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Abstract

We develop a multi-period, multi-task principal-agent model in which the principal

knows the mapping from actions to outputs, but the agent does not. The agent can

learn about the production function over time by exerting e↵ort and observing output.

To test the model’s predictions, we conduct a field experiment in fifty Houston public

schools, where students, parents, and teachers were rewarded with financial incentives

for specific inputs to the education production function. The experimental data is

consistent with the model’s key predictions, though other explanations are possible.

Together, both the theory and experimental evidence serve as a cautionary tale about

the e�cacy of incentive schemes when agents do not know the production function.
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1 Introduction

Principal-agent models have been used to analyze problems as diverse as executive compen-

sation, regulation, organizational design, entrepreneurship, and accounting.1 As Kenneth

Arrow points out, “economic theory in recent years has recognized that [principal-agent

problems] are almost universal in the economy at least as one significant component of al-

most all transactions” (Arrow, 1986).

In the classic framework, a principal hires an agent to perform a task for her. The

agent bears a private cost of taking actions. The principal does not observe the agent’s

action, rather she observes a noisy measure of it (such as profits). It is this measure that

is contractible, and it is assumed that the the agent’s cost of e↵ort function, both parties’

preferences, and the stochastic mapping from actions to outputs are common knowledge

between principal and agent. There have been many important extensions to the basic model

(e.g., multitasking and repeated contracting), but it is standard to assume that agents know

how their e↵ort a↵ects output.2

In many applications, however, it is questionable whether agents know the stochastic

mapping from inputs to output. Examples abound in management, finance, and other general

contracting problems. In executive management, for instance, it is equivalent to assuming a

CEO knows how her actions will impact the collective goals of the board of directors. This

requires knowledge of the intensity of di↵ering board-member preferences and how those

preferences are aggregated–a complex issue about which board-members themselves are likely

better informed through repeated interactions. In education, the standard principal-agent

assumptions require that students (or their teachers) know the intricacies of the education

production function when econometricians with large data sets and sophisticated statistical

techniques are not aware of its functional form.3

1For classic treatments see Mirrlees 1975, Holmstrom 1979, Grossman and Hart 1983.
2See Beaudry (1994), Chade and Silvers (2001), Kaya (2010), and Fryer, Holden, and Lang (2012) for

notable exceptions.
3Conversely, there are many applications (e.g. computer science, engineering or manufacturing) where

the standard assumption seems applicable.
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To examine the implications of relaxing this assumption for the design and e�cacy of

incentive schemes, we begin with a simple 2x2 conceptual apparatus–two periods and two

tasks–which is both a simplification and extension of the pioneering work of Holmstrom and

Milgrom (1991). In each period, a risk-neutral principal o↵ers a take-it-or-leave-it linear

incentive contract to an agent, who, upon accepting the contract, takes two non-verifiable

actions which we label “e↵ort.” E↵ort generates a benefit to the principal and is related

to an observable (and contractable) performance measure. We assume that an agent’s type

augments their e↵ort in producing output: higher type agents have higher returns to e↵ort

than lower type agents, all else equal.

An important assumption in the model is that the principal and agent have di↵erent

information about the agent’s type before the contracting phase. The principal obtains a

private and perfectly revealing signal and hence knows the agents type. The agent observes

no private signal, but is assumed to have prior beliefs that are normally distributed. Since

the agent does not know her type but the principal does, the contract o↵ered by the principal

contains information that is payo↵ relevant to the agent. We make the stark assumption

that the agent does not update her prior beliefs after observing the contract.

This is a non-standard assumption for which we provide two justifications. First, it

seems internally inconsistent to write down a model in which an agent does not know her

own ability but makes sophisticated inferences from the incentive scheme provided. Second,

there is a more standard rationale for the agent not updating her beliefs. In Appendix D

we show that there exists a pooling equilibrium of the signaling game between principal

and agent. In that equilibrium, all types of principal o↵er the same contract and hence the

(fully rational) agent does not update her prior about ability after observing the contract.

We leave it to the reader as to whether the behavioral assumption or equilibrium selection

argument best rationalizes our assumption that the agent does not update her beliefs when

observing the incentive scheme.

The model has four primary predictions. First, incentives for a given task lead to an

increase in e↵ort on that task. Second, incentives for a given task lead to a decrease in
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e↵ort on the non-incentivized task. Further, the decrease in e↵ort on the non-incentivized

task can be more or less for higher-type agents relative to lower-type agents, depending on

how substitutable those tasks are in the cost of e↵ort function. Our final, and perhaps most

distinguishing, theoretical result concerns the persistent e↵ects of changes in incentives due

to agents updating about their ability types. We show that when the agent’s true ability on

a given task is su�ciently low, the learning that comes from the provision of incentives is

detrimental to the principal. In the absence of incentives the agent would exert some baseline

level of e↵ort due to intrinsic motivation and hence learn “little” about her ability. Providing

incentives induces more e↵ort than this and hence more learning about their ability type.

When agents discover that they are lower-ability than they previously believed, they exert

lower e↵ort in period two for any tasks on which there is a positive incentive slope (as in

the case of optimal incentives). The average impact of an incentive contract depends on the

distribution of across types, among other things.

To better understand these predictions in a real-world laboratory, we analyze new data

from a field experiment conducted in fifty traditionally low-performing public schools in

Houston, Texas during the 2010-2011 school year.4 We provided financial incentives to stu-

dents, their parents, and their teachers for fifth graders in twenty-five treatment schools.5

Students received $2 per math objective mastered in Accelerated Math (AM), a software

program that provides practice and assessment of leveled math objectives to complement

a primary math curriculum. Students practice AM objectives independently or with as-

sistance on paper worksheets that are scored electronically and verify mastery by taking a

computerized test independently at school. Parents also received $2 for each objective their

child mastered and $20 per parent-teacher conference attended to discuss their student’s

4The original impetus of the experiment was to study the impact of aligning parent, teacher, and student
incentives on student achievement. The two-year evaluation of the experiment led to puzzling findings
inconsistent with existing theory. See Fryer (2012).

5One may worry that the experiment has incentives for teachers, parents, and students whereas the
model has a single agent. If parent and teacher e↵ort has a non-negative e↵ect on student e↵ort, then this is
isormorphic to our single agent model with more intense incentives and analogous to the monitoring intensity

principle in Milgrom and Roberts (1991). Given the lack of impact on direct outcomes in many previous
experiments using financial incentives, we chose to align incentives (Angrist and Lavy 2009, Fryer 2011a).
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math performance. Teachers earned $6 for each parent-teacher conference held and up to

$10,100 in performance bonuses for student achievement on standardized tests. In total, we

distributed $51,358 to 46 teachers, $430,986 to 1,821 parents, and $393,038 to 1,734 students

across the 25 treatment schools.

The experimental results are consistent with the predictions of the model: the good, the

bad, and the ugly. Throughout the text we report Intent-to-Treat (ITT) estimates. On

outcomes for which we provided direct incentives, there were very large and statistically

significant treatment e↵ects. Students in treatment schools mastered 1.087 (0.031) standard

deviations (hereafter �) more math objectives than control students. On average, treatment

parents attended almost twice as many parent-teacher conferences as control group parents

and were 7.2 percentage points more likely to report checking their child’s homework. And,

perhaps most important, these behaviors translated into a 0.081� (0.025) increase in math

achievement on Texas’s statewide student assessment.

Now, the bad and the ugly: the impact of our incentive scheme on reading achievement

(which was not incentivized) is -0.089� (0.027) – o↵setting the positive math e↵ect. And,

while higher-achieving students (measured from pre-treatment test scores) seemed to gain

from the experiment on nearly every dimension, lower-achieving students had significant and

lasting negative treatment e↵ects.

Higher-achieving students master 1.66� more objectives, have parents who attend two

more parent-teacher conferences, have 0.228� higher standardized math test scores and equal

reading scores relative to high-achieving students in non-treated schools. Conversely, lower-

achieving students master 0.686� more objectives, have parents who attend 1.5 more parent-

teacher conferences, have equal math test scores and 0.163� lower reading scores. Put dif-

ferently, higher-achieving students put in significant e↵ort and were rewarded for that e↵ort

in math without a deleterious impact in reading. Lower-achieving students also increased

e↵ort on the incentivized task, but did not increase their math scores and their reading scores

decreased significantly. These data are compatible with predictions (i) through (iii) of the

model.
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Consistent with the fourth – and most stark – prediction of the model, higher-achieving

students continue to do well, maintaining a positive treatment e↵ect in math and a zero

e↵ect in reading, one year after the incentives are taken away. Lower-achieving students,

however, exhibit large and statistically significant decreases in both math [-.223� (0.056)]

and reading achievement [-.168� (0.079)] after the incentives are removed. We argue that

this is most likely explained by students learning about their own ability and not decreases

in intrinsic motivation. The treatment e↵ect on the latter, gleaned from survey data, is small

and statistically insignificant.

Our contribution is three fold. First, we extend the classic multitask principal-agent

model to a multi period, multi-type, setting in which the agent does not know the production

function, but can learn it over time.6 Second, we demonstrate, using data from the first

experiment designed to align the incentives of parents, teachers, and students on a common

performance measure, that the e↵ort substitution problem is larger for low-ability types.7

Third, we demonstrate persistent negative e↵ects on student test scores on multiple measures

– a cautionary tale on the design of incentives when agents do not know the production

function.8

The next section presents a multi-period, multitasking principal-agent model. Section

3 provides details of the field experiment and its implementation. Section 4 describes the

6See Fryer, Holden, and Lang (2012) for a single task model with similar features. Beaudry (1994) also
studies a setting where the principal knows the mapping from action to output but the agent does not. In his
model there are two types of agent and two possible output levels. Focusing on separating perfect Bayesian
equilibria he shows that high types receive a higher base wage and a lower bonus than low types. See also
Chade and Silvers (2001) and Kaya (2010). Our also relates to the so-called informed principal problem

in mechanisms design first analyzed by Myerson (1983) and Maskin and Tirole (1990, 1992). This large
literature studies studies the equilibrium choice of mechanisms by a mechanism designer who possess private
information. The key di↵erence is that our focus is on a specific environment with hidden actions after

the contracting stage, rather than on characterizing the set of equilibria in very general hidden information
settings. One way to see this di↵erence is that in Maskin and Tirole (1992) actions are observable and
verifiable.

7There is a growing literature on the use of financial incentives to increase student achievement in
primary (Bettinger 2010, Fryer 2011a), secondary (Angrist and Lavy 2009, Fryer 2011a, Kremer, Miguel,
and Thornton 2009), and postsecondary (Angrist, Lang, and Oreopoulos 2009, Oosterbeek et al. 2010)
education.

8Psychologists often warn of the potential negative e↵ects of incentives due to intrinsic motivation. Our
model and data suggests a di↵erent mechanism: rational, but potentially incorrect, learning about one’s
type.
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data collected, research design, and econometric framework used in the analysis. Section 5

presents estimates of the impact of the treatment on various test score and non-test score

outcomes. The final section concludes with a more speculative discussion of the implica-

tions of the model and experimental data for the design of incentive schemes. There are

three online appendices. Online A provides technical proofs of the propositions detailed in

Section 2, along with other mathematical details. Online Appendix B is an implementa-

tion supplement that provides details on the timing of our experimental roll-out and critical

milestones reached. Online Appendix C is a data appendix that provides details on how we

construct our covariates and our samples from the school district administrative files used

in our analysis.

2 A Multi-period, Multitasking Model with Learning

2.1 Statement of the problem

In each of two periods, a risk-neutral principal o↵ers a take-it-or-leave-it incentive contract

to an agent, who, upon accepting the contract, takes two non-verifiable actions e1 and e2. We

will typically refer to these actions as e↵ort. Each action takes values in R+, and generates

a benefit on task i of ↵iei to the principal and a performance measure mi = ↵iei + ✏i where

✏i ⇠ N(0, �2
i ) and is independent of everything else. We will sometimes refer to the level of

↵i as the “type” of the agent on task i.

