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Measuring the Influence of Multichannel Digital Advertising: A 

Fractional Calculus-Based Approach 

 
Abstract 

While the digital advertising markets have been growing rapidly, the effect of advertising is yet to be 

properly understood, mainly due to long purchase cycles and unobserved stages in consumers’ decision-

making process. To address this shortcoming, we first propose a new advertising stock model that 

accounts for consumers’ independent decision-making as well as the word of mouth and network effects. 

Fractional calculus is used to account for advertising stock erosion due to consumers’ memory decay. 

Based on the proposed advertising stock model, we then develop a generalized proportional hazard model 

that incorporates different channels’ advertising stocks as covariates to measure the effect of these 

channels on adoptions. The proposed model is tested using a dataset that records individual-level 

adoptions of a new video game and advertising impressions from different digital channels. The results 

show that consumers’ advertising stocks exhibit a nonmonotonic pattern, contrary to the geometric decay 

assumed in the literature. Furthermore, we compare the proposed model with two benchmark models and 

show that our model outperforms them in determining the influence of different channels on adoptions. 

We also find that consumers’ decisions are heavily affected by word of mouth and network effects, which 

have not been accounted for in prior studies, and that these effects are accentuated post product release. 

Additionally, our empirical results demonstrate that firms are better off advertising through a few select 

channels instead of utilizing all available channels. Our findings bear important practical implications and 

can help advertisers efficiently and effectively plan their advertising campaigns. 

Keywords: Advertising stock, advertising channel, digital attribution, fractional calculus, hazard model 

  



2 

Measuring the Influence of Multichannel Digital Advertising: A 

Fractional Calculus-Based Approach 

 
1. Introduction 

Digital advertising is becoming the dominant form of advertising (Todri 2022), with total spending 

expected to reach $298.4 billion in 2024 (Statista 2023). As a result of such enormous online advertising 

(or ad for short) expenditure, consumers experience frequent exposures to advertisements from various 

digital channels. Despite the rapid growth of digital advertising market, Gordon, Jerath, Katona, 

Narayanan, Shin, and Wilbur (2021) report in a comprehensive review article that ad effect measurement 

is yet to be properly addressed. According to them, challenges in advertising effect measurement can be 

attributed to different reasons, including long purchase cycles and unobserved stages in consumers’ 

decision-making process. Specifically, following the hierarchy of effects model, consumers first gain 

product awareness based on information received from an advertiser, then potentially develop interest due 

to actively acquiring and processing relevant information, and finally may act in the form of product 

purchase due to the developed interest (Barry 1987). While consumers’ purchases can be recorded, their 

information accumulation and interest development are typically not directly observable to the advertiser. 

Additionally, the common practice of starting advertising before product release further complicates the 

measurement of advertising effect. Particularly, it is challenging to gauge how advertising campaigns 

influence consumers’ purchase decisions before a product is launched. Furthermore, firms often advertise 

through multiple channels, making it challenging to determine the effect of each channel. We endeavor to 

address these challenges in this study by developing new advertising stock and digital attribution models, 

also heeding the recent call by Gordon et al. (2021) to provide an efficient and effective solution to the ad 

effect measurement problem. 

We first introduce a new advertising stock model based on the premise that the contribution of an ad 

exposure to a consumer’s advertising stock is determined by the product information the consumer 

receives and the subsequent interest in the product the consumer develops over time. Under the new 
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model, depending on the rate of information accumulation and interest development, the advertising stock 

and subsequently the effect of advertisement either monotonically declines or first increases and then 

decreases over time, conforming to the two different patterns reported in the literature and enhancing the 

model’s generalizability. 

The new model accounts for consumers’ independent decision-making as well as the word of mouth 

and network effects. This renders the model more realistic than existing models that do not incorporate 

these influences, specifically considering that electronic word of mouth plays a primal role in forming 

consumers’ attitudes and behaviors (Todri, Adamopoulos, and Andrews 2022). 

Furthermore, considering that memory plays a pivotal role in the temporal dynamics of consumers’ 

advertising stock, we incorporate consumers’ memory decay in the new advertising model as well. In 

particular, accounting for memory decay is of fundamental importance in cases where firms start their 

advertising campaigns before releasing their products to the market, expecting to reap the benefit of 

advertising after product release. In our advertising stock model, we use fractional calculus to model the 

erosion of advertising stock due to consumers’ memory decay over time. Fractional calculus, a novel 

mathematical tool that has been applied in multiple disciplines including management science (Lotfi, 

Jiang, Naoum-Sawaya, and Begen 2024, Lotfi, Naoum-Sawaya, Lotfi, and Jiang 2024, Lotfi, Jiang, Lotfi, 

and Jain 2023), extends the classical integration and differentiation operators, making non-integer 

derivatives and integrals possible. The model assumes a power-law memory decay trend, which closely 

resembles the Woodworth’s classic forgetting curve (Bennedsen and Caspersen 2009). 

The prior literature has used experiments or observational data to analyze the effect of advertising, 

with the latter more widely adopted (Gordon et al. 2021). In this research, we test our model using a video 

game dataset that records individual-level ad exposures from different channels before and after product 

release and product adoptions (purchases) after release. This dataset provides a unique opportunity to 

study the advertising effect because it is quite rare that a single-source dataset contains both advertising 

exposures and the subsequent conversions (Gordon et al. 2021). 



