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The Audio Signal Path 
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Line Encoding 

• Converting a string of 1’s and 0’s (digital data) into a sequence of signals 

that denote the 1’s and 0’s. 

• For example a high voltage level (+V) could represent a “1” and a low 

voltage level (0 or -V) could represent a “0”. 
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Tx 

 = power on (signal) 

0 = power off (no signal) 

 

 

Nonreturn to Zero (NRZ) / ON-OFF Keying 

Clock 
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Tx 

          
Rx 

 = power on (signal) 

0 = power off (no signal) 

 

Problem(s)  

• lack of “clock” recovery during long string of  or  bits 

• “baseline wander” during long string of  or  bits 

Nonreturn to Zero (NRZ) / ON-OFF Keying 

Clock 
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Nonreturn to Zero Inverted (NRZI) 

 = change of signal level (on-off or off-on) 

0 = no change of signal level 

 

• NRZI is an example of differential encoding 

• Fixes clocking problem for long string of bits 

Problem(s)  

• Lack of clock recovery during long string of bits 
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Manchester Encoding 

Always transition in middle of bit period: 

0 = low-to-high transition 

1 = high-to-low transition 

 

• Good clock recovery 

 

• How to implement this? 
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Logic Design 

• Boolean Functions (Logic Functions): are function that 

return truth values; variables can only be 1 (true) or 0 

(false). 

NOT function:      Y = ~X 
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Logic Design 

• Boolean Functions (Logic Functions): are function that 

return truth values; variables can only be 1 (true) or 0 

(false). 

NOT function:      Y = ~X 

 

• A Logic Gate: is a physical device implementing 

a Boolean function. 

 

 

 

• A Truth Table: shows how a logic circuit's output 

responds to inputs.   
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NOT Gate -- Inverter 

X Y 

0 

1 

1 

0 

X Y

Y

NOT

X Y

Y = ~X

NOT
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AND Gate 

AND 

X 

Y 

Z 

Z = X & Y 

X  Y  Z 

0  0  0 

0  1  0 

1  0  0 

1  1  1 
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NAND Gate 

NAND 

X 

Y 

Z 

X  Y  Z 

0  0  1 

0  1  1 

1  0  1 

1  1  0 

Z = ~(X & Y) 

nand(Z,X,Y) 
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NOR Gate 

NOR 

X 

Y 
Z 

X  Y  Z 

0  0  1 

0  1  0 

1  0  0 

1  1  0 
Z = ~(X | Y) 

nor(Z,X,Y) 
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Exclusive-OR Gate 

X Y  Z 
XOR 

X 

Y 
Z 0 0  0 

0 1  1 

1 0  1 

1 1  0 

Z = X ^ Y 

xor(Z,X,Y) 
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Manchester Encoding 

Always transition in middle of bit period: 

0 = low-to-high transition 

1 = high-to-low transition 

 

• Good clock recovery 

 

• How to implement this? 
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Manchester Encoding 
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Tx/Rx 

X Y  Z 
XOR 

X 

Y 
Z 0 0  0 

0 1  1 

1 0  1 

1 1  0 

Z = X ^ Y 

xor(Z,X,Y) 