We assume that only the mi’s are contractable, and the principal o↵ers a linear incentive

contract of the form s+b1m1+b2m2 that the agent can accept or reject. If the agent accepts

she then makes her e↵ort choice(s), the performance measure is realized, and the principal

pays the agent according to the contract.

A key assumption of our model is that principal knows the true value of ↵1 and ↵2, but

the agent does not. Before the contract is o↵ered the agent has a prior probability probability

distribution ↵i ⇠ N(↵i, µ
2
i ). We assume that it is common knowledge between the principal

and agent that ↵ does not change over time, and the ✏is are independent of each other and
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i.i.d. over time.

Since the agent does not know the ↵is but the principal does, the contract o↵ered by

the principal contains information that is payo↵ relevant to the agent. We make the stark

assumption that the agent does not update her prior beliefs after observing the contract.

This is a non-standard assumption and thus warrants some explanation. As we mentioned

in the introduction there is a certain internal inconsistency to an agent who does not know

her own ability but makes sophisticated inferences from the incentive scheme provided. But

there is also a more standard rationale for the agent not updating. In the appendix, adapting

the analysis in Fryer-Holden and Lang (2012) to this setting, we show that there exists a

pooling equilibrium of the signaling game between principal and agent. In that equilibrium

all types of principal o↵er the same contract and hence the (fully rational) agent does not

update her prior about ability after observing the contract. We leave it to the reader as to

whether the behavioral assumption or equilibrium selection argument best rationalizes our

assumption that the agent does not update.

We further assume that the agent has preferences that can be represented by a utility

function that exhibits constant absolute risk aversion (CARA):

u(x, e) = � exp


�⌘

✓
x� 1

2
(e21 + e

2
2)� �e1e2

◆�
,

where x is the monetary payment she receives. Let U be the certainty equivalent of the

agent’s outside option and normalize this to zero. Notice that the parameter � (which we

assume to be strictly positive) measures the degree of substitutability between the tasks.

Finally, we assume that the agent is myopic and unable to borrow, and we normalized

the common discount factor to 1.
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2.2 Solving the model

2.2.1 One period, symmetric information

We now solve the benchmark case where the agent also knows ↵. Given the exponential

utility function and normal noise standard calculation imply that the agent receives certainty

equivalent

CE =
2X

i=1

bi↵iei + s� 1

2
(e21 + e

2
2)� �e1e2 �

2X

i=1

⌘

2
b

2
i�

2
i .

Therefore, the principal’s problem becomes

max
b1,b2,s,e1,e2

(
2X

i=1

(↵i � bi)ei � s

)

subject to e1, e2 2 argmaxẽ1,ẽ2

(
2X

i=1

bi↵iẽi + s� 1

2

�
ẽ

2
1 + ẽ

2
2

�
� �ẽ1ẽ2 �

2X

i=1

⌘

2
b

2
i�

2
i

)

2X

i=1

bi↵iei + s� 1

2
(e21 + e

2
2)� �e1e2 �

2X

i=1

⌘

2
b

2
i�

2
i � U.

The first constraint is the agent’s incentive compatibility (IC) constraint, ensuring that

the e↵orts that the principal designs the incentive scheme to elicit are in fact optimal for

the agent. The second is the agent’s individual rationality (IR) constraint, ensuring that the

agent receives at least her outside option in expectation and hence is willing to accept the

contract o↵ered by the principal.

The solution to the agent’s optimization problem9 is

e1 = ↵1b1 � �e2,

e2 = ↵2b2 � �e1.

9Note that the first-order approach is valid in this setting–that is the second-order conditions for the
agent’s problem are satisfied.
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Solving simultaneously yields

e

⇤
1 =

b1↵1 � �b2↵2

1� �

2
, (1)

e

⇤
2 =

b2↵2 � �b1↵1

1� �

2
. (2)

Substituting these and the s that makes the agent’s participation constraint binding into

the principal’s objective function and taking first-order conditions for b1 and b2 yields the

following unconstrained problem.10

(3)

max
b1,b2

(✓
b1↵1(1� �) + b2↵2(1� �)

1� �

2

◆
� �

✓
b1↵1 � �b2↵2

1� �

2

◆✓
b2↵2 � �b1↵1

1� �

2

◆

� 1

2

 ✓
b1↵1 � �b2↵2

1� �

2

◆2

+

✓
b2↵2 � �b1↵1

1� �

2

◆2
!

� ⌘

2

�
b

2
1�

2
1 + b

2
2�

2
2

�
.

)

Taking first-order conditions and solving simultaneously yields the equilibrium incentive

slopes (b⇤1, b
⇤
2),

b

⇤
1 =

(↵1)2 + (1� �)⌘�2
2

(↵1)2 + ⌘(�2
2 + �

2
1) + ⌘

2
�

2
1�

2
2(1� �

2)
, (4)

b

⇤
2 =

(↵2)2 + (1� �)⌘�2
1

(↵2)2 + ⌘(�2
1 + �

2
2) + ⌘

2
�

2
2�

2
1(1� �

2)
. (5)

2.2.2 One period, asymmetric information

The analysis proceeds as above, but now the certainty equivalent now must account for the

risk imposed on the agent because of the uncertainty about ↵, and that the agent must take

an expectation over ↵ when assessing her expected payment.

CE =
2X

i=1

bi↵iei + s� 1

2
(e21 + e

2
2)� �e1e2 �

2X

i=1

⌘

2
b

2
i

�
�

2
i + e

2
µ

2
i

�
.

The principal’s problem has the same objective function, but the IR and IC constraint

10The participation constraint must at the optimum, otherwise the fixed payment s could be reduced and
improve the principal’s payo↵ with a↵ective the agent’s incentives of payo↵.
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now take account of the uncertainty about ↵.

max
b1,b2,s,e1,e2

(
2X

i=1

(↵i � bi)ei � s

)

subject to e1, e2 2 argmaxẽ1,ẽ2

(
2X

i=1

bi↵iẽi + s� 1

2

�
ẽ

2
1 + ẽ

2
2

�
� �ẽ1ẽ2 �

2X

i=1

⌘

2
b

2
i

�
�

2
i + e

2
µ

2
i

�
)

2X

i=1

bi↵iei + s� 1

2
(e21 + e

2
2)� �e1e2 �

2X

i=1

⌘

2
b

2
i

�
�

2
i + e

2
µ

2
i

�
� U.

The solution to the agent’s optimization problem is now

e1 = ↵1b1 �
1

2
b

2
1⌘µ

2
1 � �e2 � e1,

e2 = ↵2b2 �
1

2
b

2
2⌘µ

2
2 � �e1 � e2.

Solving simultaneously we have

e

⇤
1 =

2↵1b1 � 2↵2b2� + b

2
2�⌘µ

2
2 � b

2
1⌘µ

2
1

2 (1� �

2)
, (6)

e

⇤
2 =

2↵2b2 � 2↵1b1� + b

2
1�⌘µ

2
1 � b

2
2⌘µ

2
2

2 (1� �

2) .
(7)

Proceeding as before, the principal’s unconstrained problem is
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max
b1,b2

⇢
�2

✓
1

2
b

2
1⌘

✓
�

2
1 �

µ

2
1 (�2↵2b2� + 2↵1b1 + b

2
2�⌘µ

2
2 + b

2
1(�⌘)µ2

1)

2 (�2 � 1)

◆

+
1

2
b

2
2⌘

✓
�

2
2 �

µ

2
2 (�2↵1b1� + 2↵2b2 + b

2
1�⌘µ

2
1 � b

2
2⌘µ

2
2)

2 (�2 � 1)

◆

+
↵1b1 (�2↵2b2� + 2↵1b1 + b

2
2�⌘µ

2
2 + b

2
1(�⌘)µ2

1)

2 (�2 � 1)
+

↵2b2 (�2↵1b1� + 2↵2b2 + b

2
1�⌘µ

2
1 � b

2
2⌘µ

2
2)

2 (�2 � 1)

+
� (�2↵1b1� + 2↵2b2 + b

2
1�⌘µ

2
1 � b

2
2⌘µ

2
2) (�2↵2b2� + 2↵1b1 + b

2
2�⌘µ

2
2 + b

2
1(�⌘)µ2

1)

4 (�2 � 1)2

+
1

2

✓
(�2↵1b1� + 2↵2b2 + b

2
1�⌘µ

2
1 � b

2
2⌘µ

2
2)

2

4 (�2 � 1)2
+

(�2↵2b2� + 2↵1b1 + b

2
2�⌘µ

2
2 + b

2
1(�⌘)µ2

1)
2

4 (�2 � 1)2

◆◆

� (↵2 � b2) (�2↵1b1� + 2↵2b2 + b

2
1�⌘µ

2
1 � b

2
2⌘µ

2
2)

2 (�2 � 1)

� (↵1 � b1) (�2↵2b2� + 2↵1b1 + b

2
2�⌘µ

2
2 + b

2
1(�⌘)µ2

1)

2 (�2 � 1)

�

(8)

It is unimportant–although possible–to obtain closed-form solutions for the incentive

slopes as we can proceed with our analysis using monotone comparative statics on the un-

constrained objective function.11

It is worth noting, however, that it is the agent’s beliefs about the ↵s, not the true values,

that end up entering into the slope of the incentive scheme. The principal must satisfy the

IC and IR constraints of the agent, and these depend on the agent’s beliefs. This is precisely

why manipulating the agent’s beliefs can a↵ect e↵ort.

2.2.3 Agent updating

Now consider the two-period problem that the principal faces. She cannot change the agent’s

actions in period 1, but after period one the agent updates her belief about ↵1 and ↵2

based on the outputs her actions generated. Thus, the choice of b1 and b2 in period 1 can

a↵ect the agent’s actions in period two through these beliefs. After taking actions (e11, e
1
2)

(superscripts index the period) and observing outputs (m1
1,m

1
2) the agent’s posterior belief

about her ability on task i are:

11By using monotone methods we do not need to address the issue of whether the principal’s problem is
now convex when there is asymmetric information about ↵.
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E[↵i|m1
i ] = ↵̄i

✓
�

2
i

µ

2
i + �

2
i

◆
+

2(↵i � ↵i)bi � 2(↵�i � ↵�i)b�i� + b

2
�i�⌘µ

2
2 � b

2
i ⌘µ

2
1

2 (1� �

2)

✓
µ

2
i

µ

2
i + �

2
i

◆
.

(9)

In forming her posterior the agent puts some weight on her prior, and some weight on first

period output, which depends on her e↵ort and her true ability. This obviously bears strong

similarities to the classic career concerns model of Holmstrom (1982) in terms of the way

the agent updates about her ability (see also, very closely related, Dewatripont-Jewitt-Tirole

(1999)).

Other than the well-know role that the signal-to-noise ratio plays, notice that the agent’s

posterior is increasing in the di↵erence between ↵i and her expectation of it ↵i. This will play

a key role, since the principal can increase expected output by using more intense incentives

in period 1. Thus she can to some degree control of surprised the agent is, although this

comes at a cost, because the IR constraint must be satisfied and that depends on the agent’s

subjective first-period belief of her ability.

2.3 Results

To ground ideas, the first and most basic result is a version of the e↵ort substitution problem

of Holmstrom and Milgrom (1991). When it becomes optimal for incentives to become larger

on task i, due to a change in primitives in period 1, it is necessarily optimal for incentives

to become smaller on task j 6= i.

Proposition 1 Consider the one period model. Fix �

2
i , �

2
j and associated b

⇤
i (�

2
i , �

2
i ) and

consider �̂

2
j < �

2
j . Then b

⇤
i (�i, �̂

2
j ) < b

⇤
i (�i, �

2
j ) and b

⇤
j(�i, �̂

2
j ) > b

⇤
i (�i, �

2
j ).