4 

To measure the influence of exposures from different channels on product adoptions, we incorporate 

changes in advertising stocks resulting from such exposures, as computed by the proposed advertising 

stock model, into a proportional hazard model. The proposed generalized hazard model can utilize data on 

individual-level advertising exposures and adoptions, and is also applicable in cases where advertising 

exposures start to occur before product release. 

We compare the proposed generalized hazard model with two benchmark hazard models. In the first 

benchmark model, the measurement of consumers’ stocks of advertisements is conducted using the 

widely-used Koyck distributed lag model (1954) based on which the effect of an ad exposure decays 

exponentially over time. It is important to note that, even though the Koyck model is proposed decades 

ago, this intuitive and parsimonious model is frequently adopted by more recent studies (e.g., Terui, Ban, 

and Allenby 2011, Zantedeschi, Feit, and Bradlow 2016, and Chae, Bruno, and Feinberg 2019). We 

develop a second benchmark model in which the Erlang-2 distribution is used to represent each 

exposure’s advertising stock trend (Chatfield and Goodhardt 1973). This model assumes that the effect of 

each ad exposure peaks, following an Erlang-2 distribution. 

Our empirical results demonstrate that the proposed model more accurately fits the training data and 

delivers a better out-of-sample prediction performance than do the two benchmark models. Additionally, 

we show that a consumer’s advertising stock can exhibit a nonmonotonic trend that first increases and 

then declines, and that the nonmonotonic pattern emerges due to the word of mouth and network effects. 

Moreover, to further adjust the model to cases in which firms start advertising before product release, 

we develop a model extension which distinguishes between the word of mouth and network effects before 

and after product release. Our empirical findings based on the extended model demonstrate that the word 

of mouth and network effects become significantly accentuated after product release, resulting in a much 

quicker rise in the adstock trends of consumers who embark on their purchase journey post product 

release. 
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Finally, our results indicate that firms are better off selecting a subset of the available advertising 

channels that have the highest impact on consumers’ adoption decisions, because viewing advertisements 

through too many channels may negatively impact consumers’ adoption propensity. 

This study also offers important practical implications. First, the model we propose explains and 

predicts the temporal dynamics of advertising effect, which can help firms decide the timing of their 

advertising campaigns. In particular, since the proposed model can capture the effect of advertising 

exposures from before product release, it can help firms plan for pre-launch advertising campaigns. 

Second, firms can implement the proposed modeling framework to distinguish between the word of 

mouth and network effects before and after product release, allowing them to strategically plan to 

leverage these effects. Specifically, considering that pre-release word of mouth is expected to be greatly 

influenced by influencers, firms can plan to efficiently invest in influencer-based word of mouth before 

product release. Third, the proposed model can tease out the effect of different advertising channels on 

consumer purchases, which can help firms optimize their selection of advertising channels. 

The remainder of this paper is organized as follows. We provide a review of the relevant literature in 

Section 2. We present a review of fractional calculus, including its memory interpretation, in Section 3. 

Section 4 develops a new advertising stock model and a proportional hazard model for time-to-adoption 

analysis. Section 5 evaluates the performance of the proposed model against two benchmark models. We 

introduce and empirically test a few extensions of the new advertising stock model in Section 6. Finally, 

we provide our concluding remarks in Section 7. 

2. Relevant Literature Review 

In this section, we briefly review three related bodies of literature on advertising stock (or adstock in 

short), digital attribution, and diffusion of innovations.  

2.1. Advertising Stock 

The present research is closely related to the adstock literature that studies how the effect of advertising 

accumulates and then attenuates over time. Empirical works on the initial and long-term effects of 

advertising date at least as far back as Koyck (1954). As per Koyck, a consumer accumulates latent 
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adstock from ad exposures over time. Based on a distributed lag structure, Koyck’s model captures a 

process in which the influence of advertising on sales can be characterized by a geometrically decaying 

process. An exponential decay function is adopted to account for the declining effect of prior ad 

exposures. Although it is proposed decades ago, the intuitive and parsimonious Koyck model is still 

frequently adopted by more recent studies to capture the exponentially decaying effect of advertising 

(e.g., Terui et al. 2011, Zantedeschi et al. 2016, and Chae et al. 2019). 

Nerlove and Arrow (1962) defined a stock of goodwill that summarized the effect of past and current 

advertising spending on consumer demand. Similar to Koyck (1954), they assumed that goodwill 

depreciates over time. Applying Koyck’s distributed lag technique on a dataset collected from the Lydia 

E. Pinkman Medicine Company over a period of more than 50 years, Palda (1965) demonstrated that 

incorporating both current and past advertising expenditures into advertising models can produce 

significant explanatory power. Palda reported that advertising has a pronounced lagged influence on sales. 

On average, it took almost seven years for the advertising spending to achieve 95% of its sales-generating 

effect. 

Following the standard distributed lag approach by Koyck (1954), Zantedeschi et al. (2016), in an 

experimental setting with an email channel and a catalogue channel, studied multichannel advertising 

responses and predicted the short- and long-term influences of different ad channels on consumer 

purchases. The prior study showed that, by using its method and targeting the most responsive consumers, 

the firm can increase its predicted advertising returns by almost 70%, compared to targeting based on the 

well-known recency, frequency, and monetary value measures. 

