[z,,,12,]. (3.16)

Our ultimate task is to evaluate (3.16) when bond traders’ information is
confined to current and past observations on short rates,

Q,={r,r_y...}.

This is most easily evaluated when we first consider (3.16) under a hypotheti-
cal alternative scenario in which the information set included observation of
the regime directly,

*
QF={r,r 1. 5,85 1, }s

®One can of course ‘simplify’ the sum in (3.13) as [I — B"4" ][I + A)[I — B*4%]" !, though this is
no faster computationally and produces algorithmic difficulties when A has a root near 8~ !. The
algorithm was coded so as to exploit the identity matrix sub-block of 4 when multiplying 4/~
by 4.
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which amounts to assuming that the hypothetical forecaster also observes
z,,2,_y,... directly.

Under this hypothetical scenario, we see from (2.6) that
EI[SH-jl‘Ql*] =p+>\j(st—p)- (3'17)

Likewise, from eq. (3.15) and reinterpretation of (3.12),

E[z. 1] =[1 0 0 0]&[z Z-1 Z-2 Z-s], (318)

where
O b 93 Py
A=|1 0 0 0
0O 1 0 0
0O 0 1 0

Substituting (3.17) and (3.18) into (3.16) and using (3.14) gives

E[r,.;12F] =ag+a{p+N(s,~p)}

r— o — oS,
oy —ag—as,_;
+ 0 ola/|, . 3.19
[1 0 0] A ST ( )
I3~ Qo™ 8,3
Now, the critical feature of (3.19) that makes rational-expectations applica-
tions of the process so straightforward is that (3.19) is linear in
5,5 8,_1»S,_2» 5,3 This means that when one wishes to calculate the forecast of
I, gven the 1nformat10n set £,={r,r_y...}, one simply replaces
S, s, 1 Si-2s Si-3 in expression (3. 19) with their conditional expectation given
£2,,7 or in other words, replace s,_; with the inference drawn from iteration ¢

"In general

SN[ prinen)
BV =[50 [/ G ]‘”'

The term in brackets is

y (2, 3
[/ T ]—E[Y|Z,X].

In the case where X is a subset of the vector Z, this in turn equals E[ Y| Z]. Where this expectation
is a linear function as well,

E[Y|Z]=8,+ B Z,
we obtain

E[Y|X]=/f;2; [Bo +Byz]dz= Bo+31f e ))dz=30+31E[Z|X1.
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of the basic filter of section 2:
E[r,+j|52,] =ag+a;p(l1 -N)+aM -P[S,=1|r,,r_,,...]
+[1 0 0 o0]4a/

—ag—o - P[S,=1]r,r_,,...]
r_,—ag—a -P|S,_;=1|r,r_,,...
v 17 & ag [ —1 |t riy ] ' (3.20)

ra—ag—a;-P[S,_,= Hr,r_p....]

r_y—ag—a -P[S,_3=1|r,r_,,...]
Substituting (3.20) into (3.7) gives

8ay(1+A)[1 - (8N .
1- (BN

R =kp+

P[S,=1|r,r_,,...]

+[6 0 0 o]x[[1+4]+ B[4 +4%)
4+ o +’B"—2[AI1—2+An—1]]

r,—ao—al-P[S,=1]r,,r,;1,...]

r_i—ag—a-P|S,_;=1|r,r_,, ...
X -1 0 1 [ t—1 lr 1—1 ] +5R,p (32])
ra—eg—ay - P[S,_,=1lr,r_,,...]

hos— @&y~ 0 'P[SI~3= ]'Irl’rt—l""]

2 Yo g2
E(ER‘,) =a,.

Maximum likelihood estimation subject to the cross-equation restrictions is
then achieved as follows. From the j-lag smoother derived from step 4 at
iteration ¢ of the basic filter, we can calculate the values P[S,_ =1|r,7,_,...]
appearing in (3.21). For given values of ay, «), p, ¢, ¢, $3, H3, P4, Wg, @1, o,
and «, (and imposing § and B a priori), €, , can thus be calculated as another
byproduct of the basic filter. One then adds — 3 In(27) — In(q, ) — % ,/(262)
to In[p(r,|7r,_1, ri_4,..., 1y)] from step 3 of the basic filter to arrive at the
conditional log likelihood of the bivariate process for {r,, R,} as restricted by
the hypothesis of rational expectations. The resulting expression can then be
maximized numerically with respect to the parameters a,, a;, p, 4, ¢1, ¢,, ¢,
P4, Wy, @y, O, and k.
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4. Empirical results