Our next set of results speak to interventions in incentive schemes. Here we have in

mind a situation where incentives on one task are increased in period one, relative to some

benchmark level. A natural interpretation is that the benchmark level is the optimal level

and the increase comes from some change in (exogenous) primitives in our model, such as
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the benefit to the principal or the precision of measurement of output. The following result

says that an increase in incentives on a given task in period 1: (a) increases e↵ort on that

task in period 1 for all types of agent, (b) decreases e↵ort on the other task in period 1 for

all types of agent, and (c) may decreases e↵ort on the other task in period 1 more or less

for higher type agents.

Proposition 2 Consider the one period model and let the optimal incentive intensities in

period 1 be b

⇤
1,1, b

⇤
2,1. Now consider a shock to the environment and new optimal incentive

intensities b̂1,1, b̂2,1 is such that b̂1,1 > b

⇤
1,1 and b̂2,1 = b

⇤
2,1. Then (a) ê1,1 > e

⇤
1,1, (b) ê2,1 < e

⇤
2,1,

(c) the sign of @2e2
@b1@↵1

is ambiguous.

If the “type” of the agents di↵ers not only according to their ability but also to their

opportunity cost of time, as measured by �, the degree of substitutability between tasks,

then we can establish a starker result in terms of part (c) of the previous proposition.

Proposition 3 Consider the one period model and let the optimal incentive intensities in

period 1 be b

⇤
1,1, b

⇤
2,1. Now consider a shock to the environment and new optimal incentive

intensities b̂1,1, b̂2,1 is such that b̂1,1 > b

⇤
1,1 and b̂2,1 = b

⇤
2,1 and further that the degree of

substitutability between tasks changes from � to �

0. Then there exists a �

0 such that ê1,1 > e

⇤
1,1,

ê2,1 = e

⇤
2,1, and that for all � > �

0 we have ê2,1 < e

⇤
2,1.

In words, if the concept of ability is enriched to include a measure of opportunity cost of

e↵ort in addition to productivity on tasks, then an increase in incentives on one task leads

not only to the standard e↵ort substitution problem, but also a di↵erential one across ability

types. In fact, it can be the case that some types exhibit no deleterious e↵ect from the e↵ort

substitution problem on the second task, while other, lower-ability types do.

A high value of � implies that raising e↵ort on one task increases the marginal cost of

e↵ort on the other task. This is consistent with a setting where there is a third numeraire

task (such as leisure) and there is heterogeneity among agents about how they value the

numeraire.
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Our final results concern the persistent e↵ects of changes in incentives due to agents

updating about their types.

Proposition 4 Let e⇤1(↵i) be agent is e↵ort on task 1 in the absence of incentives (i.e. when

b1=0). Suppose b1,1 > 0 and b2,1 = 0 and further that b1,2 = b1,2 = 0. Then there exists ↵̂

⇤
1

such that for all ↵⇤
1 < ↵̂

⇤
1 : e1,2 < e

⇤
1.

When the agent’s true ability on task 1 is su�ciently low the learning that comes from

the provision of incentives is detrimental to the principal. In the absence of incentives the

agent would exert some baseline level of e↵ort due to intrinsic motivation (in our model

literally zero) and hence learn “little” (again, literally zero in our model) about her ability.

Providing incentives induces more e↵ort than this and hence more learning about ability.

When agents discover that they are lower-ability than they thought they exert lower e↵ort

in period two for any tasks on which there is a positive incentive slope (as in the case of

optimal incentives).

The fact that there is a cuto↵ type, above which increased period-one incentives lead to

an positive update and below which leads to a negative update stems from the fact that

more intense incentives in period 1 lead to a Blackwell-more-informative experiment about

agent ability. But Bayes’ Rule implies that the expectation of the conditional expectation

of ability given period 1 output must equal the unconditional expectation. Thus, when the

experiment leads to some agents updating positively about their ability, it must also lead

(from an ex ante perspective) to some agents updating negatively.

Suppose now that there is correlation between agents’ abilities on the two tasks in the

following sense. Suppose ↵1
i and ↵

2
i are drawn from distributions F1 and F2 respectively and

further suppose that these draws are not statistically independent. We will refer to this as

abilities being correlated. We then have

Corollary 5 If abilities are correlated then there exists ↵ such that for all ↵ < ↵ : e1,2 < e

⇤
1

and e2,2 < e

⇤
2.
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That is, if agents have correlated abilities incentive that induce learning that have a

deleterious e↵ect on one task spill over to the other task. In its most general form, if ⇢ is the

correlation coe�cient between ↵

⇤
1 and ↵

⇤
2 then larger values of ⇢ lead to lower e↵ort levels

on the second (spillover) task.

Finally, we discuss the optimal period 1 incentive scheme. We can decompose the prob-

lem into the costs an benefits of providing additional incentives subject to the IR and IC

constraints in period 1.

Divide the agents into to categories: “high types” and “low types”. For agent’s whose

true ability is above the ↵̂⇤
1 of Proposition 4 (“high types”), the benefit of increased incentives

in period 1 is the additional e↵ort that will be exerted in period 2 as a consequence of the

updated beliefs about ability.

The agent’s optimal period 2 action on task 1, given her updated beliefs is

e

2
1 =

b

2
1 � E[↵1|m1

1]� �b

2
2E[↵2|m1

2]

1� �

2
,

and symmetrically for task 2.

Let us denote the expected increase in profit from this additional e↵ort as ⇧(e21(e
1
1)).

Note that this includes not only the benefit of additional e↵ort in period 2, but the cost of

satisfying the period 2 IR constraint. This is is a net increase in profit. The total expected

benefit across all high type agents is then
R1
↵̂⇤
1
⇧(e21(e

1
1)). For “low types” this “benefit” is

negative and given by
R ↵̂⇤

1

�1 ⇧(e21(e
1
1)).

The cost of providing additional incentives in period 1 is the same for both classes of

types, since they have the same prior belief in period 1. This cost is given by the additional

fixed payment s11 required to satisfy the agent’s IR constraint. Denote this cost C(b11, b
1
2).

12

The objective for the principal is thus

(10)max
b11

(Z 1

↵̂⇤
1

⇧(e21(e
1
1)) +

Z ↵̂⇤
1

�1
⇧(e21(e

1
1))� C(b11, b

1
2) +

2X

i=1

(↵1
i � b

1
i )e

1
i � s

1

)
,

12The incentive slope on the second task enters because of the quadratic cost function.
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and analogously for b1, both subject to the first period IC and IR constraints. The final term

is the expected profit in period 1. As before, solving the first period IR constraint for s and

the replacing the first period IC constraint with the agent’s FOC we have an unconstrained

problem for the principal. Taking first-order conditions and solving simultaneously leads to

the optimal period 1 incentive slopes.

This is, of course, rather abstract, and we do not pursue closed-form solutions here as they

are not relevant for our purpose. The salient point to note, however, is that the distribution

of types is a crucial determinant of the optimal incentive scheme. This is because, when

agents do not know their types and the principal is constrained to o↵er a single contract

to all types there is a tradeo↵ between the benefits from “teaching” higher types their true

ability, and a cost of teaching lower types theirs. We return to this in our concluding remarks.

3 Program Details

Houston Independent School District (HISD) is the seventh largest school district in the

nation with 202,773 students. Eighty-eight percent of HISD students are black or Hispanic.

Roughly 80 percent of all students are eligible for free or reduced-price lunch and roughly

30 percent of students have limited English proficiency.

Table 1 provides a bird’s-eye view of the demonstration project. To begin the field

experiment, we followed standard protocols. First, we garnered support from the district su-

perintendent and other key district personnel. Following their approval, a letter was sent to

seventy-one elementary school principals who had the lowest math performance in the school

district in the previous year. In August 2010, we met with interested principals to discuss

the details of the experiment and provided a five day window for schools to opt into the

randomization. Schools that signed up to participate serve as the basis for our matched-pair

randomization. All randomization was done at the school level. Prior to the randomization,

all teachers in the experimental group signed a non-binding commitment form vowing to use

the Accelerated Math curriculum to supplement and complement their regular math instruc-
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tion and indicating their intention to give all students a chance to master Accelerated Math

objectives on a regular basis regardless of their treatment assignment.13 After treatment

and control schools were chosen, treatment schools were alerted that they would participate

in the incentive program. Control schools were informed that they were not chosen, but

they would still receive the Accelerated Math software – just not the financial incentives.14

HISD decided that students and parents at selected schools would be automatically enrolled

in the program. Parents could choose not to participate and return a signed opt-out form

at any point during the school year.15 HISD also decided that students and parents were

required to participate jointly: students could not participate without their parents and vice

versa. Students and parents received their first incentive payments on October 20, 2010 and

their last incentive payment on June 1, 2011; teachers received incentives with their regular

paychecks.16

Table 2 describes di↵erences between schools that signed up to participate and other

elementary schools in HISD with at least one fifth grade class across a set of covariates.

Experimental schools have a higher concentration of minority students and teachers with

low-value added on math scores. All other covariates are statistically similar.

A. Students

Students begin the program year by taking an initial diagnostic assessment to measure

mastery of math concepts, after which AM creates customized practice assignments that

focus specifically on areas of weakness. Teachers assign these customized practice sheets,

and students are then able to print the assignments and take them home to work on (with or

without their parents). Each assignment has six questions, and students must answer at least

13This was the strongest compliance mechanism that the Harvard Institutional Review Board would allow
for this experiment. Teachers whose data revealed that they were not using the program were targeted with
reminders to use the curriculum to supplement and complement their normal classroom instruction. All such
directives were non-binding and did not a↵ect district performance assessments or bonuses.

14Schools varied in how they provided computer access to students (e.g. some schools had laptop carts,
others had desktops in each classroom, and others had shared computer labs), but there was no known
systematic variation between treatment and control.

15Less than 1%, 2 out of 1695 parents opted out of the program.
16In the few cases in which parents were school district employees, we paid them separately from their

paycheck.
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five questions correctly to receive credit.17 After students scan their completed assignments

into AM, the assignments are graded electronically. Teachers then administer an AM test

that serves as the basis for potential rewards; students are given credit for o�cial mastery by

answering at least four out of five questions correctly. Students earned $2 for every objective

mastered in this way. Students who mastered 200 objectives were declared “Math Stars”

and received a $100 completion bonus with a special certificate.18

B. Parents

Parents of children at treatment schools earned up to $160 for attending eight parent-

teacher review sessions ($20/each) in which teachers presented student progress using Accel-

erated Math Progress Monitoring dashboards. Appendix Figure 1 provides a typical example.

Parents and teachers were both required to sign and submit the student progress dashboards

and submit them to their school’s Math Stars coordinator in order to receive credit. Addi-

tionally, parents earned $2 for their child’s mastery of each AM curriculum objective, so long

as they attended at least one conference with their child’s teacher. This requirement also

applied retroactively: if a parent first attended a conference during the final pay period, the

parent would receive a lump sum of $2 for each objective mastered by their child to date.

Parents were not instructed on how to help their children complete math worksheets.

17Accelerated Math does not have a set scope and sequence that must be followed. While the adaptive
assessment assigns a set of objectives for a student to work on, the student can work on these lessons in any
order they choose, and teachers can assign additional objectives that were not initially assigned through the
adaptive assessment.

