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Abstract: This paper takes a fresh look at cross-validation techniques for assessing the predictive validity 

of risk adjustment models within the classical linear framework. We show that a K-Fold cross-validation 

is more efficient than 50-50 split sample technique and illustrate that overfitting with rich risk adjustment 

models remains meaningful in samples of up to 500,000 observations. A new estimation algorithm is 

described that calculates K-Fold cross-validated R-squared efficiently, so that it can be applied easily on 

sample sizes in the millions without sorting or relying on split-sample techniques. The density functions 

obtained in repeated samples using this technique are statistically similar to those using conventional split 

sample methods. 
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1 Introduction 

In recent years interest has grown enormously in estimating and validating the use of risk adjustment 

models, which are useful for health plan payment, patient management, severity adjustment, and many 

other uses (Ellis, 2008). It is often the case that a researcher may wish to evaluate alternative sets of 

predictors on some new dataset, which may differ in the demographics, year, country, or even choice of 

the dependent variable to be predicted. (e.g., Winkelman and Mehmud, 2007, Stefos et al, 2009)  A 

commonly used approach is split sample validation, in which a fraction of the data (usually 50 percent) is 

used for estimation, and the remaining sample is used for validation. We argue in this chapter that while 

split sample validation is a useful approach when developing and selecting explanatory variables and the 

model structure, it is an inefficient approach when the goal is to simply validate existing risk adjustment 

models and structures. Instead we demonstrate that K-fold cross validation, which sequentially uses all of 

the data for both estimation and validation, is meaningfully more efficient, computationally feasible 

(particularly for linear models), and easy to explain. 

 

The use of split sample validation is widespread and well-illustrated by the influential 2007 Society of 

Actuaries report (Winkelman and Mehmud, 2007) which evaluates 12 distinct claims-based risk 

assessment models, using alternatively diagnoses, procedures, pharmacy information, and lagged 

spending, and evaluates several dozen alternative specifications of these models using a single 50-50 split 

sample validation on a standardized sample of 617,683 individuals. Manning et al. (2005) uses split 

sample methods on 200,000 observations (out of several million individuals potentially available) to 

evaluate linear and nonlinear predictive models using the same set of regressors.  Many other important 

methodological papers evaluate alternative models of annual health spending (without attempting to 

develop new sets of explanatory variables) using split sample methods (Mullahy, 1998; and Manning and 

Mullahy, 2001; Basu et al (2004), Manning et al. (2005); and Fishman et al., 2006). None of these papers 

recognize that by using only a single split of their full sample, their results are sensitive to the particular 

split samples created. The lone exception is Buntin and Zaslavsky (2004) who evaluate eight linear and 

nonlinear models using the Medicare Current Beneficiary Survey data on 10,134 individuals, a very 

modest sample size. Their validation uses 100 different replications of 50/50 splits of their sample for 

validation.   

 

It is well known that estimating models of health care costs is problematic due to the heavily right-skewed 

nature of the distribution of non-zero annual costs (Less commonly emphasized is that the explanatory 

variables are also often highly skewed.) Estimation of predictive models using OLS produces biased 
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measures and can lead to ‘overfitting’. While many early studies advocated strongly for nonlinear models 

to reduce the overfitting problem (Duan et al 1983) this preference was driven heavily by the limited 

sample sizes used for estimation.  Several more recent studies (Fishman et al, 2006; Ellis and McGuire, 

2007, Jiang, Ellis and Kuo, 2008) have demonstrated that the overfitting problems of OLS models largely 

disappear when very large samples sizes (over a million individuals) are used, an issue we also revisit 

here. Because of their ability to accommodate enormous numbers of covariates (in the hundreds), 

computational speed for estimation, simplicity to use for prediction and ease of explanation, OLS models 

have reemerged to be even more widely used than nonlinear techniques. Although nonlinear models 

remain popular among academic researchers, and may be essential for hypotheses testing in small to 

moderate size samples, none of the commercially available predictive models evaluated by the Society of 

Actuaries (Winkelman and Mehmud, 2007) use nonlinear models for prediction. 

 

We would like to highlight at this point that we are interested in validation of existing models, not 

validation done in the process of developing new models.  This paper is written from the point of view of 

model implementers, not model developers. The validation methods we consider are appropriate when the 

researcher is comparing alternative non-nested specifications that have been previously developed using 

other data, not when developing new models and specifications on the same data. If data is to be used to 

define explanatory variables, choose exclusions and interactions, or evaluate diverse possible nonlinear 

structures, then K-fold cross validation techniques described here can be misleading.  K-fold cross 

validation can help identify overfitting that results from estimation, but it cannot easily be used to 

understand overfitting due to model design and selection. For model development, split sample 

validation, or relying on validation by new samples will be a preferred method. 