Using a Koyck specification to model adstock, Chae et al. (2019) studied consumers’ responses to 

online advertising repetition. Specifically, they documented consumers’ weariness, which refers to a 

situation that there is a point beyond which more ad exposures can have a negative marginal influence. 

Shapiro, Hitsch, and Tuchman (2021) studied television advertising effectiveness. Specifically, they 

estimated advertising stock elasticities, which signify the total current and future shifts in sales due to a 

one-percent increase in advertising at the present time. Their findings demonstrated significantly smaller 
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advertising elasticities compared to the results from the literature and a considerable percentage of 

negative or statistically insignificant estimates. 

Relaxing the assumption that the advertising effect only declines over time, Bass and Clarke (1972) 

proposed a generalization of the Koyck distributed-lag model that allows responses to advertisements to 

first intensify and then decline, demonstrating a nonmonotonic behavior. However, Bass and Clarke’s 

study focused on cases in which sales and advertising take place in parallel, making it inapplicable for the 

cases we study in which advertising exposures start to occur before product release. Furthermore, Bass 

and Clarke used aggregate-level data on monthly sales and advertising history of a dietary weight-control 

non-durable product. By contrast, the model we develop can be fit to individual-level consumer data and 

be used to study the influence of advertising on the adoption of durable products. 

2.2. Digital Attribution 

The second stream of related research is on digital attribution. The aim of digital attribution research is to 

distribute the credit for consumer purchases across the digital marketing channels that deliver 

advertisements to consumers. The digital attribution literature has empirically estimated the effectiveness 

of advertising based on consumer heterogeneity in terms of exposure to advertising (e.g., Ghose and 

Todri-Adamopoulos 2016). For example, Shao and Li (2011) proposed a bagged logistic regression 

model for advertising channel attribution, and cross-validated their model against a simple probabilistic 

model that directly quantifies the attribution to different channels. The results showed that the bagged 

logistic regression model and the probabilistic model deliver highly consistent performance. Li and 

Kannan (2014) developed a new method to determine the value of each online advertising channel using 

individual-level touch data, and found that the channels’ relative effects are significantly different from 

those reported using metrics presented in previous studies.  

Worth particular mentioning are two studies in the information systems literature. Xu, Duan, and 

Whinston (2014) study the influence of different online advertisement types on conversions by analyzing 

the interactions among advertisement clicks. The study is motivated by the observation that, while some 

advertisement clicks may not lead to immediate conversions, they may trigger subsequent clicks on other 
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advertisements that eventually result in conversions. The results demonstrated that a commonly used 

conversion rate measure overestimates the effect on convergence of search advertisements and 

underestimates that of display advertisements. Ghose and Todri-Adamopoulos (2016) studied display 

advertising’s effectiveness across various individual behaviors. They empirically showed that exposures 

to display advertising increase user propensity to engage in both passive search (using received 

information) and active search (applying effort to collect information). Furthermore, they found that the 

longer a consumer spends viewing an ad, the more likely she is to engage in direct search behavior (e.g., 

visiting a website) rather than indirect search behavior (e.g., using search engine inquires). 

2.3. Diffusion of Innovations 

This study also draws upon the literature on the diffusion of innovations. This stream of literature is best 

represented by the seminal Bass model (Bass 1969). In one of the directions of extensions of the Bass 

model, the influence of marketing-mix variables, including advertising, on product purchases has also 

been studied. Examples of such research include the Generalized Bass Model (GBM) (Bass, Krishnan, 

and Jain 1994) and the proportional hazard model (PHM) (e.g., Bass, Jain, and Krishnan 2000). Note that 

the diffusion models proposed in this stream of research are primarily developed to estimate aggregate-

level consumer adoptions and are not applicable for cases in which ad campaigns start before product 

release. However, since the spread of product information during ad campaigns is essentially a diffusion 

process, this literature provides the theoretical and modeling foundation for the model proposed in this 

research. 

An extensive review of the prior literature has not led to any model that (a) can accommodate the 

nonmonotonic (first intensifying and then declining) effect of advertising, (b) incorporates the influence 

of advertising exposures from different channels, and (c) can be used when ad campaigns start before 

product release. In this study, we aim to develop a model that offers such capabilities. 

3. Fractional Calculus and Advertising Memory 

In this section, we introduce fractional calculus, which is key to the development of our new adstock 

model, and discuss its ability in capturing a consumer’s product-related memory based on which her 
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adstock changes. Memory is a key part of adstock models as such models are expected to measure the 

initial and long-term effects of advertising. In fact, it is through memory that advertising demonstrates a 

carryover effect. Therefore, we carefully incorporate memory, as well as the corresponding depreciation, 

into our new adstock model. 

Prior research suggests that a consumer’s advertising stock can be viewed as a process with memory 

(Boltzmann 1876), or more specifically an economic process with memory (Baillie 1996, Teyssière and 

Kirman 2006). According to Tarasov (2018), in an economic process with memory, memory captures the 

dependence of an output (response variable) at the present time on the history of the changes of an input 

(impact variable) in a given time frame. Accordingly, memory of advertisement captures the dependence 

of adstock at the current time on the advertising exposures received during a past time window. 