The analysis was conducted on quarterly U.S. data for 1962:1-1987:3. The
series for the short-term rate (7,) is the three-month Treasury bill rate as of the
first business day of the quarter, reported on an effective yield basis at a
quarterly rate.® The long rate (here denoted R,) is the yield to maturity as of
the first business day of the quarter on a ten-year Treasury bond at a
semiannual rate.” These series are presented in table 1. Note that as a
consequence of the units (7, is the percentage earned over three months and R,
is the percentage earned over six months), R, tends on average to be twice as
large as 7,.

In all the specifications investigated, the short rate (r,) is modeled as a
function of past short rates, and the long rate (R,) is modeled as a function of
present and past short rates. The alternative specifications arise from choosing
linear or nonlinear representations for one or both of these functions, and
from whether or not the cross-equation restrictions implied by rational expec-
tations are imposed. The linear representations for r, and R, take the form

- - 2
n=ktar_tayr ytasn stagn gte, e, N(O’ Ue,)»

(4.1)

R,=kp+bor,+byr,_ +byr, y+byr, s+ep,. ep,~N(0,02),

(4.2)
and the associated cross-equation restriction 1s
[bo b, by b]=[6 0 0 0]
X [[1+ 4]+ B2[4% + 4]
4o+ B[ A%+ 4¥]], (4.3a)

%The raw data (rr,) were Treasury bill discount rates reported at an annual rate and measured
in units of 100 basis points. The conversion used was r, = 9125 X rr, /(36,000 — 91 X rr,). Data for
rr, are from the series RMGBS3D, carried on a daily basis in the data banks of the Board of
Governors of the Federal Reserve System going back to 1962. I am grateful to David Wilcox and
Bonnie Garrett for assistance in obtaining these series. Note that the formulas of section 3
measured 7, as a fraction of 1, whereas in this section on empirical results it is reported in units of
100 basis points. All numerical calculations have been adjusted appropriately.

This is the Treasury’s ‘constant maturity’ series, inferred by term structure interpolation from
bonds whose maturity is closest to ten years from a given sample date. The raw data were reported
at an annual rate and were converted to a semiannual rate by dividing by 2. The source for the
data is the series RMGNBILOD (see preceding footnote).
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Table 1

Data used in analysis: yield to maturity on three-month T-bills (quarterly rate) and yield to
maturity on ten-year Treasury bonds (semiannual rate).

Date (1) Three-month bills (r,) Ten-year bonds (R,)
1962:1 06891 1350
19622 0.6994 13700
1962:3 0.7456 14600
1962:4 0.6968 1.3650
1963:1 0.7354 B 14400
19632 0.7405 14500
19633 0.7662 1.5000
19634 0.8615 16850
1964:1 0.9028 1.7650
19642 0.9028 17650
19643 0.8899 17400
1964:4 0.9080 17750
1965:1 0.9751 1.9050
1965:2 1.0061 1.9650
1965:3 0.9777 1.9100
1965-4 1.0242 2.0000
1966:1 11563 22550
1966:2 11537 22500
19663 1.1901 23200
1966-4 13695 26650
1967:1 12420 S 24200
1967:2 1.0165 19850
19673 1.0501 20500
1967-4 11278 2.2000
19681 1.2940 2.5200
19682 13174 25650
19683 13616 26500
1968:4 13252 2.5800
1969:1 15809 3.0700
1969:2 15416 2.9950
1969:3 1.7197 33350
1969:4 1.8509 35850
1970:1 2.0485 3.9600
19702 16332 31700
19703 1.6699 32400
1970-4 1.5077 2.9300
1971:1 1255 2.4450
19712 0.9338 1.8250
19713 13382 26050

1971:4 1.1667 2.2750
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Table 1 (continued)