 

In this paper we show that overfitting problem can be substantial even with sample sizes as large as 

200,000, but that overfitting has largely disappeared in samples in the millions.  The magnitude of the 

overfitting problem even in samples over 100,000 has perhaps been underappreciated in studies using 

small to moderate size samples, and such small samples cannot themselves be relied upon to validate the 

extent of the overfitting problem. Moving on, we describe an efficient algorithm for implementing K-fold 

cross validation in linear models. This efficient algorithm is applied to large empirical samples of several 

million records, taking only approximately three to five times the clock time of running a single OLS 

regression model. The algorithm uses the K-Fold cross validation technique developed in statistics 

literature. Although we develop the algorithm using health expenditure data predicted using a linear risk 

adjustment framework, the method is general and could be applied to any data. 
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Some readers may be disappointed that in this paper we focus solely on R-square measure of predictive 

ability, which is itself a transformation of the mean squared error, normalized by the total variance of the 

dependent variable.   We do this both because the R-square is a unit-free measure that is relatively easily 

interpreted across models and samples, and because the methods we present can also be applied in a 

straightforward way to alternative measures such as the root mean square error, mean absolute deviation, 

predictive ratios, and grouped R-square.  See Ash et al. (1989) and Ash and Byrne (1998) for discussion 

of the merits of these alternative measures. 

 

The rest of the paper is organized as follows. In section 3.2 we provide some background on risk 

adjustment models and estimation problems. In section 3.3 we examine more carefully the split sample 

and K-fold cross validation methodologies, highlighting that both are a form of cross validation. In 

section 3.4 we describe an efficient way to manipulate data in such a way that the K-fold cross validation 

can be performed much faster, making it superior to bootstrapping. We describe the data used for this 

exercise in section 3.5 and present the results in section 3.6. 

 

2 Literature on Risk Adjustment 

Risk adjustment has been used in the literature to embrace many different things, but for this chapter we 

use the Ellis (2008) definition which is that it means “the use of patient level information to explain 

variation in health care spending, resource utilization, and health outcomes over a fixed interval of time, 

such as a year” (p. 178). Many different sets of explanatory variables have been developed for use in risk 

adjustment, commonly known as risk adjusters. The minimal set would include information on a person’s 

age and gender, while more elaborate models may use socioeconomic or demographic information (e.g., 

income, education, race and ethnicity), diagnoses, pharmacy information, self-reported health status, 

provider information, or other variables.  Van de Ven and Ellis (2000) highlight that the best choice of 

information to use depends on the intended uses of the risk adjustment model. Hence the best model to 

use may depend on how the predictive model will be used, which may include not only the classic use for 

health plan capitation payment (Ash et al, 1989; van de Ven and Ellis, 2000), but also for provider 

profiling (Thomas, et al, 2004a, 2004b), case management, plan rating and underwriting (Cumming and 

Cameron, 2002), or quality assessment and improvement (Iezzoni, 2003). 

 

For this paper, we examine only three types of models: a simplified model that uses only age and gender, 

a prospective model that use diagnostic information to predict subsequent year health spending, and a 
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concurrent model that uses the same diagnostic information to predict health spending in the same year. 

Taking advantage of the fact that Ellis is one of the developers of the Diagnostic Cost Group (DCG) 

Hierarchical Condition Category (HCC) model, we evaluate our validation techniques using only the 

explanatory variables generated by that classification framework (Ash et al, 2000). Winkelman and 

Mehmud (2007) provide a useful overview of the various risk adjustment models used in the US, while 

Rice and Smith (2001) provide useful overviews of risk adjustment techniques outside of the US.  

 

Despite its many critics, the simple approach of ordinary least squares in which the dependent variable is 

untransformed spending, remains popular. This approach has the great advantage of being fast and simple 

to estimate, interpret, and explain to non-econometricians. It is the approach used by the US Medicare 

program (Pope et al., 2000, 2004). Ash et al. (1989) established the concept that to get unbiased estimates 

for consumers where some have partial year eligibility, then the correct thing to do in an OLS setting is to 

annualize costs by deflating by the fraction of the year eligible, and then to weight the observation by this 

same fraction. This weighted annualized regression can be shown to generate unbiased means in rate 

cells, and corresponding linear regression models.  Following Winkelman and Mehmud 2007, for the 

model validation exercises conducted below, we restricted our sample to include only people eligible for 

insurance for a full 24 months, and hence we do not have any partial year eligibles in our data. The 

estimation algorithms we develop work when the estimation approach is weighted least squares instead of 

OLS, however all of the results we present here use OLS. 