Regarding methods used to study economic processes with memory, Tarasov (2018) points out “it is 

known that derivatives of positive integer orders are determined by the properties of the differentiable 

function only in an infinitesimal neighborhood of the considered point. As a result, differential equations 

with integer-order derivatives cannot describe processes with memory.” Tarasov then suggests a powerful 

tool that can be used to describe economic processes with memory. The tool is called fractional calculus, 

which represents a branch of mathematics that generalizes differentiation and integration so that non-

integer-order differential and integral operators become possible. Interested readers can refer to Samko, 

Kilbas, and Marichev (1993), Podlubny (1999), Kilbas, Srivastave, and Trujillo (2006), and Baleanu 

Diethelm, Scalas, and Trujillo (2012) for comprehensive reviews of the fractional calculus literature. 

Drawing on the prior literature (Samko et al. 1993, Kilbas et al. 2006), Tarasov (2018) suggests that 

an economic process with power-law type memory can be captured by the following fractional integral 

equation 

𝐼𝛽𝑋(𝑡): = ∫
1

Γ(𝛽)
(𝑡 − 𝜏)𝛽−1𝑋(𝜏)𝑑𝜏 

𝑡

0
.                                                (1) 

In this equation, X(t) represents the input of the economic process being modeled. The LHS is the output, 

where 𝐼𝛽 is a non-integer fractional integral of order 𝛽 (𝛽 > 0). The RHS of this equation is obtained 
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based on the Reimann-Liouville fractional integral (Kilbas et al. 2006), which is a generalization of the 

standard n-th integral. The term 
1

Γ(𝛽)
(𝑡 − 𝜏)𝛽−1 is called the kernel of the fractional integral, which is 

interpreted as a memory function that is capable of capturing how the output at the present time depends 

on the history of the input up to the present time. The Gamma function Γ(𝑥), 𝑥 > 0, takes the following 

form 

 Γ(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

0
.                                                           (2) 

The memory (kernel) function in Eq. (1) is a power-law type function (Tarasov 2018), which assigns 

lower weights to earlier events and higher weights to more recent events, as illustrated in Figure 1. The 

power-law memory shown in Figure 1 closely resembles human memory, making it suitable for capturing 

memory of advertising. For 0 < 𝛽 < 1, the higher the 𝛽, the better the memory retention. 

We develop a new adstock model using the fractional integral presented in Eq. (1). Considering that a 

consumer’s adstock is expected to change as the consumer acquires relevant product information and 

develops interest in the product, we apply the fractional integral operator on a process representing the 

consumer’s information accumulation and interest development process. Specifically, in our adstock 

model, 𝑋(𝜏) in Eq. (1) represents the consumer’s information accumulation and interest development 

process. 

 

Figure 1. Declining-Toward-Past Memory Function (t=10) 
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4. Model Formulation 

In this section, we first propose a new adstock model using the fractional calculus-based operator 

introduced in the previous section, and then develop a proportional hazard model to capture consumers’ 

timing to product adoptions.  

4.1. Fractional Calculus-Based Adstock Model 

We propose a model to measure a consumer’s adstock in the presence of multiple digital advertising 

channels. The model incorporates two fundamental components that affect a consumer’s adstock: adstock 

buildup and adstock decay. The adstock buildup mechanism assumes that a consumer’s adstock changes 

as the consumer acquires information related to a product and develops potential interest in the product. 

The adstock decay mechanism assumes that a consumer’s adstock declines over time due to memory 

decay. 

It has been shown that the flow of related information from different sources influences a consumer’s 

adoption decision (Sawhney and Eliashberg 1996). Specifically, under the hierarchy of effects model of 

advertising, consumers first gain awareness based on information received from an advertiser, then 

develop interest due to actively acquiring and processing relevant information, and finally may act in the 

form of product purchases due to the developed interest (Barry 1987). Therefore, we expect that a 

consumer’s adstock builds up as the consumer acquires relevant information and develops potential 

interest in the product. 

In the meantime, a consumer also forgets product-related information over time. As such information 

is being forgotten, the developed interest is also expected to die down. The amount of information 

consumer i maintains at time t depends on the consumer’s memory of the information acquired in τ ϵ [ti, 

t), where ti is the time at which consumer i begins acquiring relevant information. At t, a consumer with 

perfect memory remembers all the information acquired in τ ϵ [ti, t). The information that a perfect-

memory consumer maintains at t equals the cumulative information received until and at t. 

Mathematically, this leads to the information held by a perfect-memory consumer at t being the first-order 

integration of information acquisition rate in [ti, t]. Thus, we have  
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                                        𝑌(𝑡) = ∫ 𝑦(𝜏 − 𝑡𝑖) 𝑑𝜏
𝑡

𝑡𝑖
= 𝐼𝛽=1𝑦(𝑡 − 𝑡𝑖),                                               (3) 

where, for consumer i, Y(t) is the total information held at t and y(∙) represents the new information 

acquired at any point in time in [ti, t]. We name the degree of integral 𝛽 in Eq. (3) the memory coefficient. 

For a perfect-memory consumer, 𝛽 = 1. 