Date (¢) Three-month bills (r,) Ten-year bonds (R,)
1972:1 0.9441 1.8450
1972:2 0.9700 1.8950
1972:3 1.0605 2.0700
1972:4 1.1563 2.2550
1973:1 1.3408 2.6100
1973:2 1.6646 3.2300
1973:3 2.0432 3.9500
1973:4 1.8220 3.5300
1974:1 1.9430 3.7600
1974:2 2.1515 4.1550
1974:3 1.8799 3.6400
1974:4 1.7249 3.3450
1975:1 1.7800 3.4500
1975:2 1.4503 2.8200
1975:3 1.5495 3.0100
1975:4 1.6830 3.2650
1976:1 1.3356 2.6000
1976:2 1.2862 2.5050
1976:3 1.3773 2.6800
1976:4 1.2940 2.5200
1977:1 1.1252 2.1950
1977:2 1.1641 2.2700
1977:3 1.2888 2.5100
1977:4 1.5312 2.9750
1978:1 1.5913 3.0900
1978:2 1.6253 3.1550
1978:3 1.7931 3.4750
1978:4 2.0643 3.9900
1979:1 2.4433 4.7050
1979:2 2.4779 4.7700
1979:3 23158 4.4650
1979:4 2.6405 5.0750
1980:1 3.1827 6.0850
1980:2 3.9601 7.5150
1980:3 2.0802 4.0200
1980:4 2.9888 5.7250
1981:1 3.8562 7.3250
1981:2 3.2367 6.1850
1981:3 3.8562 7.3250
1981:4 3.8343 7.2850
1982:1 29726 5.6950
1982:2 34722 6.6200
1982:3 3.2853 6.2750

1982:4 1.8983 3.6750
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Table 1 (continued)

Date (1) Three-month bills (r,) Ten-year bonds (R,)
1983:1 2.0485 3.9600
1983:2 2.2389 4.3200
1983:3 2.2627 4.3650
1983:4 22654 4.3700
1984:1 2.3344 4.5000
1984:2 2.5152 4.8400
1984:3 2.5311 4.8700
1984:4 2.6619 5.1150
1985:1 2.0248 3.9150
1985:2 2.1093 4.0750
1985:3 1.7721 3.4350
1985:4 1.8141 3.5150
1986:1 1.8325 35500
1986:2 1.6306 3.1650
1986:3 1.5416 2.9950
1986:4 1.3330 2.5950
1987:1 1.4268 2.7750
1987:2 1.4242 2.7700
1987:3 1.4503 2.8200
where
a, 4, a, a,
4 (4.3b)

1 0 0 0
0 1 0 0O
6 0 1 O

Throughout the analysis, 8 =[(7*>+27)/(1+7)[1-1/1+7)*]"! and B=

1/(1 + F) were imposed a priori on the basis of the sample mean of the short

rate (F = 0.016964) over 1962:1-1987:3; thus & = 0.0686974 and 8 = 0.9833189.
The nonlinear representation for r, takes the form

r=a,+aS,+z, (4.42)
Z, =12, t Pz, s+ Pz, 3t Pz,

+[wy+ @S, ]y, v~ N(0,1), (4.4b)
P[S,=1|S,_,=1]=p, (4.4c)

P[S,=0|S,_,=0]=g4. (4.4d)
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The corresponding nonlinear representation for R, is
R,=kp+ Bor,+ Biri_y+ Bor, s+ Bsri_3+ o PIS, =11, 1, _q, ... ]
+v.-PIS_ =1r,r_1,-- ]+ 72 P[S,ca =11 r_ys- ]
+v3 P[S,_s=1r,r_,... Y er.1n Er.,~ N(O, ofn), (4.5)

where P[S,_;=1|r,r_,,...] is calculated from step 4 of the basic filter
associated with the nonlinear univariate process for r, [system (4.4)]. The
associated cross-equation restrictions are

[Bo B By Bl=[8 0 0 o]x[[I+4]+p*[a+4]

+ o+ B[4 + 47, (4.6a)
d)l ¢2 ¢3 ¢4
a={1 0 0 of (4.6b)
6 1 0 0
0O 0 1 O
8oy (1+2)[1 - (BA)Y]

_ ~ B, 4.6
Yo 1- ('BA)z a8, (4.6¢)
Yj = ~alﬁja .] = 2’374, (4'6d)
A=—-1+p+q. (4.6¢)

The basic results for the various specifications are summarized in table 2
and discussed in detail below.