 

3 Model Prediction and Cross-Validation 

A common approach for choosing among competing alternative model specifications is based on their 

validated rather than within sample predictive power. This has attracted the attention of many researchers, 

not only in health care modeling but in all of social sciences. One of the most well-known methods—the 

ordinary cross-validation was developed as early as 1974 by statisticians. Noted seminal papers include 

Stone (1974, 1977). It is an old idea (predating the bootstrap) that has enjoyed a comeback in recent years 

with the increase in available computing power and speed. The main theme is to split the data according 

to some rule, estimate on one part of the data and predict using the other part. The two most common 

approaches are data splitting and K-Fold cross-validation. We discuss each of these techniques below. 

3.1 Data Splitting or Split Sample Technique 

In its most primitive but nevertheless useful form, cross-validation is done through data-splitting. In fact, 

cross-validation has almost become synonymous with data-splitting. In this approach, the researcher 



 
 

6 
 

selects (usually randomly) from the total set of observations available a subsample called the "training" or 

"estimation" sample to estimate the model and subsequently uses the model to predict the dependent 

variable for the remaining holdout or validation sample. Predictive validity then is assessed by using 

some measure of correlation between the values from the holdout sample and the values predicted by the 

model. This approach to cross-validation, sometimes with minor modifications, is generally accepted 

practice (Cooil et al, 1987). 

 

In the split sample technique, the sample is split into two parts, the training sample and the validation 

sample. The training sample is used to estimate the coefficients while the validation sample is used to test 

those results. As an example, let’s take the most common validation routine where 50% data is used for 

estimation and the rest 50% is used for validation (called the 50-50 split sample technique). The algorithm 

we executed on health care data was as follows. 

1. Randomly divide half of the data into the training or calibration sample and half into the 

validation sample.  

2. Run the OLS regression i i
i

Y X    on the calibration sample to estimate the vector {β}. 

3. Use these estimated vector  from the calibration sample applied to the validation sample to 

predict Y, called Y . 

4. Calculate the prediction error for each observation in the validation sample,  

PE =  Y Y  

5. Calculate various measures such as Mean Squared error, R-square, MAPE and the Copas test. 

 

Traditionally, data splitting is done only once rather than several times. This makes the results dependent 

on which data points end up in the training set and which end up in the test set. Sometimes it can lead to 

unexpected results, such as when the validated R-square is larger than the estimation sample R-square. A 

more recent practice has been to perform this exercise repeatedly and then take the mean of the estimates 

for forecasting, as in Buntin and Zaslavsky (2004). With a large number of draws this is guaranteed to 

overcome the monotonicity issue, but is still using less than all of the data for calibration. 

 

A weakness of the split sample method is that no matter how many times you perform a split sample 

validation; the estimates are always based on half the sample and thus will not be as efficient as if the 
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entire sample were being used. Even though medical claims data are large, people often fail to realize the 

large sample sizes needed to produce precise statistical measures in both the training and the validation 

samples. In many cases datasets are not large enough to eliminate overfitting. Splitting the sample in any 

fashion (be it a 50-50 or a 70-30 or some other combination) exacerbates the overfitting problem and 

increases the divergence between R-squares from the training sample and the validated sample.  

 

3.2 K-Fold Cross Validation 

In order to avoid the randomness emanating from estimates produced by splitting the data only once, “K-

fold” cross-validation makes more efficient use of the available information. The algorithm for this 

technique can be described in the following steps: 

1. Randomly split the sample into K equal parts 

2. For the kth part, fit the model to the other K-1 parts of the data, and use this model to calculate the 

prediction errors in the kth part of the data. 

3. Repeat the above step for k=1, 2….K and combine the K estimates of prediction errors to create a 

full sample of prediction errors. 

If K equals the sample size (N), this is called N-fold or "leave-one-out" cross-validation. "Leave-v-out" is 

a more elaborate and computationally time consuming version of cross-validation that involves leaving 

out all possible subsets of v cases. Note that all of these forms of cross-validation are different from the 

"split sample" method. In the split-sample method, only a single subset (the validation set) is used to 

estimate the prediction error, instead of k different subsets; i.e., there is no "crossing".  

 

Leave-one-out cross-validation is also easily confused with jackknifing. Both involve omitting each 

training case in turn and retraining the network on the remaining subset. But cross-validation is used to 

estimate generalization error, while the jackknife is used to estimate the bias of a statistic. In the 

jackknife, you compute some statistic of interest in each subset of the data. The average of these subset 

statistics is compared with the corresponding statistic computed from the entire sample in order to 

estimate the bias of the latter. You can also get a jackknife estimate of the standard error of a statistic. 