While a perfect-memory consumer represents an extreme type, we also consider another extreme type 

of consumers who only remember the information received at the current time. We name these consumers 

amnestic consumers. For an amnestic consumer, we have 

𝑌(𝑡) = 𝐼𝛽=0𝑦(𝑡 − 𝑡𝑖) = 𝑦(𝑡 − 𝑡𝑖).                                                   (4) 

Most consumers are expected to have a memory capacity that falls between those of amnestic 

consumers and perfect-memory consumers. Specifically, most consumers can remember a fraction of the 

information they have received in the past. Mathematically, we implement a fractional integral of order β 

of y(∙) to represent such common consumers 

𝑌(𝑡) = 𝐼𝛽𝑦(𝑡 − 𝑡𝑖), 𝛽 ϵ(0, 1).                                                       (5) 

For such common consumers, the exact amount of information acquired in τ ϵ [0, t) that is still 

remembered at the current time depends on the formulation we use to operationalize the fractional 

integral in Eq. (5). In this study, we adopt the Riemann-Liouville integral shown in Eq. (1). Replacing 

X(t) in Eq. (1) with y(𝜏 - ti), we formulate Y(t) as 

𝑌(𝑡) = 𝐼𝛽𝑦(𝑡 − 𝑡𝑖) = ∫
1

Γ(𝛽)
(𝑡 − 𝜏)𝛽−1𝑦(𝜏 − 𝑡𝑖)𝑑𝜏 

𝑡

𝑡𝑖
. 

With this formulation, the common consumers modeled by Eq. (5) have a power-law memory (shown in 

Figure 1). 

Because a consumer’s adstock is expected to change in accordance with the consumer’s information 

accumulation and interest development, we model the contribution of ad exposure j from channel k to 

consumer i‘s adstock at time t as 

𝐴𝑑𝑠𝑡𝑜𝑐𝑘𝑖𝑗𝑘(𝑡) = 𝐼𝛽𝑦(𝑡 − 𝑡𝑖),                                                        (6) 

where ti is the time at which the accumulation of relevant information for consumer i begins. 
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Note that it is often difficult to determine the exact time at which a consumer begins to collect 

relevant information (i.e., ti). Ghose and Todri-Adamopoulos (2016) empirically show that consumers’ 

exposures to display advertising increase their tendency to search for the advertised product and its brand. 

Furthermore, consumers often engage in both passive search, which involves responding to exogenously 

arriving information, and active search, in which the consumer exerts effort to acquire information. In our 

model operationalization, we assume that a consumer’s information accumulation starts when she 

experiences the first advertising exposure.1 

Note that the adstock given in Eq. (6) captures the effect of one ad exposure. We next incorporate the 

buildup effect of multiple ad exposures into the consumer’s adstock. Specifically, we use an adstock 

variable, 𝑧𝑖𝑘(𝑡), to represent the aggregate adstock accumulated for consumer i at t for all exposures from 

channel k 

𝑧𝑖𝑘(𝑡) = ∑ 𝐴𝑑𝑠𝑡𝑜𝑐𝑘𝑖𝑗𝑘(𝑡)
𝑛𝑖𝑘

(𝑡)

𝑗=1
,                                                      (7) 

in which 𝑛𝑖𝑘
(𝑡) is the number of exposures from channel k to consumer i up to time t. Then, a consumer’s 

total adstock at t, 𝐴𝑆𝑖(𝑡), is the sum of adstocks from all channels 

𝐴𝑆𝑖(𝑡) = ∑ 𝑧𝑖𝑘(𝑡)𝑘 .                                                               (8) 

We next elaborate on the functional form that determines the rate at which a consumer acquires 

product information. Given that the spread of information is often expected to follow a diffusion process, 

we adopt the density function of the most well-known diffusion model—the Bass model (Bass 1969), in 

the following form 

𝑦(𝑡 − 𝑡𝑖)  = (𝑝 + 𝑞𝐹(𝑡 − 𝑡𝑖))(1 − 𝐹(𝑡 − 𝑡𝑖)),                                           (9) 

where 𝐹(∙) represents the cumulative distribution of product information accumulation, and p and q are 

called the coefficient of innovation and coefficient of imitation, respectively, in the Bass model. We refer 

                                                           
1 Our empirical tests demonstrate that relaxing this assumption and allowing the information accumulation’s start 

time to happen either before or after the first exposure does not lead to better empirical performance.  
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to the adstock model formulated in Eqs. (6), (7), and (8) as the Fractional Calculus-Based Advertising 

Stock Model or FCASM. 

 

Figure 2. Changes in Adstocks Over Time under a Bell-Shaped Underlying Trend  

Using the Bass model to represent the underlying information accumulation and interest development 

function enables the FCASM to accommodate the monotonic and nonmonotonic advertising trends 

reported in the literature, thus rendering the FCASM a generalization of existing models. Specifically, 

when  𝑝 < 𝑞, 𝑦(𝑡 − 𝑡𝑖) demonstrates a bell-shaped trend, resulting in an adstock growth process that can 

follow the same pattern. This makes the FCASM compatible with the findings of Bass and Clarke (1972), 

according to which the effect of advertisement can be nonmonotonic. For p < q, Figure 2 illustrates how 

the individual adstocks generated by three exposures that take place at different times and the total 
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adstock (summation of the three individual adstocks) change with time. The individual and the total 

effects of the three exposures over time are shown by the solid parts of the curves in the figure. 