Table 2

Summary of fit achieved by alternative specifications.

Short rate Long rate Cross-equation Number of Log
Model (r,) (R) restrictions? parameters likelihood®
1 Linear Linear No 12 450.27
[eq. (4.7)] [eq. (4.8)]
2 Linear Linear Yes 8 436.86
leq. 49)]  [eq. (4.10)]
3 Nonlinear Linear No 16 482.12
{table 3] [eq. (4.8)]
4 Nonlinear Nonlinear Yes 12 508.26
[table 6] [eq. (4.11))
S Nonlinear Nonlinear No 20 514.18
[table 6] [eq. (4.12))

*The constant term — N In(27) has been omitted from all entries.
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Model 1: Unrestricted linear representations for both r, and R,

The benchmark case is the unrestricted linear representation (4.1) and (4.2).
OLS estimation for z = 1963:1-1987:3 yields (standard errors in parentheses):

r,=0.1627 +0.7138,_, — 0.004r,_, + 0.469r,_,
(0.0827) (0.0992)  (0.114)  (0.114)

-0.2676r,_,+e,,, 6, = 0311, 4.7
(0.0984)

R, = 0.07298 + 1.88043r, + 0.00465r,_, + 0.007197, ,
(0.00336) (0.00399) (0.00457)  (0.00457)

~0.00121r,_y+ ez ,, 6, = 0.0125. (4.8)
(0.00396)

Model 2: Restricted linear representations for r, and R,

Eq. (4.8) indicates that 99.99% of the variance of the long rate can be
accounted for by a linear regression on the short rate. Is this close dependence
what one would expect if investors were rationally forecasting short rates on
the basis of a linear representation such as (4.7)?

To investigate this possibility, I estimated the system (4.1)~(4.2) subject to
the constraints (4.3):1¢

r, = 0.01487 + 0.992990r, _, — 0.001417,_, + 0.005017, _,
(0.0353) (0.00241) (0.00414) ~ (0.00397)

~0.0008887,_,+e,,, 6, = 0.35657, (4.9)
(0.00211) (0.0262) :
R, = 0.07300 + 1.88057, + 0.00474r,_, + 0.00755r,_,
(0.00328)
~0.00161r,_s+ep, 6, = 0.012503 . (4.10)

(0.000888)

The parameters reported without standard errors in eq. (4.10) were generated
from the parameters reported in eq. (4.9) by use of (4.3).

19Maximization was achieved by a Davidon—Fletcher—Powell routine. Standard errors were
derived from the numerically evaluated second derivatives of the log likelihood function. I would
like to thank Kent Wall for use of his DFP routine and Steve Stern for use of his second derivative
program.
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Note from table 2 that the standard likelihood ratio statistic for comparing
the restricted and unrestricted linear specifications is 2(450.27 — 436.86) =
26.82. This is distributed as x*(4) under the null hypothesis that the restric-
tions correctly characterize the data. The null hypothesis is thus rejected with a
p-value!! of 2.16 X 1073, The data are grossly inconsistent with the cross-equa-
tion restrictions implied by the expectations hypothesis of the term structure.

A comparison between the restricted estimated (4.9)-(4.10) and the unre-
stricted estimates (4.7)—(4.8) reveals why. If one were willing to believe that
the short rate basically follows a random walk [as the restricted estimates in
eq. (4.9) try to construe it to be], one would predict [as in eq. (4.10)] precisely
the response of long rates to short rates as is found in the unrestricted
regression [eq. (4.8)]. However, the actual process for short rates [eq. (4.7)] is
too far from being a random walk to make this scenario plausible; the leading
coefficient is too small and coefficients at lags 3 and 4 too large to be
consistent with a simple random walk. Thus the behavior of long rates
suggests that investors were not basing their forecasts on the assumption of a
linear process for short rates.

Model 3: Unrestricted nonlinear representation for r,, unrestricted linear repre-
sentation for R,

Not only is the response of long rates to short rates difficult to reconcile
with the linear specification (4.1); I now show that the univariate behavior of
short rates alone also offers overwhelming evidence against (4.1) in favor of a
nonlinear model incorporating the possibility of changes in regime.