Jackknifing can be used to estimate the bias of the training error and hence to estimate the generalization 

error (Efron, 1982) 

 

However, one difficulty with K-fold cross-validation is that it can be computationally slow in with 

nonlinear models (including L' regression, tree structured methods for classification and nonlinear 
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regression) and even for OLS cross validation can be slow when millions of observations and hundreds of 

explanatory variables are used.(Breiman et al., 1984).  We describe a computationally efficient algorithm 

for conducting the K-fold cross validation below. 

3.3 COPAS Test 

The COPAS test is a formal test of overfitting using split sample or K-fold cross validation. The 

following algorithm is used to perform this test. 

1. Randomly split sample into two groups. The selection of groups can be 50-50 or 70-30 or (K-1, 

k). Call the first group A or the training sample and the other group B, or the validation sample 

2. Estimate model on sample A and retain its coefficients Â   

3. Forecast to sample B 

ˆ
B̂ A BY X  

4. Now regress the dependent variable from the validation sample i.e., BY  on the predicted BŶ  and 

test whether the slope is one. Hence estimate 

                   BB YY ˆ
10   and test 1 = 1 

5. If reject the null hypothesis, then overfitting may be a problem— and you should prune the model 

and check for outliers. 

If a split-sample validation is used, one can repeatedly use different splits of the sample, conducting a 

COPAS test for a large number of different splits, such as 100 or 1000, and then look at the percentage of 

times the null hypothesis was rejected.  For K-fold cross validation, repeated calculations of the COPAS 

test on the same sample will differ little, and instead we draw different samples from our large samples 

and calculate both goodness of fit measures and COPAS tests on each new draw.  To make the 

calculations and interpretation as simple as possible, we draw our samples each time without replacement. 

 

4 A computationally efficient method for K-fold validation 

 

As just discussed, both bootstrap methods and straightforward application of K-fold cross validation 

generally require multiple passes through the dataset, which can be computationally very time consuming 

when very large sample sizes and very large numbers of explanatory variables are involved.  Part of the 

contribution of this paper is in verifying the usefulness of a computationally fast algorithm for conducting 

k-fold cross validation. 
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Our approach is most easily explained with a certain new notation.  We use the matrix notation A-k to 

denote a matrix A generated while excluding the proper subset Ak of observations in set k.  If Y is the 

Nx1 array of the dependent variable and X is the NxM matrix of explanatory variables, let Z = {X Y}.  It 

is well known that the cross product matrix ZTZ contains all of the information needed to generate all 

conventional regression statistics, including betas, RSE and R-square.   The algorithm we implement for a 

sample size of N is as follows. 

 

1. Randomly sort the observations so that there is no significance to the initial original order. 

2. Estimate the OLS model using the full data set Z, retaining Q = ZTZ. 

3. For each of k subsamples of size N/K, created without replacement, generate Qk = Zk
TZk and take 

matrix differences to generate Q-k = Q – Qk = ZTZ - Zk
TZk 

4. Use Q-k to calculate the array of OLS regression coefficients β-k(Q-k), and then generate predicted 

values k̂Y , which were not used in β-k(Q-k).  Save these fitted values of k̂Y  in an { FoldKY 
ˆ } 

5. After repeating steps 3 and 4 for all of the k samples, generate validated RSE and R-square measures 

for the full set of size N using the original Y and { FoldKY 
ˆ }.  

6. Run the COPAS regression of Y on { FoldKY 
ˆ }. 

 

Reflecting the increased precision from larger samples, we repeated steps 1 through 6 for 1000 

replications for small sample sizes of 1000, 2000, and 5000 observations; 100 replications for sample size 

of 10,000, 20,000, 50,000, 100,000, 200,000 and 500,000;  50 replications for the sample sizes of 

1,000,000; and once for the entire sample (N = 4,688,092). We also explored the sensitivity of our results 

to various values of K=10, 100, and 1000. 

 

5 Data Description 

Data for this study come from the Medstat MarketScan Research Databases. These databases are a 

convenience sample reflecting the combined healthcare service use of individuals covered by Medstat 

employer clients nationwide. Personally identifiable health information is sent to Medstat to help its 

clients manage the cost and quality of healthcare they purchase on behalf of their employees. MarketScan 

is the pooled and de-identified data from these client databases. In this study we use the Commercial 

Claims and Encounters (CC&E) Database for 2003 and 2004.  This data was not used to calibrate or 
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revise the DCG/HCC risk adjustment classification system used for validation, and hence this is an 

appropriate sample for model validation.  