18Experimental estimates of AM’s treatment e↵ect on independent, nationally-normed assessments have
shown no statistically significant evidence that AM enhances math achievement. Ysseldyke and Bolt (2007)
randomly assign elementary and middle school classes to receive access to the Accelerated Math curriculum.
They find that treatment classes do not outperform control classes in terms of math achievement on the
TerraNova, a popular nationally-normed assessment. Lambert and Algozzine (2009) also randomly assign
classes of students to receive access to the AM curriculum to generate causal estimates of the impact of the
program on math achievement in elementary and middle school classrooms (N=36 elementary classrooms,
N=46 middle school classrooms, divided evenly between treatment and control). Lambert and Algozzine do
not find any statistically significant di↵erences between treatment and control students in math achievement
as measured by the TerraNova assessment. Nunnery and Ross (2007) use a quasi-experimental design to com-
pare student performance in nine Texas elementary schools and two Texas middle schools who implemented
the full School Renaissance Program (including Accelerated Math) to nine comparison schools designated by
the Texas Education Agency as demographically similar. Once the study’s results were adjusted to account
for clustering, Nunnery and Ross’s (2007) analysis reveals no statistically significant evidence of improved
math performance for elementary or middle school students.
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C. Teachers

Fifth grade math teachers at treatment schools received $6 for each academic conference

held with a parent in addition to being eligible for monetary bonuses through the HISD

ASPIRE program, which rewards teachers and principals for improved student achievement.

Each treatment school also appointed a Math Stars coordinator responsible for collecting

parent/teacher conference verification forms and organizing the distribution of student re-

ward certificates, among other duties. Coordinators received an individual stipend of $500,

which was not tied to performance.

Over the length of the program the average student received $226.67 with a total of

$393,038 distributed to students. The average parent received $236.68 with a total of

$430,986 distributed to parents. The average teacher received $1,116.48 with a total of

$51,358 distributed to teachers. Incentives payments totaled $875,382.

4 Data, Research Design, and Econometric Model

A. Data

We collected both administrative and survey data from treatment and control schools.

The administrative data includes first and last name, birth date, address, race, gender, free

lunch eligibility, behavioral incidents, attendance, special education status, limited English

proficiency (LEP) status, and four measures of student achievement: TAKS math and ELA

and STAAR math and reading assessments. Toward the end of the treatment year, the

TAKS assessments were administered between April 12 and April 23, 2011, with a retake

administered from May 23 to May 25, 2011. At the end of the follwing year, the STAAR

assessments were administered from April 24 to April 25, 2012. We use administrative data

from 2008-09 and 2009-10 (pre-treatment) to construct baseline controls with 2010-11and

2011-12 (post-treatment) data for outcome measures.

Our main outcome variables are the direct outcomes that we provided incentives for:

mastering math objectives via Accelerated Math and attending parent-teacher conferences.
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We also examine indirect outcomes that were not directly incentivized, including TAKS math

and ELA scale scores, Stanford 10 math and ELA scale scores, and several survey outcomes.

We use a parsimonious set of controls to aid in precision and to correct for any potential

imbalance between treatment and control. The most important controls are reading and

math achievement test scores from the previous two years and their squares, which we

include in all regressions. Previous years’ test scores are available for most students who

were in the district in previous years (see Table 3 for exact percentages of experimental

group students with valid test scores from previous years). We also include an indicator

variable that takes on the value of one if a student is missing a test score from a previous

year and zero otherwise.

Other individual-level controls include a mutually exclusive and collectively exhaustive

set of race dummies pulled from each school district’s administrative files, indicators for

free lunch eligibility, special education status, and whether a student demonstrates limited

English proficiency.19 Special education and LEP status are determined by HISD Special

Education Services and the HISD Language Proficiency Assessment Committee.

We also construct three school-level control variables: percent of student body that

is black, percent Hispanic, and percent free lunch eligible. For school-level variables, we

construct demographic variables for every 5th grade student in the district enrollment file

in the experimental year and then take the mean value of these variables for each school.

We assign each student who was present in an experimental school before October 1 to

the first school they are registered with in the Accelerated Math database. Outside the

experimental group, we assign each student to the first school they attend according to the

HISD attendance files, since we are unable to determine exactly when they begin attending

school in HISD. We construct the school-level variables based on these school assignments.

19A student is income-eligible for free lunch if her family income is below 130 percent of the federal poverty
guidelines, or categorically eligible if (1) the student’s household receives assistance under the Food Stamp
Program, the Food Distribution Program on Indian Reservations (FDPIR), or the Temporary Assistance
for Needy Families Program (TANF); (2) the student was enrolled in Head Start on the basis of meeting
that program’s low-income criteria; (3) the student is homeless; (4) the student is a migrant child; or (5)
the student is a runaway child receiving assistance from a program under the Runaway and Homeless Youth
Act and is identified by the local educational liaison.
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To supplement each district’s administrative data, we administered a survey to all par-

ents and students in treatment and control schools.20 The data from the student survey

includes information about time use, spending habits, parental involvement, attitudes to-

ward learning, perceptions about the value of education, behavior in school, and Ryan’s

(1982) Intrinsic Motivation Inventory. The parent survey includes basic demographics such

as parental education and family structure as well as questions about time use, parental

involvement, and expectations.

To aid in survey administration, incentives were o↵ered at the teacher level for percentages

of student and parent surveys completed. Teachers in treatment and control schools were

eligible to receive rewards according to the number of students they taught: teachers with

between 1-20 students could earn $250, while teachers with 100 or more students could earn

$500 (with fifty dollar gradations in between). Teachers only received their rewards if at least

ninety percent of the student surveys and at least seventy-five percent of parent surveys were

completed.

In all, 93.4 percent of student surveys and 82.8 percent of parent surveys were returned in

treatment schools; 83.4 percent of student surveys and 63.3 percent of parents surveys were

returned in control schools. These response rates are relatively high compared to response

rates in similar survey administrations in urban environments (Parks et al. 2003, Guite et

al. 2006, Fryer 2010).

Table 3 provides descriptive statistics of all HISD 5th grade students as well as those in

our experimental group, subdivided into treatment and control. The first column provides

the mean, standard deviation, and number of observations for each variable used in our

analysis for all HISD 5th grade students. The second column provides the mean, standard

deviation, and number of observations for the same set of variables for treatment schools.

The third column provides identical data for control schools. The fourth column displays the

p-values from a t-test of whether treatment and control means are statistically equivalent.

See Online Appendix C for details on how each variable was constructed.

20Parent surveys were available in English and Spanish.
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Within the experimental group, treatment and control students are fairly balanced, al-

though treatment schools have more black students and fewer white, Asian, LEP, and gifted

and talented students. Treatment schools also have lower previous year scores in TAKS

math. A joint significance test yields a p-value of 0.643, suggesting that the randomization

is collectively balanced along the observable dimensions we consider.

To complement these data, Appendix Figure 2 shows the geographic distribution of treat-

ment and control schools, as well as census tract poverty rates. These maps confirm that

our treatment and control schools are similarly distributed across space and are more likely

to be in higher poverty areas of a city.

B. Research Design

We use a matched-pair randomization procedure similar to those recommended by Imai

et al. (2009) and Greevy et al. (2004) to partition the set of interested schools into treatment

and control.21 Recall that we invited seventy-one schools to sign up for the randomization.

Fifty-nine schools chose to sign up. To conserve costs, we eliminated the nine schools with

the largest enrollment among the 59 eligible schools that were interested in participating,

leaving 50 schools from which to construct 25 matched pairs.

To increase the likelihood that our control and treatment groups were balanced on a

variable that was correlated with our outcomes of interest, we used past standardized test

scores to construct our matched pairs. First, we ordered the full set of 50 schools by the sum

of their mean reading and math test scores in the previous year. Then we designated every

two schools from this ordered list as a “matched pair” and randomly drew one member of

the matched pair into the treatment group and one into the control group.

C. Econometric model

21There is an active debate on which randomization procedures have the best properties. Imbens (2011)
summarizes a series of claims made in the literature and shows that both stratified randomization and
matched-pairs can increase power in small samples. Simulation evidence presented in Bruhn and McKenzie
(2009) supports these findings, though for large samples there is little gain from di↵erent methods of random-
ization over a pure single draw. Imai et al. (2009) derive properties of matched-pair cluster randomization
estimators and demonstrate large e�ciency gains relative to pure simple cluster randomization.
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To estimate the causal impact of providing financial incentives on outcomes, we estimate

Intent-To-Treat (ITT) e↵ects, i.e., di↵erences between treatment and control group means.

Let Zs be an indicator for assignment to treatment, let Xi be a vector of baseline covariates

measured at the individual level, and let Xs denote school-level variables; Xi and Xs com-

prise our parsimonious set of controls. Moreover, let �m denote a mutually exclusive and

collectively exhaustive set of matched pair indicators. The ITT e↵ect, ⇡, is estimated from

the equation below:

achievementi,m = ↵ +Xi� +Xs� + Zs⇡ + �m✓ + "i,m (11)

The ITT is an average of the causal e↵ects for students in schools that were randomly

selected for treatment at the beginning of the year and students in schools that signed up for

treatment but were not chosen. In other words, ITT provides an estimate of the impact of

being o↵ered a chance to participate in the experiment. All student mobility between schools

after random assignment is ignored. We only include students who were in treatment and

control schools as of October 1 in the year of treatment.22 In HISD, school began August

23, 2010; the first student payments were distributed October 20, 2010.

5 Analysis

5.1 Direct Outcomes

Panels A and B of Table 4 include ITT estimates of treatment e↵ects on incentivized out-

comes – AM objectives mastered and parent-teacher conferences attended. Objectives mas-

tered are measured in � units. Results with and without our parsimonious set of controls

are presented in columns (1) and (2), respectively. In all cases, we include matched pair

fixed e↵ects. Standard errors are in parenthesis below each estimate. To streamline the pre-

22This is due to a limitation of the attendance data files provided by HISD. Accelerated Math registration
data confirms students who were present in experimental schools from the beginning of treatment. Using
first school attended from the HISD attendance files or October 1 school does not alter the results.
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sentation of the experimental results, we focus the discussion in the text on the regressions

which include our parsimonious set of controls. All qualitative results are the same in the

regressions without controls.

The impact of the financial incentive treatment is statistically significant across all of

the direct outcomes we explore. The ITT estimate of the e↵ect of incentives on objectives

mastered in AM is 1.087� (0.031). Treatment parents attended 1.578 (0.099) more parent

conferences. Put di↵erently, our aligned incentive scheme caused a 125% increase in the

number of AM objectives mastered and an 87% increase in the number of parent-teacher

conferences attended in treatment versus control schools.23

In addition, we were able to calculate the price elasticity of demand for math objectives

by examining the change in AM objectives mastered before and after two unexpected price

shocks as seen in Figure 1. After five months of rewarding math objective mastery at a

rate of $2 per objective, we (without prompt or advance warning) raised the reward for an

objective mastered in AM to $4 for four weeks starting in mid-February and then from $2

to $6 for one week at the beginning of May. Treatment students responded by increasing

their productivity; the rate of objective mastery increased from 2.05 objectives per week at

the price of $2 per objective up to 3.52 objectives per week at $4 per objective, and 5.80

objectives per week at $6 per objective. Taken at face value, this implies a price elasticity

of demand of 0.87.

Taken together, the evidence on the number of objectives mastered and parent conferences

attended in treatment versus control schools as well as the response to unexpected price

shocks implies that our incentive scheme significantly influenced student and parent behavior.

23The average control school actively mastered objectives during 8.16 of 9 payment periods. One school
never began implementing the program and six stopped utilizing the program at some point during the
year. Of these six, one ceased active use during February, four stopped during March, and one stopped
during April. All twenty-five treatment schools actively mastered objectives throughout the duration of the
program.
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5.2 Indirect Outcomes

In this section, we investigate a series of indirect outcomes – standardized test scores, student

investment, parental involvement, attendance, and intrinsic motivation – that are correlated

with the outcomes for which we provided incentives. Theoretically, due to misalignment,

moral hazard, or psychological factors, the e↵ects of our incentive scheme on this set of

outcomes is ambiguous. For these, and other reasons, Kerr (1975) notoriously referred to

investigating impacts on indirect outcomes as “the folly of rewarding A, while hoping for B.”