The nonlinear Markov model of changes in regime was fit to univariate data
on r, by means of the basic filter evaluation of the conditional log likelihood
function as described in section 2. Maximum likelihood estimates are reported
in table 3.2 Note that data on long rates (R,) were not used at all in
constructing the parameter estimates in table 3.

These estimates speak to a very dramatic shift in the time series properties
of short-term interest rates between states 0 and 1. State 1 is characterized by
an average level of interest rates nearly twice as high as that in state 0
(ag + a; = 2.8 versus ay = 1.6). Even more dramatic is the four-fold increase in
the standard deviation of the Gaussian component of the process (w, + w; =
0.73 versus w,=0.18).

"' The p-value (also referred to as the marginal significance level) represents the probability that
as large a difference would have been found given that the null hypothesis is true; p < 0.05 is the
standard criterion for rejecting the null hypothesis.

'2The probabilities p and g were parameterized as exp[—§7?] and exp[—62]. This is desirable
not to force the estimates to lie within this interval (since this leaves the maximization routine free
to push p or g arbitrarily close to 0 or 1), but rather to ensure that the search procedure always
evaluates a well-defined likelihood function.
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Table 3

Maximum likelihood estimates of nonlinear Markov model as estimated from the behavior of
three-month Treasury bill yields (r,).

Maximum likelihood Standard
Parameter? estimate error
a, 1.633 0.208
@ 1.188 0.230
}4 0.9087 0.0818
q 0.9899 0.0102
wy 0.1752 0.0135
w, 0.5574 0.166
&, 0.8778 0.103
[ 0.0675 0.150
N 0.1692 0.152
b4 -0.2108 0.0952

2Parameters are defined by eq. (4.4) and were estimated solely on the basis of observations on
short rates {r,} for 1 =1962:1-1987:3.

From the output of step 4 at iteration ¢ of the basic filter, we can assign
probabilities to whether the process was in regime 0 or regime 1 at date ¢
based on information available at the time P[S,= 1|r,, r,_,,..., ry]. This series
is reported in the column labelled ‘j =0’ in table 4. We can further obtain
from step 4 a refined assessment of the probable state of the process in the
preceding four quarters P[S,_, = 1|r,,r,_y,..., r,], also reported in table 4. The
maximum likelthood estimates associate the shift in regime between the two
states very dramatically with the new monetary policy adopted in October of
1979. If one were only looking at the behavior of short rates, the change was
not apparent at the time (P[S,g79.4 = 1|#1979.4 - - - ] = 0.0088), but by January 1,
1980, evidence of a regime shift was fairly convincing (P[.S;450.4 = 1|71980:15 - - - )
= (0.7553). This recognition in 1980:1 would incidentally cause one to signifi-
cantly revise upward the likelihood that in fact the regime change had begun
the preceding quarter (P[S;979.4 = 1{#1950:15 - - - ] = 0.3371). By 1980:3, one would
conclude that the shift in regime was indeed more likely than not to have
begun in 1979:4 (P[S|g79.4 = 1|719g0:3.---] = 0.5628). The shift back to the
original regime was immediately apparent to the filter in 1982:4.

The period 1979:4-1982:3 is thus identified as a time of dramatically higher
and more volatile short-term interest rates than that seen before or since. Fig.
1 makes this point visually, depicting the short-term rate against the imputed
regime of higher, more volatile interest rates. This dating of an apparent shift
in the process for short-term interest rates corresponds precisely with a
profound change in Federal Reserve operating procedures. Beginning in
October 1979 and ending in October 1982, the Federal Reserve adopted a
policy of targeting nonborrowed reserves, allowing interest rates to fluctuate
across a broad range. Outside of this period, the policy has basically been one
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Table 4

Inferred probability, using parameters of unrestricted univariate process for short-term rates (table

3) and based on information available at date 1, that the economy was in the high interest rate,

high volatility state at date ¢ (column j = 0), along with inference using table 3 parameters and

based on information available at ¢ about the historical state the economy had been in at dates
t—1,1—2,¢r—3,and r — 4 (columns j=1,2,3,4).