 

The Commercial Claims and Encounters Database contains the healthcare experience of approximately 10 

million employees and their dependents in 2003 and 2004. These individuals’ healthcare is provided 

under a variety of fee-for-service (FFS), fully capitated, and partially capitated health plans, including 

preferred provider organizations, point of service plans, indemnity plans, and health maintenance 

organizations. The database consists of inpatient admissions, inpatient services, outpatient services 

(including physician, laboratory, and all other covered services delivered to patients outside of hospitals 

and other settings where the patient would spend the (night), and outpatient pharmaceutical claims 

(prescription drugs delivered in inpatient settings are unfortunately not separately tracked in the 

databases). We have information on diagnoses for 2003 and covered charges (“health spending”) for 2003 

and 2004, enabling us estimate prospective models predicting 2004 health spending and concurrent 

models predicting 2003 health spending. 

 

We excluded people who were not continuously eligible for coverage for all of 2003 and 2004, everyone 

Medicare eligible at any time (and hence everyone over age 63 at the start of our sample), one person with 

implausibly high health spending in 2003, and people not in traditional indemnity, a preferred provider 

organization, a point of service plan, or a health maintenance organization.  Altogether this left 4,688,092 

individuals in our full sample.   

 

Using this data, we evaluate three different model specifications.  

 Age and sex model with 18 independent variables, (age gender dummies) 

 Prospective model with 18 independent age gender dummies and 182 hierarchical condition 

categories3  

 Concurrent model with 18 independent age gender dummies and 182 hierarchical condition 

categories  

 

                                                           
3 The DxCG HCC classification system contains 184 HCCs, however two of them never occurred in our data and 
hence are omitted. These two were HCC 129 End stage Renal Disease (Medicare program participant), and HCC 
173 Major Organ Transplant Status (e.g., heart, lung, etc.) which in the first case is impossible in our data by 
construction, and in the second case is sufficiently  rare among non-Medicare eligibles to have not occurred in our 
sample. Table B.3 in appendix B gives details on all HCC variables. 
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6 Results  

6.1 Descriptive statistics 

We start by examining some of the characteristics of our data, which are summarized in Table 1.  We see 

that both health spending in 2003 and 2004 have coefficients of variation (standard deviation divided by 

the sample mean) over 300, large skewness measures in the (30’s) and enormous kurtosis (over 2000).  

Note that all of these measures (the CV, skewness and kurtosis) are invariant to rescaling or normalization 

of the variable of interest. Also relevant are the moments of some of the explanatory variables. Age, 

gender, and dummy variables reflecting their interaction all have relatively low CV (less than 500), and 

have low skewness and kurtosis.  In contrast, a relatively rare HCC such as HIV/AIDS, with a prevalence 

rate of .00075 has a CV that exceeds that of annual spending (CV = 3651), a skewness of 36 rivaling that 

of health spending, and a kurtosis of 1329.  Hence despite having an acceptable sample size of over 3400 

cases with HCC001 in the full sample, in modest samples this variable will be subject to overfitting in 

modest size samples. Congestive heart failure, a binary variable with a nearly tenfold higher prevalence 

(mean = .00654) still has meaningful skewness and kurtosis.   

 

6.2 Full sample results 

Table 2 presents the results of estimating our three base models using the full sample sizes of N = 

4,688,092. Our base model is a prospective model, predicting 2004 total health care spending at the 

individual level using age, gender, and diagnostic information from 2003, the previous year to the health 

spending. This base “prospective model” has 200 parameters: a constant term plus 182 hierarchical 

condition categories and 17 of 18 mutually exclusive age-gender categories. All of these explanatory 

variables are binary variables. We also estimate results for an “Age-sex model” using only the age-gender 

dummies and finally a “concurrent model”, predicting 2003 spending in the same year as the diagnostic 

information (2003). Since more researchers are interested in prospective than concurrent models, we 

concentrate on the prospective model.   

 

Table 2 reveals that the fitted and validated R-square measures for the prospective split sample model 

differ by only .005.  The COPAS test on overfitting has a t ratio of -15.024 indicating that with only 2 

million records there is still some evidence of overfitting. In contrast the K-fold validation results differ at 

most by .001 when the full sample is used, and hence results are not overstated by overfitting.  The age-

sex model, with only its 18 parameters, does not explain much of the variation in spending, but also 

shows no evidence of overfitting. The COPAS test statistic on the slope for the prospective HCC model is 

of borderline significance with a t ratio of 1.807 (p = .07 on two-tail test).   
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6.3 K-Fold versus split sample results 

We next present results from K-Fold cross validation and compare them with split sample technique 

results. Table 3 presents these results for the prospective model. First consider the split sample results. 

