
Lab 8: Digital Modulation

SUMMER CHALLENGE COURSE
SMART LIGHTING

07/30/2013

Ozan Tuncer

otuncer@bu.edu

mailto:otuncer@bu.edu

Boston University Slideshow Title Goes Here

2

The Audio Signal Path

Boston University Slideshow Title Goes Here

3

Line Encoding

• Converting a string of 1’s and 0’s (digital data) into a sequence of signals

that denote the 1’s and 0’s.

• For example a high voltage level (+V) could represent a “1” and a low

voltage level (0 or -V) could represent a “0”.

Boston University Slideshow Title Goes Here

4

Tx

 = power on (signal)

0 = power off (no signal)

Nonreturn to Zero (NRZ) / ON-OFF Keying

Clock

Boston University Slideshow Title Goes Here

5

Tx

Rx

 = power on (signal)

0 = power off (no signal)

Nonreturn to Zero (NRZ) / ON-OFF Keying

Clock

Boston University Slideshow Title Goes Here

6

Tx

Rx

 = power on (signal)

0 = power off (no signal)

Problem(s)

• lack of “clock” recovery during long string of or bits

• “baseline wander” during long string of or bits

Nonreturn to Zero (NRZ) / ON-OFF Keying

Clock

Boston University Slideshow Title Goes Here

7

Nonreturn to Zero Inverted (NRZI)

 = change of signal level (on-off or off-on)

0 = no change of signal level

• NRZI is an example of differential encoding

• Fixes clocking problem for long string of bits

Problem(s)

• Lack of clock recovery during long string of bits

Boston University Slideshow Title Goes Here

8

Manchester Encoding

Always transition in middle of bit period:

0 = low-to-high transition

1 = high-to-low transition

• Good clock recovery

• How to implement this?

Boston University Slideshow Title Goes Here

9

Logic Design

• Boolean Functions (Logic Functions): are function that

return truth values; variables can only be 1 (true) or 0

(false).

NOT function: Y = ~X

Boston University Slideshow Title Goes Here

10

Logic Design

• Boolean Functions (Logic Functions): are function that

return truth values; variables can only be 1 (true) or 0

(false).

NOT function: Y = ~X

• A Logic Gate: is a physical device implementing

a Boolean function.

Boston University Slideshow Title Goes Here

11

Logic Design

• Boolean Functions (Logic Functions): are function that

return truth values; variables can only be 1 (true) or 0

(false).

NOT function: Y = ~X

• A Logic Gate: is a physical device implementing

a Boolean function.

• A Truth Table: shows how a logic circuit's output

responds to inputs.

X Y

0

1

1

0

Boston University Slideshow Title Goes Here

12

NOT Gate -- Inverter

X Y

0

1

1

0

X Y

Y

NOT

X Y

Y = ~X

NOT

Boston University Slideshow Title Goes Here

13

AND Gate

AND

X

Y

Z

Z = X & Y

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

Boston University Slideshow Title Goes Here

14

NAND Gate

NAND

X

Y

Z

X Y Z

0 0 1

0 1 1

1 0 1

1 1 0

Z = ~(X & Y)

nand(Z,X,Y)

Boston University Slideshow Title Goes Here

15

NOR Gate

NOR

X

Y
Z

X Y Z

0 0 1

0 1 0

1 0 0

1 1 0
Z = ~(X | Y)

nor(Z,X,Y)

Boston University Slideshow Title Goes Here

16

Exclusive-OR Gate

X Y Z
XOR

X

Y
Z 0 0 0

0 1 1

1 0 1

1 1 0

Z = X ^ Y

xor(Z,X,Y)

Boston University Slideshow Title Goes Here

17

Manchester Encoding

Always transition in middle of bit period:

0 = low-to-high transition

1 = high-to-low transition

• Good clock recovery

• How to implement this?

Boston University Slideshow Title Goes Here

18

Manchester Encoding

Always transition in middle of bit period:

0 = low-to-high transition

1 = high-to-low transition

Boston University Slideshow Title Goes Here

19

Tx/Rx

X Y Z
XOR

X

Y
Z 0 0 0

0 1 1

1 0 1

1 1 0

Z = X ^ Y

xor(Z,X,Y)