P[S,4,=1|’:v’,71--~~]

Date

0 j=0 j=1 j=2 j= j=4
1963:1 0.0253 0.0247 0.0324 0.0379 0.0372
19632 0.0069 0.0063 0.0061 0.0142 0.0143
19633 0.0022 0.0016 0.0014 0.0014 0.0033
1963-4 0.0011 0.0005 0.0003 0.0003 0.0003
1964:1 0.0009 0.0002 0.0001 0.0001 0.0001
19642 0.0008 0.0002 0.0001 0.0000 0.0000
19643 0.0008 0.0002 0.0001 0.0000 0.0000
1964-4 0.0008 0.0002 0.0000 0.0000 0.0000
1965:1 0.0008 0.0002 0.0000 0.0000 0.0000
10652 0.0008 0.0002 0.0000 0.0000 0.0000
19653 0.0008 0.0002 0.0000 0.0000 0.0000
19654 0.0008 0.0002 0.0000 0.0000 0.0000
1966:1 0.0010 0.0002 0.0000 0.0000 0.0000
19662 0.0008 0.0002 0.0000 0.0000 0.0000
19663 0.0008 0.0002 0.0000 0.0000 0.0000
19664 0.0012 0.0002 0.0000 0.0000 0.0000
1967:1 0.0010 0.0004 0.0001 0.0000 0.0000
1967:2 0.0019 0.0007 0.0003 0.0000 0.0000
19673 0.0010 0.0004 0.0002 0.0001 0.0000
1967:4 0.0010 0.0002 0.0001 0.0000 0.0000
1968:1 0.0018 0.0004 0.0001 0.0000 0.0000
1968:2 0.0010 0.0004 0.0001 0.0000 0.0000
19683 0.0009 0.0002 0.0001 0.0000 0.0000
1968:4 0.0008 0.0002 0.0001 0.0000 0.0000
1969:1 0.0026 0.0004 0.0001 0.0000 "~ 0.0000
19692 0.0012 0.0006 0.0001 0.0000 0.0000
19693 0.0018 0.0004 0.0002 0.0000 0.0000
1969:4 0.0014 0.0005 0.0001 0.0000 0.0000
1970:1 0.0030 0.0007 0.0002 0.0000 0.0000
19702 0.0116 0.0080 0.0020 0.0007 0.0001
19703 0.0032 0.0025 0.0018 0.0004 0.0002
1970+4 0.0019 0.0011 0.0009 0.0007 0.0001
1971:1 0.0014 0.0007 0.0004 0.0003 0.0002
1971:2 0.0044 0.0022 0.0011 0.0007 0.0005
197143 0.0211 0.0086 0.0041 0.0020 0.0013
1971:4 0.0063 0.0057 0.0024 0.0011 0.0005
1972:1 0.0037 0.0029 0.0026 0.0011 0.0005
1972:2 0.0017 0.0010 0.0008 0.0007 0.0003
197243 0.0012 0.0004 0.0002 0.0002 0.0002

1972:4 0.0012 0.0003 0.0001 0.0001 0.0000




410

J.D. Hamilton, The term structure of interest rates

Table 4 (continued)