For samples under 10,000, the R-square in the fitted models is grossly overstated, with highly negative 

validated R2.  For a more respectable sample size of 10,000 the fitted R-square has a mean of .359, while 

the validated R2 mean remains negative. We see that the fitted and validated R-squares diverge markedly 

for smaller samples—validating the well-known results that significant overfitting remains a concern even 

with sample sizes of 100,000 in richly predictive models using highly skewed explanatory variables. As 

the sample size increases, this divergence gradually disappears, and the overfitting problem seems to 

mitigate for large samples over 500,000 observations.  

 

The superiority of the K-fold cross validation over split sample validation is revealed in figure 1, which 

highlights that the K-fold R-square means are significantly closer to the true values than the split sample 

methods. These also reveal that the simple average of the fitted and validated R-square is a better estimate 

of the asymptotic predictive power of the model then just the validated R-square.  Another feature to note 

in this figure is that for K=100, the fitted mean R-square from split sample techniques using a sample of 

N observations is statistically indistinguishable from the fitted mean R-square from K-Fold cross 

validation technique using a sample of N/2 observations. Hence the split sample validation results on 

20,000 records gives nearly identical results to the K-fold validation results on 10,000 observations. This 

makes sense since splitting a 20,000 observation dataset into two parts and estimating the model using 

one part is almost identical to taking a 10,000 observation dataset and using 99% of it to estimate the 

model.  

 

Figure 2 plots not only the means but also the 90 percent confidence intervals for the fitted and validated 

R-squares using K-fold validation on the prospective HCC model. The 90 percent confidence intervals for 

the split sample model are even wider. This figure reveals that the 90 percent confidence intervals for the 

validated and fitted values overlap considerably, so it is not unusual for the validated and fitted R-s values 

to be reversed for the split sample techniques, simply due to chance.  In contrast, with K-fold validation 

the validated measure is guaranteed to be strictly less than the fitted value, since one can never do better 

using an out of sample model than using within sample methods. (See Efron and Tibshirani, 1998 for a 

demonstration.)   
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In Table 4 we repeat this exercise using only 18 age sex dummies as our right hand side variable. The first 

four columns of table 4 show that the fitted and validated R-square estimates are very close to each other 

for the age-sex model even with as few as 10,000 observations. However, the 90% confidence intervals 

shown in figure 3 reveal that there is still a meaningful amount of variation in estimates of the R-square 

even with this simply parameterized model.  

 

Figure 4 and the second set of columns in Table 4 present the concurrent model to show that K-Fold cross 

validation is useful for concurrent models as well. Overfitting is more significant in concurrent models 

with the mean R-squares differing by .005 even with a million individuals.  

 

Table 5 evaluates the impact of different choices of how many folds should be used in the K-Fold cross 

validation exercise. Each cell was generated by taking the mean and standard deviation of the validated 

R2 from 100 replications for the given sample size for K = 10, 100 and 1000, and hence each sample was 

used three times.  Comparing across rows, we see that estimates of the validated R-square using K-fold 

validation is relatively stable across values of K with a slight improvement for larger K = 10 to K = 100, 

but no apparent improvement going from 100 to 1000.  In part because of the computational savings we 

rely on K=100 for all of the rest of our results. 

 

In Table 6 we show the average time it took for us to validate our model using split sample and K-fold 

technique. It matters critically in this analysis whether the time taken generating the sample splits 

themselves are included in the estimates. Because split sample validation only estimates the model on half 

as much data, and forecasting the remaining half is very fast, split sample validation when efficiently 

programmed can take even less time than OLS. However, the more interesting thing to note is that the K-

fold Cross validation only took at most 5 times longer than the OLS, despite running 100 regression 

models. Even for the full sample of 4.7 million records, K-fold validation took only 4:02 versus :43 for 

OLS, a 5.6 fold multiple. Straightforward bootstrap techniques with 100 repetitions will have taken on the 

order of 100 times as much time as OLS to generate similar results. All of the times shown here were 

generated on a basic Dell Pentium IV desktop that had only 2.8 GHZ of processor speed and 2.0 GB of 

RAM and many research settings would typically have access to much faster machines. As a comparison, 

researchers at DxCG inc. estimated and validated a concurrent regression model using this K-Fold 

algorithm with 13.65 million records and 835 explanatory variables. Our algorithm took only 3.3 times as 

much clock time (115 minutes) as doing OLS (35 minutes), despite doing 100 regressions with 835 betas, 

each on over 13 million records. The overfitting problem was also trivial, with only a .002 overstatement 
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in the R-square. Bootstrap methods on this large sample could have taken multiple days to generate 

comparable statistics. 