When 𝑝 > 𝑞, the Bass density function declines monotonically, in which case the FCASM is 

compatible with the classic Koyck distributed lag model (Koyck 1954), based on which the effect of an 

exposure declines exponentially over time. Figure 3 demonstrates the adstock trend corresponding to a 

monotonically declining underlying information accumulation and interest development trend (𝑝 > 𝑞). 

Compared to the curves shown in Figure 2, we can see that the adstocks corresponding to the three 

exposures, as well as their summation, decay at a much faster rate in Figure 3. 

The incorporation of the Bass model into the FCASM not only allows it to assume the two main 

adstock trend shapes discussed in the literature (i.e., monotonic and nonmonotonic), but also leads to 

further insights. As mentioned earlier, the Bass model in the FCASM represents the process through 

which consumers acquire product information and develop potential interest in the product, which may 

subsequently result in product adoptions (purchases). In the Bass model, independent decision making is 

captured by the parameter p and imitation is represented by the parameter q. For the FCASM, we interpret 

the parameter p as representing the independently developed interest in the product and the parameter q as 

capturing the interest developed based on imitation or word of mouth effect, as well as the network effect.  

 

Figure 3. Changes in Adstocks Over Time under A Monotonically Decreasing Underlying Trend 

The data we use to evaluate the proposed model is collected for a video game product. The likely 

existence of a strong network effect for such products suggests q being larger than p, resulting in a 

nonmonotonic underlying adstock growth trend instead of the monotonic trend suggested by the Koyck 
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distributed lag model.  

4.2. Time to Adoption: Hazard Modeling Framework 

One of the primary goals of this research is to estimate the influence of digital advertising on consumers’ 

product purchase (or adoption) decisions. Among various modeling approaches, proportional hazard 

models (a type of survival models) have been applied to estimate the timing of product purchases. For 

example, Jain and Vilcassim (1991) introduce a conditional hazard function to study household 

interpurchase timing while accounting for marketing variables, observed characteristics of households, 

and unobserved household heterogeneity. However, Jain and Vilcassim study a non-durable product. Qu, 

Lotfi, Jain, and Jiang (2022) use survival analysis to predict upgrade timing for a product line with 

successive product generations. However, the effect of advertising on consumers’ decision-making 

process is not considered in Qu et al.’s study. 

In the present research, we adopt a hazard modeling framework to disentangle the influences of 

different digital advertising channels on consumers’ timing of adoptions. Consumer’s adstocks, estimated 

based on the FCASM, are incorporated into a proportional hazard model as covariates (i.e., independent 

variables), resulting in a generalized proportional hazard model. 

A hazard model is typically composed of a baseline hazard function and a term that captures the 

effect of covariates. In this study, we denote the baseline hazard function by ℎ0(𝑡), and the vector of 

time-varying covariates for a consumer i by 𝐶𝑖(𝑡), which includes the adstocks estimated using the 

FCASM. The resulting hazard rate function of adoption for consumer i is expressed as 

ℎ𝑖(𝑡, 𝐶𝑖(𝑡)) = ℎ0(𝑡)𝑒𝑪𝑖
′(𝑡)𝜽,                                                        (10) 

in which 𝜽 is the vector of coefficients that captures the impact of covariates on consumer i’s adoption 

hazard. Eq. (10) can be expanded as 

ℎ𝑖(𝑡, 𝐶𝑖(𝑡)) = ℎ0(𝑡)𝑒∑ 𝜃𝑘𝑧𝑖𝑘(𝑡)𝑘 +∑ 𝜃𝑗𝑥𝑖𝑗(𝑡)𝑗 .                                        (11) 

In Eq. (11), 𝑧𝑖𝑘(𝑡) represents the adstock for consumer i at time t generated by exposures from channel k, 

and 𝜃𝑘 is the coefficient that captures the effect of 𝑧𝑖𝑘(𝑡) on the adoption hazard. The model can include 
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other covariates in addition to the adstock measures. Specifically, xij is the jth non-advertising covariate 

for consumer i and 𝜃j is the coefficient that captures the effect of this covariate on the adoption hazard. 

The survival function for consumer i after incorporating the vector of covariates is expressed as 

𝑆𝑖(𝑡, 𝐶𝑖(𝑡)) = [𝑆0(𝑡)]𝑒𝐶𝑖
′(𝑡)𝜃

.                                                      (12) 

We will elaborate on the baseline hazard in Eq. (11), i.e., ℎ0(𝑡), and our model estimation procedure in 

the next section. 

5. Empirical Analysis 

We empirically evaluate the FCASM’s performance against two benchmark models using a dataset that 

records individual-level advertising exposures and product adoptions. 