P[Sl—j =1|I‘” LSRN

Date S -

(1) j=0 Jj=1 j=2 j= j=4

1973:1 0.0015 0.0004 0.0001 0.0000 0.0000
1973:2 0.0051 0.0011 0.0003 0.0001 0.0000
1973:3 0.0196 0.0088 0.0018 0.0004 0.0001
1973:4 0.0098 0.0089 0.0041 0.0009 0.0002
1974:1 0.0030 0.0022 0.0020 0.0009 0.0002
1974:2 0.0025 0.0010 0.0008 0.0007 0.0003
1974:3 0.0016 0.0008 0.0003 0.0003 0.0002
1974:4 0.0012 0.0005 0.0003 0.0001 0.0001
1975:1 0.0010 0.0003 0.0001 0.0001 0.0000
1975:2 0.0015 0.0005 0.0002 0.0001 0.0000
1975:3 0.0014 0.0004 0.0001 0.0000 0.0000
1975:4 0.0015 0.0004 0.0001 0.0000 0.0000
1976:1 0.0021 0.0010 0.0003 0.0001 0.0000
1976:2 0.0012 0.0005 0.0003 0.0001 0.0000
1976:3 0.0010 0.0003 0.0001 0.0001 0.0000
1976:4 0.0008 0.0002 0.0001 0.0000 0.0000
1977:1 0.0011 0.0003 0.0001 0.0000 0.0000
1977:2 0.0009 0.0002 0.0001 0.0000 0.0000
1977:3 0.0012 0.0002 0.0001 0.0000 0.0000
1977:4 0.0036 0.0007 0.0001 0.0000 0.0000
1978:1 0.0015 0.0008 0.0002 0.0000 0.0000
1978:2 0.0010 0.0003 0.0002 0.0000 0.0000
1978:3 0.0013 0.0003 0.0001 0.0000 0.0000
1978:4 0.0049 0.0010 0.0002 0.0001 0.0000
1979:1 0.0373 0.0155 0.0029 0.0005 0.0002
1979:2 0.0101 0.0092 0.0038 0.0007 0.0001
1979:3 0.0038 0.0031 0.0029 0.0012 0.0002
1979:4 0.0088 0.0034 0.0028 0.0026 0.0012
1980:1 0.7553 0.3371 0.1273 0.1039 0.0973
1980:2 1.0000 0.9933 0.4131 0.1571 0.1374
1980:3 0.8776 1.0000 0.9962 0.562 0.0981
1980:4 1.0000 0.9976 1.0000 0.9953 0.6007
1981:1 1.0000 1.0000 0.9974 1.0000 0.9970
1981:2 1.0000 1.0000 1.0000 0.9976 1.0000
1981:3 1.0000 1.0000 1.0000 1.0000 0.9981
1981:4 1.0000 1.0000 1.0000 1.0000 1.0000
1982:1 0.9934 1.0000 1.0000 1.0000 1.0000
1982:2 0.9995 0.9994 1.0000 1.0000 1.0000
1982:3 0.9976 0.9976 0.9976 1.0000 1.0000
1982:4 0.3909 1.0000 1.0000 1.0000 1.0000
1983:1 0.1333 0.1326 1.0000 1.0000 1.0000
1983:2 0.1089 0.1052 0.1046 1.0000 1.0000
1983:3 0.0323 0.0313 0.0301 0.0299 1.0000
1983:4 0.0080 0.0073 0.0070 0.0068 0.0068
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Table 4 (continued)
PS,, = 11ns fiopse ]

Date

() j=0 j= j=2 j= =4

1984:1 0.0029 0.0020 0.0018 0.0018 0.0017
1984:2 0.0045 0.0017 0.0011 0.0010 0.0010
1984:3 0.0021 0.0012 0.0004 0.0003 0.0003
1984:4 0.0027 0.0009 0.0005 0.0002 0.0001
1985:1 0.0994 0.0745 0.0264 0.0151 0.0047
1985:2 0.0282 0.0273 0.0209 0.0072 0.0042
1985:3 0.0238 0.0225 0.0219 0.0187 0.0053
1985:4 0.0102 0.0086 0.0082 0.0079 0.0097
1986:1 0.0030 0.0023 0.0019 0.0018 0.0018
1986:2 0.0014 0.0008 0.0006 0.0005 0.0005
1986:3 0.0010 0.0003 0.0002 0.0001 0.0001
1986:4 0.0012 0.0004 0.0002 0.0001 0.0001
1987:1 0.0013 0.0003 0.0001 0.0000 0.0000
1987:2 0.0010 0.0003 0.0001 0.0000 0.0000
1987:3 0.0010 0.0002 0.0001 0.0000 0.0000

of targeting the Federal funds rate.'® This change in Fed operating procedures
is widely recognized by monetary economists as ‘one of the more dramatic
events in the recent history of monetary policy’ [Spindt and Tarhan (1987, p.
107)] and has been the object of a large number of scholarly studies, including
Antoncic (1986), Huizinga and Mishkin (1986), Hardouvelis and Barnhart
(1987), Spindt and Tarhan (1987), and Walsh (1987). It is of great interest that
the dates of the change in Fed policy correspond precisely with the values
imputed by the filter to changes in the regime governing interest rates.