 

7 Conclusions 

In this paper we have illustrated the value of using K-fold cross validation instead of split sample 

validation for validating linear models on large datasets. This technique is relevant in settings where the 

researcher is interested in comparing alternative sets of explanatory variables in a risk adjustment setting 

without exploring model specification, as in Winkelman and Mehmud (2007) and Manning et al (2008).  

If model selection tasks such as identifying which variables to include, searching among highly nonlinear 

models, or evaluating interactions and constraints are being considered, then split sample techniques will 

isolate the validation sample from contamination in ways that K-fold validation cannot.  

 

This paper documents the magnitude of overstatement of the R-square using three specification of 

common risk adjustment – age-gender, prospective and concurrent models. We have used DCG risk 

adjustment framework for all of our estimates, but the techniques should be relevant for any setting in 

which overfitting is of concern. K-Fold cross validation is superior to split sample techniques, even when 

multiple splits are considered, since it achieves the same level of precision with half the amount of data. 

We have used the K-fold validation to calculate only one measure of goodness of fit – the R-square, but 

the individual level out-of-sample predictions can be used for any number of other measures – including 

mean absolute deviations, predictive ratios and grouped R-squares – with a simple modification.  

 

Our demonstration that K-fold validation is relatively robust to relatively small values of K, such as ten, 

suggests that for nonlinear models, where computation time is a critical issue, K-fold cross validation 

using only K=10, and hence requiring only ten replications of estimation of the nonlinear model, may be 

attractive as an alternative to split sample techniques.  Often the very large sample sizes available to 

researchers imply that the relevant choice of models is between using all of the data for simple linear 

model versus a fraction of it for nonlinear estimation. We have not validated the relative attractiveness of 

these two competing approaches to model estimation.  

 

Part of the contribution of this chapter is that we develop a computationally efficient method of 

calculating K-fold validation which requires only on the order of five times as long as the amount of time 

running a simple OLS in large samples.  Given that bootstrap techniques require a much larger multiple of 
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time to generate comparable measures of out of sample predictive power, our hope is that this technique, 

long known in the statistical literature, will see increased use in empirical studies of large datasets. 
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Table 1 Summary statistics 

MEDSTAT Marketscan Data, 2003‐2004, N = 4,688,092

Variable Mean Std. Dev CV*100 Skewness Kurtosis Maximum

Covered total charges, 2003 2905 10859 374 32 2,405 1,909,854  

Covered total charges, 2004 3463 11675 337 27 2,174 2,222,606  

Age (years) 34.953 18.406 53 ‐0.323 ‐1.207 63               

Male =  if male 0.528 0.499 94 ‐1.110 ‐1.990 1                 

Agesex1=1 if male and age = 0‐5 0.048 0.213 447 4.25 16.03 1                 

HCC001 HIV/AIDS 0.00075 0.027 3651 36 1,329 1                 

HCC080 Congestive Heart Failure 0.00654 0.081 1233 12 148 1                   

 

 

 

Table 2 Full Sample Results 

MEDSTAT Marketscan Data, 2003‐2004, N = 4,688,092

Parameters

Fitted R‐

Square

Validated 

R‐Square

COPAS T‐

Ratio

Prospective HCC 200 0.175 0.174 1.807

Prospective AgeSex 18 0.030 0.030 0.045

Concurrent HCC 200 0.398 0.397 2.028

Prospective HCC Split 

Sample Technique 200 0.177 0.172 ‐15.024  
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Table 3: R Squares generated for Prospective Model with 218 parameters, HCC+ AGE + SEX, 100-

Fold, Cross Validation Vs. 50-50 Split 

Sample Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

500 0.638 0.180 ‐0.539 0.791 0.743 0.172 ‐1.864 4.267

1000 0.547 0.175 ‐0.362 0.562 0.637 0.189 ‐1.221 2.988

2000 0.467 0.152 ‐0.219 0.408 0.554 0.172 ‐0.707 2.057

5000 0.355 0.099 ‐0.045 0.173 0.444 0.134 ‐0.319 1.405

10,000 0.287 0.072 0.062 0.089 0.359 0.103 ‐0.091 0.359

20,000 0.236 0.050 0.112 0.053 0.282 0.078 0.026 0.183

50,000 0.201 0.029 0.146 0.035 0.225 0.048 0.114 0.070

100,000 0.189 0.022 0.160 0.024 0.203 0.028 0.148 0.031

200,000 0.182 0.016 0.167 0.016 0.188 0.022 0.162 0.020

500,000 0.177 0.010 0.171 0.010 0.180 0.013 0.169 0.014

1,000,000 0.176 0.007 0.173 0.007 0.178 0.010 0.172 0.011

Fitted R2 Validated R2 Fitted R2 Validated R2

K‐Fold, K=100 50‐50 Split Sample

 

