CV: Ranga B. Myneni

(January 2025)

WEBSITE

• http://sites.bu.edu/cliveg/

EDUCATION

• Phd in Biology, Department of Biology, University of Antwerp, Belgium, 1985.

EMPLOYMENT

- 1997 to Present: Prof., Dept. of Earth & Environment, Boston University
- 1990 to 1996: Research Fellow at NASA Goddard Space Flight Center

RESEARCH

- Remote Sensing of Vegetation (Theory and Data Analysis)
- Vegetation and Climate Interactions (Modeling and Data Analysis)

TEACHING

- GE 101: Physical Geography
- GE 529: Modeling & Monitoring Terrestrial Ecosystem Processes
- GE 645: Physical Models in Remote Sensing
- More: http://sites.bu.edu/cliveg/courses/

STUDENT & REASEACHER TRAINING

- Graduated 24 PhD and 14 MA students as First Reader since January 1997
- Hosted 25 Post-doctoral & Visiting Research Scholars since January 1997
- Current: 3 PhD students

PUBLICATIONS

- 356 Publications and 9 book chapters since 1985
- 52 Publications in Nature Family Journals, Science and PNAS
- http://sites.bu.edu/cliveg/people/professors/prof-ranga-b-myneni/myneni-publications/

RESEARCH GRANTS

- Completed 39 research grants as PI since 1995
- Current 3 research grants as PI
- List of projects: http://sites.bu.edu/cliveg/projects/

CITATIONS

- Thomson Reuters Web of Science Metrics; Citations: 56,248; H-index: 113
- Google Scholar Metrics: Citations: 90,611; H-index: 141

SERVICE & HONORS

- Alexander von Humboldt Research Award 2017-18
- Lead Author, IPCC-2013 AR5-WG1-Chapter 6 (Carbon & Other Biogeochemical Cycles)
- Member NASA MODIS, MISR (ex) and NPP-VIIRS & JPSS Satellite Science Teams
- Highly Cited Researcher
 - o 2024, 2023, 2022, 2021, 2020 and 2019 Geosciences and Environment & Ecology

- o 2018 Cross Field
- o 2014 Geosciences

KEY PUBLICATIONS

• <u>Satellite Vegetation Data sets</u>:

- o Pu et al., 2024. Sensor-independent LAI/FPAR CDR: reconstructing a global sensor-independent climate data record of MODIS and VIIRS LAI/FPAR from 2000 to 2022, Earth Syst. Sci. Data, 16, 15-34, 2024, https://doi.org/10.5194/essd-16-15-2024
- o **Myneni** et al., 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. *Remote Sens. Environ.*, 83: 214-231.

• Greener North:

Myneni et al., 1997. Increased plant growth in the northern high latitudes from 1981-1991. *Nature*, 386:698-701.

• Greener Earth:

- o Chen, C., 2019. China and India lead in greening of the world through land use management. *Nature Sustainability*, doi: 10.1038/s41893-019-0220-7
- o Zhu, Piao, **Myneni** et al., 2016. Greening of the Earth and its drivers. *Nature Climate Change*, doi:10.1038/nclimate3004.
- o Piao et al., 2019. Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth and Environment, doi: 10.1038/s43017-019-0001-x

• Biomass/Carbon Cycle:

- o Zhu, Z., Zeng, H., **Myneni, R.B.** et al., 2021. Comment on "Recent global decline of CO2 fertilization effects on vegetation photosynthesis". Science, doi: 10.l 126/science.abg5673
- o Winkler, A., **Myneni, R. B.** et al. 2019. Earth system models underestimate carbon fixation by plants in the high latitudes. *Nature Communications*, doi:10.1038/s41467-019-08633-z
- o **Myneni** et al., 2001. A large carbon sink in the woody biomass of northern forests. *Proc. Natl. Acad. Sci. USA.*, 98(26): 14784-14789.

Biogeophysics

o Chen et al., 2020. Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. Sci. Adv., 6: eabb1981

• Amazon Rainforest Seasonality:

- Hashimoto etal., 2021. New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nature Communications, https://doi.org/10.1038/s41467-021-20994-y
- o **Myneni** et al., 2007. Large seasonal changes in leaf area of amazon rainforests. *Proc. Natl. Acad. Sci.*, 104: 4820-4823.

• Radiative Transfer:

Myneni et al., 1990. Radiative transfer in three-dimensional leaf canopies. Transport Theory and Statistical Physics, 19:205-250.