The statistical evidence for a process characterized by such changes in
regime in preference to the linear representation (4.1) is overwhelming. For
purposes of comparison with the other models in table 2, one can think of
combining the nonlinear process for short rates of table 3 with an unrestricted
linear representation for long rates [eq. (4.8)]. Note that by fitting four
additional parameters relative to a linear representation for r, (model 1), a
striking improvement in the likelihood is achieved. The standard likelihood
ratio statistic is 2 X [482.12 — 450.27] = 63.7. One usually treats this'* as x2(4),

¥ Targeting the level of borrowed reserves amounts to pretty much the same thing; see
Goodfriend and Whelpley (1986) and Spindt and Tarhan (1987).

A complication arises here in that under the null hypothesis that o = w; = 0, the parameters
p and ¢ are unidentified. See the discussion in my 1987 paper. The Lagrange multiplier test
reported shortly is immune to these objections and gives equally dramatic results.
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for which a value only half as large would have led to rejection of this
fixed-parameter linear model with a p-value of 107 ¢

The strength of this rejection is largely due to the overwhelming evidence of
different residual variances associated with the two regimes. It is instructive to
compare briefly evidence for heteroskedasticity of the kind predicted by my
model with that implied by other popular specifications.

The first panel of table 5 reports Lagrange multiplier tests of the null
hypothesis of a constant-parameter linear model with homoskedastic errors
against three separate alternatives: (i) a specification in which the variance of
residuals depends on the lagged level of interest rates [as in Marsh and
Rosenfeld (1983)]; (ii) a specification in which the variance of residuals
depends on the lagged squared residual [as in Engle’s (1982) ARCH model];
and (iii) a specification in which the variance of residuals depends on the
lagged output of my nonlinear filter. The null hypothesis would be overwhelm-
ingly rejected in comparison with any of these three alternatives, though the
statistical evidence is strongest when the null is compared against the third
specification.

To what extent might the evidence for ARCH and level-dependent hetero-
skedasticity be due to the change in regime associated with Fed operating
procedure? Some preliminary evidence on this issue is presented in the bottom
panel of table 5. When we restrict the analysis to the period prior to 1979:4
(when my model would imply homoskedastic errors), we still find evidence of
conditional heteroskedasticity from both specifications (i) and (i1). Neverthe-
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Table 5

Comparison of alternative specifications of conditional heteroskedasticity.

I. Full sample period
(A) OLS estimate of process for short rate (1 = 1963:1-1987:3)
r,=0163 + 0.714r,_, — 0.004r,_, + 0.469r, _5 — 0.268r,_, + &,
(B) Tests for conditional heteroskedasticity of residuals (¢ = 1963:2-1987:3)
(i) Variance depends on lagged level of interest rate
2=-02374+01928r,_,, TR*=12621~x*(1)
(0.0617) (0.0326)
(it) Variance depends on lagged squared residuals (ARCH)
& =00519+ 0469782 ,, TR>=21.62~x*(1)
(0.0268) (0.0901)
(iil) Variance depends on lagged filter output (regime change)

£2=00398 + 0.4845P[S,_, =1|r_,,...], TR?=2715~x2(1)
(0.0262) (0.799)

I1. Pre-1979 period
(A) OLS estimate of process for short rate (1 = 1963:1-1979:3)
r,=0179 + 1.038r,_; — 0.1767,_, + 0.314r,_, — 0.2961,_, + &,
(B) Tests for conditional heteroskedasticity of residuals (¢ = 1963:2-1979:3)
(i) Variance depends on lagged level of interest rate

&§=-00122+00288r,_,, TR*=530-x*1)
(0.0175) (0.0122)

(ii) Variance depends on lagged squared residuals (ARCH)

#2=002099 + 024182,  TR? =385~ x%(1)
(0.00599) (0.121)

less, the evidence is far less compelling than the comparable tests that include
the entire sample period — the tests for the pre-1979 data reject the null
hypothesis of homoskedastic errors at the 5% level but not the 1% level; by
contrast, when the full sample period is used, p-values are well below 10~°.
Moreover, the parameterization of the conditional heteroskedasticity implied
by either process (i) or (ii) seems to change dramatically upon inclusion of the
post-1979 data. The implied coefficient relating &2 to r,_, increases by a factor
of 7, or a move of 13 standard deviations (= [0.1928 — 0.0288] /0.0122) relative
to the value implied by the pre-1979 formulation.

I conclude that (a) both regime shifts and ARCH or level effects seem to be
p