Still, given the correlation between outcomes such as standardized test scores and income,

health, and the likelihood of incarceration, they may be more aligned with the outcomes of

ultimate interest than our direct outcomes (Fryer 2011b).

A. Student Test Scores

Panel A of Table 4 presents estimates of the e↵ect of incentives on testing outcomes for

which students were not given incentives. These outcomes include Texas’ state-mandated

standardized test (TAKS). The math and ELA assessments are normalized to have a mean of

zero and a standard deviation of one across the city sample. Estimates without and with our

parsimonious set of controls are presented in columns (1) and (2), respectively. As before,

standard errors are in parentheses below each estimate.

ITT estimates reveal that treatment students outperform control students by 0.081�

(.025) in TAKS math and underperform in TAKS ELA by 0.089� (.027).24

24It may be surprising that the impact on math scores is not larger, given the increase in e↵ort on
mastering math objectives that were correlated with the Texas state test. One potential explanation
is that the objectives in AM are not aligned with those assessed on TAKS. Using Accelerated Math’s
alignment map, we found that of the 152 objectives in the AM Texas 5th grade library, only 105 (69.1
percent) align with any Texas state math standards (TEKS). Texas state standard alignments are avail-
able at http://www.renlearn.com/fundingcenter/statestandardalignments/texas.aspx Furthermore,
matching the AM curriculum to Texas Essential Knowledge and Skills (TEKS) standards in the six sections
of the TAKS math assessment reveals the AM curriculum to be heavily unbalanced; 91 out of the 105 items
are aligned with only 3 sections of the TAKS assessment (1, 4, and 6). The treatment e↵ect on the aligned
sections is modest in size and statistically significant, 0.137� (.028). The treatment e↵ect on the remaining
(non-aligned) portions of the test is small and statistically insignificant, 0.026� (.030). Not shown in tabular
form. Another, non-competing, explanation is that students substituted e↵ort from another activity that
was important for increasing test scores (i.e. paying attention in class) to mastering math objectives.
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B. Student and Parent Engagement

The survey results reported in Panel B of Table 4 report measures of student and parent

engagement. Students were asked a variety of survey questions including “Did your parents

check whether you had done your homework more this year or last year?” and “What subject

do you like more, math or reading?” Parents were also asked a variety of questions including

“Do you ask your 5th grade student more often about how he/she is doing in Math class

or Reading class?” Answers to these questions are coded as binary measures and treatment

e↵ects are reported as a percentage change. Details on variable construction from survey

responses are outlined in Online Appendix C.

Treatment parents were 7.2 (2.7) percentage points more likely, relative to the control

mean of 31 percent, to report that they checked their student’s homework more during the

treatment year than in the pre-treatment year. Moreover, the increased parental investment

was skewed heavily towards math. Treatment parents were 12.2 (2.8) percentage points more

likely to ask more about math than reading homework, and treated students were 11.2 (2.3)

percentage points more likely to report a preference for math over reading.

C. Attendance and Intrinsic Motivation

The first row of Panel C in Table 4 reports results for student attendance – a proxy for

e↵ort. The treatment e↵ect on attendance rates are 0.051� (0.027) higher than their control

counterparts. This amounts to treatment students attending roughly one half of an extra

day of school per year.

One of the major criticisms of the use of incentives to boost student achievement is that

the incentives may destroy a student’s “love of learning.” In other words, providing extrinsic

rewards can crowd out intrinsic motivation in some situations. There is a debate in social

psychology on this issue – see Cameron and Pierce (1994) for a meta-analysis.

To measure the impact of our incentive experiments on intrinsic motivation, we admin-

istered the Intrinsic Motivation Inventory, developed by Ryan (1982), to students in our

experimental groups.25 The instrument assesses participants’ interest/enjoyment, perceived

25The inventory has been used in several experiments related to intrinsic motivation and self-regulation
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competence, e↵ort, value/usefulness, pressure and tension, and perceived choice while per-

forming a given activity. There is a subscale score for each of those six categories. We only

include the interest/enjoyment subscale in our surveys, as it is considered the self-report

measure of intrinsic motivation. To get an overall intrinsic motivation score, we sum the

values for these statements (reversing the sign on statements where stronger responses in-

dicate less intrinsic motivation). Only students with valid responses to all statements are

included in our analysis of the overall score, as non-response may be confused with low

intrinsic motivation.

The final row of Table 4 provides estimates of the impact of our incentive program on

the overall intrinsic motivation score of students in our experimental group. The ITT e↵ect

of incentives on intrinsic motivation is almost exactly zero – 0.005� (0.06).

5.3 Heterogenous Treatment E↵ects

Table 5 investigates treatment e↵ects on number of objectives mastered and state test scores

for a set of predetermined subsamples – gender, race/ethnicity, previous year’s test score,

and whether a student is eligible for free or reduced price lunch.26

All regressions include our parsimonious set of controls. Gender is divided into two cat-

egories and race/ethnicity is divided into five categories: non-Hispanic white, non-Hispanic

black, Hispanic, non-Hispanic Asian and non-Hispanic other race. We only include a racial/ethnic

category in our analysis if there are at least one hundred students from that racial/ethnic

category in our experimental group; only black and Hispanic subgroups meet this criteria.

Eligibility for free lunch is used as an income proxy. We also partition students into quintiles

according to their baseline TAKS math scores and report treatment e↵ects for the top and

bottom quintiles.

The treatment e↵ect on objectives mastered is statistically larger for girls (1.159�) than

for boys (1.012�). Hispanic students made the strongest gains on math tests. They also

[e.g., Ryan, Koestner, and Deci (1991) and Deci et al. (1994)].
26All other outcomes are in Appendix Tables 3.
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mastered more objectives while their parents attended fewer conferences. Students eligible

for free lunch showed statistically larger and statistically significant gains on TAKS Math

(0.144�). They also lost less ground in reading; however, the inter-group di↵erences are only

marginally significant in reading.

The most noticeable and robust di↵erences occur when we stratify on previous year test

scores. Consistent with Proposition 4 from Section 2, high-ability students gain most from

the experiment, both in comparison to high-ability students in control schools or low-ability

students in treatment schools. For instance, high-ability students master 1.66� (.117) more

objectives, have parents who attend two more parent-teacher conferences, have 0.228� (.082)

higher standardized math test scores and equal reading scores relative to high-ability students

in control schools. Conversely, low-ability students master 0.686� (0.047) more objectives,

but score 0.163� (0.063) lower in reading and have similar math test scores compared with

low-ability students in control schools.

5.4 Post-Treatment Outcomes

The treatment ended with a final payment to students in June of 2011. A full year after

the experiment, we collected data on post-treatment test scores; math and reading tests for

treatment and control students during late spring of their sixth grade year.

Recall that in the model, low-ability and high-ability students who are induced to put

forth additional e↵ort on a given task learn their type when they observe the results of their

additional exertion of e↵ort and that high-ability agents have lower cost of displaced e↵ort.

If agents base future e↵ort on their beliefs about their ability-type and update their beliefs

in this way, the provision of incentives could lead low-ability agents to exert less e↵ort in the

future, while high-ability agents increase their expected return to e↵ort uopn learning they

are a high-ability agent and exert more e↵ort in the future.

Table 6 examines lasting treatment e↵ects on standardized test scores and attendance in

the year following treatment. Column 1 displays the treatment e↵ects that persisted one full

year after all financial incentives were withdrawn for the full group of students with valid
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2011-12 test scores. Columns 2 and 3 display the same results for the subgroups of students

in the top and bottom quintiles of pre-treatment math test scores. In columns 5 and 6, we

restricted our sample to treatment students only and regressed year 1 state test scores on

objectives mastered (a measure of e↵ort exerted in math) and predicted the residuals for

each student. These residuals capture the di↵erence between a student’s expected score on

the state test (based upon e↵ort, as measured by objectives mastered) and her actual score.

Students were divided into quintiles based upon the size of this residual, with students whose

residual is the most negative in the bottom quintile or, “bad shock” group and students with

the largest residuals in the top quintile or, “good shock” group. Columns 5 and 6 report

the coe�cient on a dummy for being in the top or bottom quintile in a regression of second

year test scores on residual quintiles and our standard set of parsimonious controls, including

two years of lagged test scores. Point estimates are relative to the median quintile, which is

omitted from the regression.

While post-treatment e↵ects in the full group sample are statistically insignificant in

math, negative e↵ects linger in reading – the e↵ects are -0.042� (.029) in math and -0.084�

(.030) in reading – the subgroups reveal stark di↵erences between higher and lower achieving

students, as well as di↵erences based upon what students may have learned about their abil-

ity from their first year e↵ort and resulting test scores. The negative e↵ect on the reading

scores of lower-achieving students persist, as lower-achieving treatment students score 0.168�

(.079) lower than lower-achieving control students, and there are significant spillovers into

math achievement, where lower-achieving treatment students are outperformed by 0.223�

(.056). Conversely, higher-achieving treatment students outperform their control group peers

by 0.134� (.078) in math and 0.097� (.086) in reading. While the latter result is statisti-

cally insignificant, the positive point estimates in both subjects suggests that any spillover

e↵ects were positive or neutral. Furthermore, consistent with the model, we observe that

students within the treatment group who experience a “bad shock” in the sense that they

underperform on the on the 2010-11 state math test relative to the amount of e↵ort they

exerted in AM perform far worse on their 2011-12 standardized tests than students who
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experience “good shock” in their 2010-11 state math test scores relative to the amount of

e↵ort they exerted in AM. Students who experience “bad shocks” score 0.252� (0.055) lower

than students whose test scores are best predicted by their e↵ort in AM, while students who

experience “good shocks” score 0.498� (0.061) higher– a stark di↵erence of 0.75� between

receiving a“bad shock” versus a “good shock” in 2010-11 on students’ 2011-12 test scores.

6 Conclusion

Individuals, even school children, respond to incentives. How we design those incentives to

illicit desirable short and longer term responses is far less clear. We demonstrates these

complexities with theory and a field experiment.

Our model has two periods and two tasks. In each period, a risk-neutral principal o↵ers

a take-it-or-leave-it linear incentive contract to an agent, who, upon accepting the contract,

takes two non-verifiable actions which we label “e↵ort.” E↵ort generates a benefit to the

principal and is related to an observable (and contractable) performance measure. We assume

that an agent’s type augments their e↵ort in producing output: higher type agents have

higher returns to e↵ort than lower type agents, all else equal. The key assumptions are that

individuals do not know the production function (e.g. the mapping from input to output)

and, upon observing a contract, do not update their beliefs about the production function.27

It yields four predictions: First, incentives for a given task lead to an increase in e↵ort on that

task. Second, incentives for a given task lead to a decrease in e↵ort on the non-incentivized

task. Further, the decrease in e↵ort on the non-incentivized task can be more or less for

higher-type agents relative to lower-type agents, depending on how substitutable those tasks

are in the cost of e↵ort function. The most distinguishing theoretical result concerns the

persistent e↵ects of changes in incentives due to agents updating about their ability types.

We show that when the agent’s true ability on a given task is su�ciently low, the learning

that comes from the provision of incentives is detrimental to the principal. In the absence

27As indicated in the introduction, this is a stark assumption for which we provide two justifications.
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of incentives the agent would exert some baseline level of e↵ort due to intrinsic motivation

and hence learn “little” about her ability. Providing incentives induces more e↵ort than

this and hence more learning about their ability type. When agents discover that they are

lower-ability than they previously believed, they exert lower e↵ort in period two for any

tasks on which there is a positive incentive slope (as in the case of optimal incentives). The

average impact of an incentive contract depends on the distribution of across types, among

other things.

To better understand these predictions in a real-world laboratory, we analyze new data

from a field experiment conducted in fifty traditionally low-performing public schools in

Houston, Texas during the 2010-2011 school year. We provided financial incentives to stu-

dents, their parents, and their teachers for fifth graders in twenty-five treatment schools.