5.1. Data 

We use a large-scale individual-level dataset that records consumers’ advertising exposures in the form of 

impressions from six different digital advertising channels, other non-advertising variables, and the 

consumers’ adoptions of the video game featured in the advertisements. This dataset provides a special 

opportunity to study the effect of advertising on consumer adoptions, because it is rare that companies are 

able to track both advertising exposures and the corresponding conversions in a single-source consumer 

data (Gordon et al. 2021). As recorded in the dataset, an impression happens when a consumer views an 

ad. The dataset includes 89,943 exposure records for 2,233 different consumers. Figure 4 presents a 

schematic illustration of ad exposures and adoptions recorded in the data. As portrayed in Figure 4, 

consumers started to experience exposures to advertising through different digital channels before the 

product was released. After product release, exposures continue to occur, followed by adoptions. The 

recorded exposures occurred as early as 81 days before the product release. The data also includes 33 

days’ worth of exposures and product adoptions during the time period after the product release. In 

addition, the data records non-advertising information, including consumers’ count of other games, count 

of other franchise games, and number of previous game days. 
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Figure 4. Advertising Exposures and Product Adoptions 

The frequency of exposures before and after product release is presented in Figure 5. The vertical 

dashed line in the figure represents the product release. It can be seen in this figure that there were 

fluctuations in the observation window, which may reflect ebbs and flows in the company’s advertising 

efforts and consumers’ changing online behaviors. 

 

Figure 5. Density of Advertising Exposures 

 

Advertising exposures occurred through six different digital advertising channels. Of all the recorded 

exposures, 9,573 occurred through channel A, 3,489 through channel B, 55,885 through channel C, 

16,799 through channel D, 1,619 through channel E, and 2,587 through channel F. The nonuniform 

distribution of exposures across different channels could be due to the firm’s channel selection strategies 

and the varying behavior of consumers across different digital channels. 
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Figure 6. Product Adoptions 

Figure 6 shows product adoptions after the product release. The adoption trend exhibits a few spikes. 

The spike on the product release day likely reflects the adoptions by those who, based on available 

information about the product, have made their adoption decisions prior to product release. The other 

spikes could be attributed to price changes.2 

5.2. Benchmark Models 

To evaluate the performance of the proposed model, we consider two benchmark hazard models. In the 

first benchmark model, the adstock covariates are measured based on the classical Koyck distributed-lag 

model (Koyck 1954). The model assumes that the effect of an exposure decays exponentially over time. 

As explained earlier, due to its intuitive and parsimonious form, this classical model has been frequently 

adopted even in recent studies. For simplicity, we name this model the Koyck Model, based on which the 

contribution of exposure j from channel k to consumer i’s adstock at time t, denoted by 𝐾_𝐴𝑑𝑠𝑡𝑜𝑐𝑘𝑖𝑗𝑘(𝑡), 

is 

𝐾_𝐴𝑑𝑠𝑡𝑜𝑐𝑘𝑖𝑗𝑘(𝑡) = 𝑒−𝜆(𝑡−𝑡𝑖𝑗𝑘), 

in which 𝑡𝑖𝑗𝑘 is the time when consumer i’s exposure j from channel k occurs, and 𝜆 is the adstock’s 

exponential decay rate. Similar to the FCASM, in the Koyck model, the adstock for consumer i at time t 

for exposures from channel k is 

                                                           
2 In the next subsection, we account for these adoption spikes when selecting a hazard modeling framework. Further, 

we expect that, even without incorporating the price data, our model would not be much affected because assuming 

that consumers are uniformly influenced by price, the hazard ratio is not impacted by price changes. 
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𝑘_𝑧𝑖𝑘(𝑡) = ∑ 𝐾_𝐴𝑑𝑠𝑡𝑜𝑐𝑘𝑖𝑗𝑘(𝑡)
𝑛𝑖𝑘

(𝑡)

𝑗=1
,                                              (13)  

in which 𝑛𝑖𝑘
(𝑡) is the quantity of exposures from channel k that consumer i experiences up to t. 

Subsequently, the hazard rate of adoption for consumer i at time t can be expressed as 

𝐾_ℎ𝑖(𝑡, 𝐾𝐶𝑖(𝑡)) = ℎ0(𝑡)𝑒∑ 𝜃𝑘𝑘_𝑧𝑖𝑘(𝑡)𝑘 +∑ 𝜃𝑗𝑥𝑖𝑗(𝑡)𝑗 ,                                      (14) 

in which 𝐾𝐶𝑖(𝑡) is the vector of time-varying covariates for consumer i. Similar to Eq. (10), in Eq. (14),  

𝜃𝑘 is the coefficient that captures the effect of 𝑘_𝑧𝑖𝑘(𝑡) on the adoption hazard, xij is the jth non-

advertising covariate for consumer i, and 𝜃j is the coefficient that captures the effect of the jth non-

advertising covariate on the adoption hazard. 

We propose a second benchmark model that comes from the literature on stochastic models of 

consumer behavior. This model assumes that each exposure’s adstock growth pattern follows the Erlang-

2’s density function. The Erlang-2 distribution has been used in the literature to describe a consumer’s 

interpurchase timing (Chatfield and Goodhardt 1973, Schmittlein and Morrison 1983). We refer to this 

benchmark model as Erlang-2 model. In this benchmark model the contribution of exposure j from 

channel k to consumer i’s adstock at time t, denoted by 𝐸_𝐴𝑑𝑠𝑡𝑜𝑐𝑘𝑖𝑗𝑘(𝑡), is 

𝐸_𝐴𝑑𝑠𝑡𝑜𝑐𝑘𝑖𝑗𝑘(𝑡) = 𝜆2(𝑡 − 𝑡𝑖𝑗𝑘)𝑒−𝜆(𝑡−𝑡𝑖𝑗𝑘), 

where 𝑡𝑖𝑗𝑘 is the time at which consumer i’s exposure j from channel k occurs, and 𝜆 denotes the rate of 

the Erlang-2 distribution, reflecting the rate at which an exposure’s contribution to adstock first rises and 

then declines. As opposed to the Koyck model, in the Erlang-2 model, each individual exposure’s adstock 

peaks. Note that under the proposed Erlang-2 model, the adstock for consumer i at time t generated by 

exposures from channel k and the hazard rate of adoption for consumer i at time t follow formulations 

similar to Eq. (13) and Eq (14), respectively. 