 

Table 4: R Squares generated for Age-Sex model and Concurrent Model using K-Fold Cross 

Validation 

Sample Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

500 0.072 0.036 0.004 0.044 0.893 0.069 ‐0.121 0.569

1000 0.055 0.023 0.020 0.022 0.832 0.096 ‐0.085 0.622

2000 0.043 0.016 0.026 0.016 0.780 0.097 0.059 0.449

5000 0.037 0.011 0.031 0.011 0.659 0.107 0.181 0.287

10,000 0.033 0.008 0.029 0.008 0.603 0.103 0.314 0.178

20,000 0.032 0.008 0.030 0.008 0.543 0.110 0.371 0.135

50,000 0.029 0.006 0.029 0.006 0.489 0.101 0.406 0.116

100,000 0.031 0.004 0.030 0.004 0.437 0.073 0.391 0.078

200,000 0.030 0.003 0.030 0.003 0.419 0.058 0.395 0.061

500,000 0.030 0.002 0.030 0.002 0.404 0.028 0.393 0.028

1,000,000 0.030 0.001 0.030 0.001 0.400 0.012 0.395 0.012

Age‐Sex Model Concurrent Model

Fitted R2 Validated R2 Fitted R2 Validated R2
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Table 5: Comparison of Validated R-Square Mean and Standard Deviation for various Choices of 

K and sample sizes, K-Fold Cross Validation on Prospective HCC + Age + Sex Model, and 218 

parameters 

Sample Size K=10 K=100 K=1000 K=10 K=100 K=1000

2000 ‐0.154 ‐0.219 ‐0.127 0.220 0.408 0.203

5000 ‐0.047 ‐0.045 ‐0.032 0.139 0.173 0.134

10,000 0.050 0.062 0.067 0.095 0.089 0.084

20,000 0.099 0.112 0.108 0.057 0.053 0.056

50,000 0.142 0.146 0.146 0.035 0.035 0.034

100,000 0.157 0.160 0.158 0.023 0.024 0.023

200,000 0.165 0.167 0.165 0.015 0.016 0.015

500,000 0.170 0.171 0.171 0.010 0.010 0.010

Validated R2 Mean Validated R2 Std Dev

 

 

Table 6: Comparison of Average Computer Time Utilized in validating in 100 samples of different 

sizes, Prospective Model, 218 parameters HCC + AGE +SEX 

OLS  50‐50 Split Design K‐Fold, K=100

Sample Size Time in Seconds Time in Seconds Time in Seconds

1000 0.246 0.047 20.640

2000 0.341 0.046 21.219

5000 0.276 0.078 21.984

10,000 0.288 0.109 22.796

20,000 0.411 0.187 23.063

50,000 0.737 0.391 24.640

100,000 1.588 0.750 27.266

200,000 2.463 1.609 34.407

500,000 7.382 3.375 45.297

1,000,000 17.593 8.547 69.234  
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Table 7: Average T-Ratio on Copas Test, Various Sample Sizes, 50-50 Split vs. K-Fold Cross 

Validation 

K‐Fold, K=100 50‐50 Split Design

Sample Size Mean Mean

500 15.672 16.711

1000 18.649 19.194

2000 22.007 21.078

5000 24.572 24.910

10,000 22.338 24.755

20,000 19.527 24.279

50,000 14.920 20.220

100,000 11.318 14.956

200,000 8.681 11.812

500,000 5.517 8.885

1,000,000 3.950 3.716
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Figure 1: Fitted and Validated R2 means by sample size, 200 parameters HCC + Age + Sex model, 50-50 Split Technique Vs. K-

Fold Cross Validation  
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Figure 2: Fitted and Validated R2 by sample size, 200 parameter Prospective HCC + Age + Sex model, means and 90% confidence 

intervals, K-Fold Cross Validation Method 

‐0.2

‐0.1

0

0.1

0.2

0.3

0.4

0.5

R 
Sq
ua
re

Fitted Mean 

Fitted 5%

Fitted 95%

Validated Mean

Validated 5%

Validated 95%

 



 
 

22 
 

Figure 3: Fitted and Validated R2 by sample size, 18 parameter Age + Sex model, means and 90% confidence intervals, K-Fold 

Cross Validation 
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Figure 4: Fitted and Validated R2 by sample size, 200 parameter Concurrent HCC + Age + Sex model, means and 90% confidence 

intervals, k-Fold Cross Validation  
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