Students received $2 per math objective mastered in Accelerated Math (AM). Parents also

received $2 for each objective their child mastered and $20 per parent-teacher conference

attended to discuss their student’s math performance. Teachers earned $6 for each parent-

teacher conference held and up to $10,100 in performance bonuses for student achievement

on standardized tests.

We argue that the data from the field experiment are consistent with the model. Higher-

achieving students master 1.66� more objectives, have parents who attend two more parent-

teacher conferences, have 0.228� higher standardized math test scores and equal reading

scores relative to high-achieving students in non-treated schools. Conversely, lower-achieving

students master 0.686� more objectives, have parents who attend 1.5 more parent-teacher

conferences, have equal math test scores and 0.163� lower reading scores. Put di↵erently,

higher-achieving students put in significant e↵ort and were rewarded for that e↵ort in math

without a deleterious impact in reading. Lower-achieving students also increased e↵ort on the

incentivized task, but did not increase their math scores and their reading scores decreased

significantly.

Consistent with the fourth – and most distinguishing– prediction of the model, higher-

achieving students continue to do well, maintaining a positive treatment e↵ect in math and a
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zero e↵ect in reading, one year after the incentives are taken away. Lower-achieving students,

however, exhibit large and statistically significant decreases in both math [-.223� (0.056)]

and reading achievement [-.168� (0.079)] after the incentives are removed. We argue that

this is most likely explained by students learning about their own ability and not decreases

in intrinsic motivation. The treatment e↵ect on the latter, gleaned from survey data, is small

and statistically insignificant.

Taken together, both the theoretical model and the experimental results o↵er a strong

cautionary tale on the use of financial incentives when individuals may not know the pro-

duction function.
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7 Online Appendix A: Proofs of Propositions (Not For
Publication)

Proof of Proposition 1. From equation (8) apply the Milgrom-Shannon monotonicity
theorem to conclude that the objective function has decreasing di↵erences (b⇤1, �
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1) and hence
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Proof of Proposition 2. For parts (a) and (b): from equation (6) note that de⇤1/db1 > 0
and that de⇤2/db1 < 0 and analogously for e⇤2. Part (c): note that

@

2
e2

@b1↵1
=

�

�

2 � 1
, (12)

is of indeterminate sign.

Proof of Proposition 3. Trivial. Follows directly from the intermediate value theorem.

Proof of Proposition 4. Consider increasing b1,1 as stated in the proposition. Recall
that the agent’s posterior belief after observing period 1 output is
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Note that since ↵

1
1 > ↵

2
1 by construction, this has increasing di↵erences in (b1,↵1). By the

definition of conditional probability it must be that E[E[↵|m1]] = E[↵] = ↵ > 0. Since
E[↵1|m1

i ] � E[↵1|m1
i ] = 0 for any ↵ and appealing to the intermediate value theorem the

result is established.

8 Online Appendix B: Implementation Manual (Not
For Publication)

Schools
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We identified 71 low-performing elementary schools in the district based upon the average
grade 5 scores on the Texas Assessment of Knowledge and Skills (TASKS) that would benefit
from inclusion in the Math Stars incentive program. On Thursday, September 2, 2010, HISD
leadership held an introductory meeting with principals and math teachers from these low-
performing elementary schools. After presenting an overview of the research design we invited
them to commit to participate by signing a pledge to implement the Math Stars program
with fidelity to the research design.

Schools had five days to consider their commitment to the program (within a day, how-
ever, over two-thirds of the schools invited had already indicated their commitment and
interest by signing a School Commitment Letter.) By Tuesday, September 7, 60 schools had
elected to participate in the random selection process, and we conducted a random lottery
to select the 25 treatment schools and the 25 control schools.

Students

HISD decided that students and parents at selected schools would be automatically en-
rolled in the program. Parents could choose not to participate and return a signed opt-out
form at any point during the school year. HISD further decided that students and parents
were required to participate jointly: students could not participate without their parents
and vice versa.

Software and Incentive Structure

The Accelerated Math platform creates math assignments tailored to each student’s
ability level, enabling students to take brief online assessments to gauge achievement in
mathematics. For fifth grade, math objectives fall into the following subject areas: Number
Sense and Operations; Algebra; Geometry and Measurement; and Data Analysis, Statistics,
and Probability.

Students began the program year by taking an initial diagnostic assessment to measure
mastery of math concepts, after which AM creates customized practice assignments that fo-
cus specifically on areas of weakness. Teachers assign these custom assignments and students
are then able to print the assignments and take them home to work on (with or without
their parents). Each assignment has six questions, and students must answer at least five
questions correctly to receive credit. Students scan their completed assignments into AM,
and the assignments are graded electronically. Teachers then administer an AM test that
serves as the basis for potential rewards: students are given credit for o�cial mastery by
answering at least four out of five questions correctly.

Students: Students earned $2 for every objective mastered. Students who reached the
200 objectives threshold were declared Math Stars and received a $100 completion bonus
and special certificate. Additional monetary incentives were introduced during the program:
during the sixth pay period (mid-February to mid-March) students received $4 for every
objective mastered; during the final week of the eighth pay period (the first week of May),
students received $6 for every objective mastered.
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Parents: Parents of children at treatment schools earned up to $160 for attending eight
parent-teacher review sessions ($20/each) in which teachers presented student progress using
Accelerated Math Progress Monitoring dashboards. Parents and teachers were both required
to sign the student progress dashboards and submit them to their schools Math Stars coor-
dinator in order to receive credit. Additionally, parents earned $2 for their child’s mastery
of each AM curriculum objective, as long as they attended at least one conference with
their child’s teacher. This requirement also applied retroactively: if a parent first attended
a conference during the final pay period, the parent would receive a lump sum of $2 for each
objective mastered by their child to date. Parents were not instructed on how to help their
children complete math worksheets.

Teachers: Fifth grade math teachers at treatment schools received $6 for each academic
conference held with a parent in addition to being eligible for monetary bonuses through
the HISD ASPIRE program, which rewards teachers and principals for improved student
achievement. Each treatment school also appointed a Math Stars coordinator responsible for
collecting parent/teacher conference verification forms and printing and distributing student
reward certificates, among other duties. Each coordinator received a stipend of $500, but
this amount was not tied to performance.

Principals: Principals at treatment schools were eligible for monetary bonuses through
the HISD ASPIRE program, which rewards teachers and principals for improved student
achievement.

Training and Program Launch

Once schools were selected, the Accelerated Math program was ordered for treatment
and control schools, as well as computers and scanners for each school (depending on the
number of students and classrooms). AM was installed in treatment schools on September
10 and control schools on September 20. HISD also hired a district-based program manager
who was trained in using AM as well as a technology support sta↵ member.

On September 10, a welcome packet in English and Spanish was sent home with students.
The packet included a detailed description of the program, a program calendar, answers to
frequently asked questions, and an opt-out form. Parents who decided they did not want
their student(s) to participate in the incentive component of the Math Stars program were
able to return a signed opt-out form at any point during the school year; however, students
were not able to opt out of using the Accelerated Math platform.

Meanwhile, treatment schools identified in-school coordinators within one day of being
randomly selected; coordinators primary duties included collecting parent-teacher conference
sheets and distributing checks and reward certificates to students on pay day. To e↵ectively
train participating schools sta↵ to use the Accelerated Math program, Renaissance Learning
sta↵ conducted teacher and coordinator training in treatment schools the week beginning
September 13 (teachers in control schools were trained from September 28-29.)

Teacher training consisted of coaching teachers in how to use the Accelerated Math
platform to provide practice and assessment opportunities for students at di↵erent skill
levels. To ensure di↵erentiated instruction, students were able to test within multiple grade
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levels of objectives. Therefore, a library or bank of Accelerated Math objectives, practice
questions, and assessments – spanning second through seventh grades – were available from
which teachers could pull assignments that students could master. However, starting in
February – four full months after the beginning of the program – teachers were restricted
from drawing objective assignments from libraries below fourth grade equivalency.

After brief site visits to ensure that experimental schools’ technological infrastructures
were properly in place, teachers were re-trained in how to use Star Math (a companion
program to the Accelerated Math platform that was already in place in the HISD schools),
which allows classroom teachers to administer a customized diagnostic test to students to
assess skill levels within certain grade-level objectives. Therefore, to determine the grade level
at which each student should begin their mastery of objectives, teachers began administering
student diagnostic assessments the week beginning Monday, September 20. Within two days,
92 percent of students in treatment schools had taken the diagnostic.

Payment Process

Preparation and Set-up: At the conclusion of each pay period, the district-based program
manager would begin processing student and parent payments along two fronts: first, ex-
tracting student performance data from the Accelerated Math platform, removing students
who opted out, and calculating student rewards ($2/per objective mastered); second, col-
lecting parent-teacher conference dashboards from school coordinators and inputing parent
attendance figures. These two data points are consolidated in a pay file and organized by
school.

After all parent conference data was collected and inputed, the pay file was sent to EdLabs
to complete the payment algorithm and conduct a few basic audits. The pay file was then
sent back to the district program manager, who reformatted and finalized the file for the
HISD finance o�ce, who uploaded payment information to JP Morgan Chase. Checks were
printed, bundled by school, and delivered to each school.

EdLabs also used the pay file to create reward certificates for every student receiving a
payment. The certificate detailed how many math objectives the student mastered during
the last period, the cumulative total, and the current financial earnings. When students
passed the 200 objective threshold, they received a special certificate in addition to their
$100 bonus.

Payment Logistics: School coordinators received student and parent checks and student
certificates one day prior to pay day. Each school planned pay day di↵erently, but there
was striking uniformity: typically a small assembly was held in the cafeteria during which
checks and certificates were distributed and students were recognized for their achievements.
Parents were often in attendance as well to acknowledge their children and receive their
checks.

Bonus Rounds

The first several pay periods of Math Stars yielded high rates of participation among both
students (i.e. percentage of students mastering at least one objective and receiving payment)
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and parents (i.e. percentage of parents attending a conference with their students teacher).
As a result of smooth implementation and general enthusiasm about the program among
students and sta↵members, HISD and EdLabs introduced two bonus rounds: during the
entire sixth pay period, (February 14 through March 11), students received $4 (rather than
the usual $2) for each objective mastered. During the final week of the eighth pay period
(May 2 through May 5), students received $6 for each objective mastered. These changes
were communicated to students primarily through posters hung throughout the school and
flyers sent home in weekly folders.

There were two primary objectives in introducing these bonus rounds: first, the additional
incentive was meant to strengthen students preparation for end-of-year testing. The first
($4) bonus round took place just prior to the Texas Assessment of Knowledge and Skills
(TAKS), while the second ($6) bonus round took place prior to the Stanford 10. Second, a
sub-experiment was being conducted to estimate a demand curve for math objectives; i.e.
asking whether a student will devote more e↵ort to mastering math objectives relative to
the increase in the reward.

Site Visits

In an e↵ort to gather extensive qualitatitve data on the implementation of HISD’s Math
Stars program, EdLabs conducted brief site visits to all 25 treatment schools.

EdLabs observed classrooms, interviewed students, teachers, and school leaders, and de-
veloped, with extensive help from HISD program personnel, a site visit rubric. In addition
to providing a comprehensive collection of qualitative school-level data to use in the eval-
uation of the Math Stars program (i.e. correlating school-level performance with observed
implementation indicators), the site visits also supplied the district-based program manager
with additional best practices to share with other schools during the last few pay periods of
the program.
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9 Online Appendix C: Variable Construction (Not For
Publication)

Attendance Rates
When calculating the school-level attendance rate, we consider all the presences and absences
for students when they are enrolled at each school. Individual attendance rates account for
all presences and absences for each particular student, regardless of which school the student
had enrolled in when the absence occurred.

