Lab 8: Digital Modulation

SUMMER CHALLENGE COURSE SMART LIGHTING 07/30/2013

Ozan Tuncer otuncer@bu.edu

- Converting a string of 1's and 0's (digital data) into a sequence of signals that denote the 1's and 0's.
- For example a high voltage level (+V) could represent a "1" and a low voltage level (0 or -V) could represent a "0".

Department of Electrical & Computer Engineering

= power on (signal) 0 = power off (no signal)

Nonreturn to Zero (NRZ) / ON-OFF Keying

= power on (signal) 0 = power off (no signal)

= power on (signal) 0 = power off (no signal)

Problem(s)

Βl

- lack of "clock" recovery during long string of or bits
- "baseline wander" during long string of or bits

J Department of Electrical & Computer Engineering

= change of signal level (on-off or off-on) 0 = no change of signal level

- NRZI is an example of differential encoding
- Fixes clocking problem for long string of bits
 Problem(s)
 - Lack of clock recovery during long string of bits

Always transition in middle of bit period: 0 = low-to-high transition 1 = high-to-low transition

- Good clock recovery
- How to implement this?

 Boolean Functions (Logic Functions): are function that return truth values; variables can only be 1 (true) or 0 (false).

NOT function: Y = -X

 Boolean Functions (Logic Functions): are function that return truth values; variables can only be 1 (true) or 0 (false).

NOT function: Y = -X

• A Logic Gate: is a physical device implementing a Boolean function.

• Boolean Functions (Logic Functions): are function that return truth values; variables can only be 1 (true) or 0 (false).

NOT function: Y = -X

• A Logic Gate: is a physical device implementing a Boolean function.

• A Truth Table: shows how a logic circuit's output responds to inputs. $\nabla = \frac{1}{2} \nabla \nabla \nabla$

NOT Gate -- Inverter

AND Gate

Department of Electrical & Computer Engineering

NAND Gate

Z = ~ (X & Y) nand(Z,X,Y)

NOR Gate

BU Department of Electrical & Computer Engineering

Exclusive-OR Gate

Always transition in middle of bit period: 0 = low-to-high transition 1 = high-to-low transition

- Good clock recovery
- How to implement this?

Always transition in middle of bit period:

- 0 = low-to-high transition
- 1 = high-to-low transition

Tx/Rx

Department of Electrical & Computer Engineering