E↵ort Index
To gauge how treatment a↵ected students’ e↵ort, we surveyed students about how strongly
they agreed with the following six statements: (1) Students in my school are usually on
time for class (2) Students in my classes usually turn in their homework (3) Students in my
classes usually ask questions (4) I am satistified with what I have achieved in my classes
(5) I have pushed myself to completely understand my lessons in school (6) I could do
much better in school if I worked harder. In each case, students were instructed to indicate
whether they believed the statement is totally untrue, mostly untrue, somewhat true, mostly
true, or totally true. This responses were coded on an integer scale ranging from 1-5, with
1 corresponding to “totally untrue.” To construct our index of e↵ort, we added up the
numeric values on all five responses (inverting the sign on question 6) and normalized the
sum to have a mean of zero and a standard deviation of one. We only calculate an index
for students with a valid response for all five statements, as nonresponse might otherwise
be confused with strong disagreement. When individual questions appear as dependent
variables in regressions, they were normalized similarly.

Free Lunch
Regressions include a dummy variable equal to one if a student is eligible for free or reduced-
price lunch.

Gifted and Talented
HISD o↵ers two Gifted and Talented initiatives: Vanguard Magnet, which allows advanced
students to attend schools with peers of similar ability, and Vanguard Neighborhood, which
provides programming for gifted students in their local school. We consider a student gifted
if he or she is involved in either of these programs.

Motivation Index
We disseminated part of the Intrinsic Motivation Inventory, developed by Ryan (1982), to
students in our experimental group. The instrument contains many modules, but we limited
our questions to those in the interest/enjoyment subscale in our surveys as it is considered
the self-reported measure of intrinsic motivation. The interest/enjoyment subscale consists
of seven statements on the survey: (1) I enjoy doing schoolwork very much; (2) doing
schoolwork is fun; (3) I thought this was a boring activity; (4) doing schoolwork does not
hold my attention at all; (5) I would describe doing schoolwork as very interesting; (6) I
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think doing schoolwork is quite enjoyable; and (7) while I am doing schoolwork, I think
about how much I enjoyed it. Respondents are asked how much they agree with each of
the above statements on a seven-point Likert scale ranging from “not at all true” to “very
true.” To get an overall intrinsic motivation score, one adds up the values on each statement
(reversing the sign on statements (3) and (4)). Only students with valid responses on each
statement are included in our analysis of the overall score, as non-response may be confused
with low intrinsic-motivation. When reporting results, we report e↵ects on scores normalized
to have a mean of zero and a standard deviation of one.

Special Education and Limited English Proficiency
These statuses are determined by HISD Special Education Services and the HISD Language
Proficiency Assessment Committee, respectively; they enter into our regressions as dummy
variables. We do not consider students who have recently transitioned out of LEP status to
be of limited English proficiency.

Suspensions
The school-level count of suspensions includes both in-school and out-of-school suspensions,
regardless of the nature of the infraction.

Race/Ethnicity
We code the race variables such that the five categories – white, black, Hispanic, Asian and
other – are collectively exhaustive and mutually exclusive. Hispanic ethnicity is an absorbing
state. Hence “white” implies non-Hispanic white, “black” non-Hispanic black, and so on.

Survey Responses
Some of the indirect outcomes reported in the paper include survey responses. We include
two questions from the student survey. First, students were asked “Did your parents check
your homework this year more than last year?” We code responses of “more this year” as 1
and responses of either “more last year” or “about the same” as 0. Second, students were
asked “What subject do you like better, math or reading?” We code responses of “math”
as 1 and “reading” as 0.

We also report the results of one question from the parent survey. Parents were asked “Do
you ask your 5th grade student more often about how he/she is doing in math class or
reading class?” We code responses of “math class” as 1 and responses of either “reading
class” or “no di↵erence” as zero.

Teacher Value-Added
HISD o�cials provided us with 2009-10 value-added data for 3,883 middle and elementary
school teachers. In Table 2, we present calculations based on the district-calculated Cumula-
tive Gain Indices. We normalize these indices such that the average teacher in each subject
has a score of zero and the sample standard deviation is one. These scores are then averaged
within each school.
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Test Scores
We observe results from the Texas Assessment of Knowledge and Skills (TAKS) and the
Stanford 10. For ease of interpretation, we normalize raw scores to have a mean of zero and
a standard deviation of one within grades, subjects, and years.

Treatment
Due to a limitation in the attendance data provided by HISD, we are unable to determine
the dates on which students enrolled in their current schools. AM registration files provides
a “snapshot” file that records each students’ enrolled school as of October 1. We include
students in one of the 25 treatment schools on October 1, 2010 in our treatment group (the
control group is defined similarly). Our results are not sensitive to changing the treatment
assignment based on the first school attended during the 2010-11 school year.
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Table 1: Summary of Math Stars Houston Incentives Experiment

Schools
50 (of 70 eligible) HISD schools opted in to participate, 25 schools randomly chosen for treatment. All treatment and
control schools were provided complete Accelerated Mathematics software, training, and implementation materials
(handouts and practice exercises).

Treatment Group 1,693 5th grade students: 27.5% black, 70.1% Hispanic, 55.5% free lunch eligible

Control Group 1,735 5th grade students: 25.7% black, 68.2% Hispanic, 53.6% free lunch eligible

Outcomes of Interest
TAKS State Assessment, STAAR State Assessment (post-treatment),Number of Math Objectives Mastered, Parent
Conference Attendance, Measures of Parent Involvement, Measures of Student Motivation and E↵ort

Test Dates Year 1: TAKS: April 12-23, 2011; TAKS Retake: May 23-25, 2011; Stanford 10: May 8-10, 2011
Year 2: STAAR: April 24-25, 2012

Objectives Database Students took a diagnostic test and were assigned math objectives to practice based upon their measured deficiencies.

Incentive Structure Students paid $2 per objective to practice a math objective and pass a short test to ensure they mastered it.

Additional Incentives $100 for mastering 200th objective (cumulatively)

Frequency of Rewards Paydays were held every 3-4 weeks

Operations $875,000 distributed in incentives payments, 99% consent rate. 2 dedicated project managers.

Notes. Each row describes an aspect of treatment indicated in the first column. Entries are descriptions of the schools, students, outcomes of interest, testing dates,

objectives database, incentive structure, additional incentives, frequency of rewards and operations. See Appendix A for more details. The numbers of treatment and control

students given are for those students who have non-missing reading or math test scores.



Table 2: Pre-Treatment Characteristics of Non-Experimental and Experimental Schools
Non-Exp. Exp. E vs. NE T vs. C
5th Grade 5th Grade p-value Treatment Control p-value

Teacher Characteristics

Percent male 0.161 0.183 0.105 0.174 0.191 0.317
(0.079) (0.078) (0.074) (0.082)

Percent black 0.322 0.370 0.307 0.366 0.374 0.777
(0.255) (0.292) (0.330) (0.257)

Percent Hispanic 0.343 0.365 0.547 0.352 0.377 0.417
(0.213) (0.202) (0.222) (0.183)

Percent white 0.290 0.222 0.033 0.236 0.207 0.668
(0.233) (0.158) (0.141) (0.176)

Percent Asian 0.034 0.032 0.798 0.029 0.035 0.315
(0.039) (0.032) (0.030) (0.035)

Percent other race 0.010 0.011 0.838 0.015 0.007 0.224
(0.015) (0.022) (0.026) (0.016)

Mean teacher salary / 1000 51.942 52.079 0.674 52.088 52.071 0.523
(2.058) (1.848) (1.706) (2.014)

Mean years teaching experience 11.878 12.082 0.657 12.222 11.942 0.326
(2.781) (2.656) (2.476) (2.870)

Mean Teacher Value Added: Math 0.040 -0.162 0.031 -0.211 -0.113 0.456
(0.468) (0.586) (0.417) (0.722)

Mean Teacher Value Added: Reading 0.040 -0.121 0.080 -0.128 -0.113 0.779
(0.465) (0.566) (0.411) (0.696)

Student Body Characteristics

# of suspensions per student 0.096 0.106 0.606 0.087 0.126 0.883
(0.096) (0.155) (0.108) (0.192)

# of days suspended per student 0.214 0.261 0.365 0.225 0.297 0.925
(0.988) (0.344) (0.290) (0.395)

Total Enrollment 2009-2010 727.467 593.068 0.000 606.522 579.251 0.718
(202.807) (142.169) (163.744) (117.878)

Number of Schools 130 50 25 25

Notes: This table reports school-level summary statistics for our aligned incentives experiment. The non-experimental
sample includes all HISD schools with at least one 5th grade class in 2009-10. Column (3) reports p-values on the null
hypthesis of equal means in the experimental and non-experimental sample. Column (6) reports the same p-value for
treatment and control schools. Each test uses heteroskedasticity-robust standard errors, and the latter test controls for
matched-pair fixed effects.



Table 3: Student Pre-Treatment Characteristics
HISD T vs. C.

5th Grade Treatment Control p-value
Student Characteristics

Male 0.510 0.526 0.525 0.504
(0.500) (0.499) (0.500)

White 0.078 0.019 0.046 0.000
(0.268) (0.138) (0.211)

Black 0.248 0.275 0.257 0.015
(0.432) (0.447) (0.437)

Hispanic 0.632 0.701 0.682 0.876
(0.482) (0.458) (0.466)

Asian 0.030 0.001 0.009 0.002
(0.172) (0.035) (0.094)

Other Race 0.012 0.003 0.006 0.364
(0.109) (0.055) (0.077)

Special Education Services 0.098 0.108 0.086 0.668
(0.297) (0.311) (0.281)

Limited English Proficient 0.307 0.293 0.336 0.017
(0.461) (0.455) (0.473)

Gifted and Talented 0.193 0.138 0.166 0.040
(0.394) (0.345) (0.373)

Economically Disadvantaged 0.828 0.929 0.909 0.219
(0.377) (0.257) (0.287)

Free or Reduced Price Lunch 0.513 0.555 0.536 0.349
(0.500) (0.497) (0.499)

TAKS Math 09-10 0.000 -0.142 -0.082 0.043
(1.000) (0.944) (0.954)

TAKS ELA 09-10 0.000 -0.166 -0.152 0.629
(1.000) (0.934) (0.956)

Missing Previous Math Scores 0.129 0.117 0.114 0.448
(0.336) (0.321) (0.317)

Missing Previous ELA Scores 0.134 0.125 0.122 0.514
(0.340) (0.331) (0.327)

p-value from joint F-test 0.643

Student Outcomes
Participated in Program 0.111 0.966 0.001 0.000

(0.314) (0.180) (0.034)
Periods Treated 0.944 8.473 0.003 0.000

(2.717) (1.739) (0.107)

Observations 15389 1693 1735 3428

Notes: This table reports summary statistics for our aligned incentives experiment. The sample is restricted to 5th
grade students with valid test score data for the 2010 - 2011 school year. Column (4) reports p-values on the null
hypothesis of equal means in treatment and control groups using heteroskedasticity-robust standard errors and controls
for matched-pair fixed effects.



Table 4 - Mean Effect Sizes (Intent to Treat Estimates): Indirect Outcomes
Raw Controlled

A. Student Achievement
State Math 10-11 0.077*** 0.081***

(0.024) (0.025)
3128 3128

State ELA 10-11 -0.084*** -0.077***
(0.026) (0.027)
3108 3108

Aligned State Math 10-11 0.129*** 0.137***
(0.027) (0.028)
3090 3090

Unaligned State Math 10-11 0.023 0.026
(0.029) (0.030)
3090 3090

B. Survey Outcomes
Parents check HW more 0.036 0.071***

(0.024) (0.027)
2041 2041

Student prefers Math to Reading 0.118*** 0.112***
(0.021) (0.023)
2356 2356

Parent asks about Math more than Rdg. 0.115*** 0.122***
(0.024) (0.028)
1908 1908

Conferences Attended 1.639*** 1.572***
(0.089) (0.099)
2052 2052

Objectives Mastered 0.978*** 1.087***
(0.029) (0.031)
3292 3292

C. Attendance and Motivation
Attendance 2010-2011 0.045* 0.050*

(0.026) (0.027)
3187 3187

Intrinsic Motivation 0.041 0.006
(0.056) (0.060)
2004 2004

Notes: This table reports ITT estimates of the effects of our aligned incentives experiment on various test scores and
survey responses. Testing and attendance variables are drawn from HISD attendance files and standardized to have
a mean of 0 and standard deviation of 1 among 5th graders with valid test scores. The survey responses included
here are coded as zero-one variables; The effort and intrinsic motivation indices are constructed from separate survey
responses; their construction is outlined in detail in the text of this paper and Online Appendix B. Raw regressions
include controls for previous test scores, their squares, and matched-pair fixed effects. Controlled regressions also
include controls for the gender, race, free lunch eligibility, special education status, and whether the student spoke
English as second language. Standard errors are robust to heteroskedasticity. *** = significant at 1 percent level, ** =
significant at 5 percent level, * = significant at 10 percent level.



Table 5: Mean Effect Sizes (Intent to Treat) By Subsample
Whole Gender Race Free Lunch Math Quintile
Sample Male Female p-val Black Hispanic p-val Yes No p-val Bottom Top p-val

A. Incentivized Outcomes
Objectives Mastered 1.087*** 1.012*** 1.159*** 0.816*** 1.114*** 1.096*** 1.055*** 0.686*** 1.660***

(0.031) (0.045) (0.043) 0.017 (0.045) (0.045) 0.000 (0.043) (0.047) 0.519 (0.047) (0.117) 0.000
3292 1728 1554 857 2283 1774 1492 694 423

B. Non-Incentivized Outcomes
State Math 10-11 0.081*** 0.106*** 0.040 -0.002 0.104*** 0.144*** -0.006 -0.004 0.228***

(0.025) (0.035) (0.037) 0.183 (0.056) (0.033) 0.101 (0.034) (0.037) 0.003 (0.049) (0.082) 0.011
3128 1636 1491 828 2165 1687 1421 663 428

State ELA 10-11 -0.077*** -0.067* -0.090** -0.069 -0.076** -0.033 -0.122*** -0.165*** 0.023
(0.027) (0.037) (0.039) 0.678 (0.071) (0.033) 0.926 (0.038) (0.041) 0.106 (0.063) (0.083) 0.060
3108 1616 1491 821 2151 1677 1411 659 427

Notes: This table reports ITT estimates of the effects of the experiment on incentivized and non-incentivized outcomes for a variety of subsamples. All regressions
follow the controlled specification described in the notes of previous tables. All test outcomes are standardized to have mean zero and standard deviation one among
all HISD fifth graders. *** = significant at 1 percent level, ** = significant at 5 percent level, and * = significant at 10 percent level.



Table 6: Mean Effect Sizes (Intent to Treat) on Second Year Outcomes By Subsample
Full Previous Year Math Achievement Bad Good

Sample Bottom Quintile Top Quintile p-value Shock Shock p-value
State Math 11-12 (Post-treatment) -0.042 -0.223*** 0.134* -0.252*** 0.498***

(0.029) (0.056) (0.078) 0.000 (0.055) (0.061) 0.000
2461 511 332 375 230

State Reading 11-12 (Post-treatment) -0.071** -0.170** 0.103 -0.196*** 0.156**
(0.029) (0.080) (0.086) 0.013 (0.056) (0.063) 0.000
2458 516 336 375 230

Attendance 2011-2012 0.011 0.084 0.018 -0.070 0.040
(0.035) (0.091) (0.070) 0.538 (0.075) (0.072) 0.147
2598 588 342 375 230

Notes: Columns 1-3 report ITT estimates of the effects of the experiment on year 2 test scores and attendance. Columns 5 and 6 report regression coefficients from
a regression of year 2 outcomes on dummies for whether a student received a large negative shock relative to his or her predicted year 1 test score (predicted by
objectives mastered in Accelerated Math, a measure of effort). Students are broken into quintiles by the size their residuals from a regression of year 1 test scores
on objectives mastered, and students with large negative residuals are in the bottom quintile, having received a while students with large positive residuals are in
the top quintile, having received a . Coefficients in this regression are reported relative to the third quuintile, who experienced the median shock. The sample is
restricted to the treatment group for this regression. All regressions follow the controlled specification described in the notes of previous tables. All test outcomes
are standardized to have mean zero and standard deviation one among all HISD fifth graders. *** = significant at 1 percent level, ** = significant at 5 percent level,
and * = significant at 10 percent level.
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Appendix Table 1 - Mean Effect Sizes (ITT and TOT Estimates)
First
Stage ITT TOT

A. Direct Outcomes
Objectives Mastered 0.954*** 1.087*** 1.139***

(0.003) (0.031) (0.032)
3292 3292 3292

Conferences Attended 0.956*** 1.572*** 1.644***
(0.003) (0.099) (0.103)
2052 2052 2052

B. Indirect Outcomes
State Math 10-11 0.957*** 0.081*** 0.085***

(0.002) (0.025) (0.026)
3128 3128 3128

State ELA 10-11 0.956*** -0.077*** -0.080***
(0.003) (0.027) (0.028)
3108 3108 3108

Aligned State Math 10-11 0.959*** 0.137*** 0.142***
(0.002) (0.028) (0.030)
3090 3090 3090

Unaligned State Math 10-11 0.959*** 0.026 0.027
(0.002) (0.030) (0.032)
3090 3090 3090

Parents check HW more 0.957*** 0.071*** 0.074***
(0.003) (0.027) (0.028)
2041 2041 2041

Student prefers Math to Reading 0.959*** 0.112*** 0.117***
(0.004) (0.023) (0.024)
2356 2356 2356

Parent asks about Math more than Rdg. 0.959*** 0.122*** 0.127***
(0.003) (0.028) (0.029)
1908 1908 1908

Attendance 10-11 0.962*** 0.050* 0.052*
(0.002) (0.027) (0.028)
3187 3187 3187

Intrinsic Motivation 0.958*** 0.006 0.006
(0.005) (0.060) (0.062)
2004 2004 2004

Notes: This table reports ITT and TOT estimates of the effects of our aligned incentives experiment on a variety of
outcomes. First-stage estimates report the causal effect of the experiment on the percentage of the school year each
student spends in a treatment school(number of days present divided by 180), controlling for our full set of covariates.
ITT estimates mirror those presented in earlier tables. Treatment-on-Treated estimates use randomized assignment to
a treatment school to instrument for time spent in a treatment schools; the estimates can be interpreted as the effect
of spending a full year in the treatment school for treated individuals. Standard errors are robust to heteroskedasticity.
The construction of each dependent variables is described in the notes of previous tables. *** = significant at 1 percent
level, ** = significant at 5 percent level, * = significant at 10 percent level.



Table A2: Mean Effect Sizes (Intent to Treat) By Subsample
Whole Gender Race Free Lunch Math Quintile
Sample Male Female p-val Black Hispanic p-val Yes No p-val Bottom Top p-val

A. Student Achievement
State Math 10-11 0.081*** 0.106*** 0.040 -0.002 0.104*** 0.144*** -0.006 -0.004 0.228***

(0.025) (0.035) (0.037) 0.183 (0.056) (0.033) 0.101 (0.034) (0.037) 0.003 (0.049) (0.082) 0.011
3128 1636 1491 828 2165 1687 1421 663 428

State ELA 10-11 -0.077*** -0.067* -0.090** -0.069 -0.076** -0.033 -0.122*** -0.165*** 0.023
(0.027) (0.037) (0.039) 0.678 (0.071) (0.033) 0.926 (0.038) (0.041) 0.106 (0.063) (0.083) 0.060
3108 1616 1491 821 2151 1677 1411 659 427

Aligned State Math 10-11 0.137*** 0.181*** 0.084** 0.021 0.177*** 0.186*** 0.062 -0.010 0.144***
(0.028) (0.041) (0.040) 0.086 (0.075) (0.036) 0.056 (0.038) (0.044) 0.030 (0.090) (0.049) 0.118
3090 1619 1470 808 2148 1661 1409 648 427

Unaligned State Math 10-11 0.026 0.030 0.007 -0.022 0.043 0.080* -0.045 -0.032 0.129**
(0.030) (0.042) (0.045) 0.695 (0.081) (0.038) 0.460 (0.041) (0.046) 0.040 (0.086) (0.055) 0.102
3090 1619 1470 808 2148 1661 1409 648 427

B. Survey Outcomes
Parents check HW more 0.071*** 0.066 0.075** 0.014 0.092*** 0.042 0.121*** 0.006 0.184**

(0.027) (0.041) (0.037) 0.859 (0.067) (0.034) 0.282 (0.037) (0.041) 0.141 (0.069) (0.085) 0.078
2041 1008 1030 527 1414 1117 911 387 271

Prefer Math to Reading 0.112*** 0.104*** 0.130*** 0.065 0.119*** 0.154*** 0.056* 0.153** 0.082
(0.023) (0.032) (0.033) 0.565 (0.069) (0.029) 0.465 (0.033) (0.033) 0.032 (0.062) (0.063) 0.396
2356 1214 1136 575 1656 1252 1087 506 299

Parents ask more about Math 0.122*** 0.088** 0.137*** 0.173** 0.118*** 0.104*** 0.136*** 0.032 0.214***
(0.028) (0.041) (0.038) 0.366 (0.073) (0.036) 0.488 (0.037) (0.042) 0.561 (0.068) (0.077) 0.057
1908 945 960 480 1334 1052 843 356 259

Conferences Attended 1.572*** 1.691*** 1.416*** 1.708*** 1.474*** 1.608*** 1.592*** 1.492*** 1.880***
(0.099) (0.148) (0.136) 0.159 (0.248) (0.130) 0.386 (0.132) (0.155) 0.936 (0.234) (0.305) 0.271
2052 1018 1030 526 1424 1127 911 394 270

Objectives Mastered 1.087*** 1.012*** 1.159*** 0.816*** 1.114*** 1.096*** 1.055*** 0.686*** 1.660***
(0.031) (0.045) (0.043) 0.017 (0.045) (0.045) 0.000 (0.043) (0.047) 0.519 (0.047) (0.117) 0.000
3292 1728 1554 857 2283 1774 1492 694 423

C. Attendance and Motivation
Attendance 2010-2011 0.050* 0.056 0.038 0.132** 0.004 0.051 0.031 0.048 0.073

(0.027) (0.039) (0.037) 0.736 (0.066) (0.031) 0.073 (0.036) (0.041) 0.700 (0.066) (0.066) 0.776
3187 1658 1528 821 2233 1707 1466 700 428

Intrinsic Motivation 0.006 -0.061 0.048 -0.134 0.016 -0.057 0.079 0.122 0.189
(0.060) (0.089) (0.083) 0.359 (0.147) (0.081) 0.353 (0.087) (0.088) 0.259 (0.156) (0.202) 0.772
2004 1029 969 476 1426 1072 916 400 260



Notes: This table reports ITT estimates of the effects of the experiment on incentivized and non-incentivized outcomes for a variety of subsamples. All regressions
follow the controlled specification described in the notes of previous tables. All test outcomes are standardized to have mean zero and standard deviation one among
all HISD fifth graders. *** = significant at 1 percent level, ** = significant at 5 percent level, and * = significant at 10 percent level.



Appendix Figure 1: 
Accelerated Math Progress Monitoring Dashboard 

 
 



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Appendix Figure 2: 

Distribution of Treatment and Control Schools Across Houston 
Notes: The background color indicates the poverty rate for each census tract, with darker shades denoting higher 

concentrations of poverty. T’s and C’s mark treatment and control schools, respectively. 
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