5.3. Model Estimation and Performance Evaluation 

The parameter estimation for a hazard model can be performed in a parametric, non-parametric, or semi-

parametric fashion. In this study, we adopt a semi-parametric approach because the adoption trend in our 

dataset, as shown in Figure 6, exhibits spikes for various reasons, and we expect that the semi-parametric 
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approach is more flexible than the parametric approach in dealing with the spikes. Specifically, we 

implement the widely-used Cox model (Cox 1972), a semi-parametric model, for performance evaluation. 

The details of model estimation and the estimation of the parameters’ confidence intervals are explained 

in Appendix A. To operationalize the fractional operator used in the FCASM, we follow the procedure 

implemented by Lotfi et al. (2023), with corresponding details provided in Appendix B. Note that the 

generalized hazard model we develop based on the FCASM is more complicated than the base Cox 

model, resulting in a more computationally intensive model estimation process. 

For model performance evaluation, we use Akaike Information Criteria (or AIC). According to 

Burnham and Anderson (2004), an AIC value is not interpretable by itself because it is influenced by the 

sample size and has arbitrary constants. Therefore, it is important to rescale AIC to Δi = AICi – AICmin, in 

which AICmin is the minimum AIC value among N different AIC values corresponding to N different 

models being tested. Based on this transformation, the best model has Δi = 0, while the remaining models 

have positive Δi values. As formulated by Burnham and Anderson, Δi allows for a meaningful 

interpretation. According to the prior study, models that have Δ𝑖 ≤ 2 have substantial support, those with 

4 ≤ Δ𝑖 ≤ 7 have considerably less support, and models with Δ𝑖 > 10 essentially have no support. 

5.4. Empirical Results and Discussions 

We first estimate the proposed FCASM and the two benchmark models using the video game data. 

Estimation results are shown in Table 1. Next, we conduct tests for multicollinearity among the 

covariates. The variance inflation factor (VIF; Kutner, Nachtsheim, and Neter 2004) for the FCASM, 

Erlang-2 model and Koyck model are reported in Table 2, which shows that all VIF values are smaller 

than 2, thus ruling out the multicollinearity problem. 

The results reported in Table 1 demonstrate that the two models that incorporate the nonmonotonic 

effect of advertising, i.e., the FCASM and Erlang-2 model, lead to smaller AIC values than does the 

Koyck model under which adstock for an ad exposure declines monotonically. Based on the results 

reported in Table 1, for the Koyck model we have Δi = 30329.57 – 30318.98 = 10.59. Since Δi is larger 

than 10, according to Burnham and Anderson (2004), the Koyck model essentially has no significant 
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support compared to the FCASM, which has the smallest AIC value. Thus, our empirical testing supports 

the expectation mentioned in Section 4.1 that, in the context of adopting a new video game, it is highly 

likely that a consumer’s adstock does not follow the monotonic trend suggested by the Koyck distributed 

lag model. 

Table 1. Comparison of FCASM, Erlang-2 Model, and Koyck Model 

 Koyck Erlang-2 FCASM 

Channel A  -0.002 -0.074   -0.009   

Channel B  0.002 0.436** 0.135   

Channel C 0.003 0.048 0.032   

Channel D  0.001 0.047 0.186*** 

Channel E  0.018** 0.409** 0.389** 

Channel F  0.007 0.025 -0.010 

Count of other games  0.016*** 0.016*** 0.016*** 

Count of other franchise games 0.081 0.077 0.081* 

Previous game days 0.004*** 0.004*** 0.004*** 

p - - 0.000001 

q - - 0.498* 
β - - 0.23*** 
λ 0.054 0.093*** - 

AIC 30329.57 30325.89 30318.98 

Note: ***99%, **95%, *90% confidence intervals do not include zero. 

 

For the Erlang-2 model, Δi = 30325.89 – 30318.98 = 6.91, barely placing in the [4, 7] range. This 

suggests that the Erlang-2 model has considerably less support than does the FCASM. Therefore, the 

results suggest that the FCASM more effectively captures the nonmonotonic effect of advertising than 

does the Erlang-2 model. 

Table 2. VIF Values for FCASM, Erlang-2, and Koyck Model 

 Koyck Erlang-2 FCASM 

 

Channel A  1.05 1.08 1.04 

Channel B  1.15 1.13 1.05 

Channel C 1.64 1.7 1.24 

Channel D  1.8 1.86 1.22 

Channel E  1.01 1.02 1.03 

Channel F  1.1 1.12 1 

Count of other games 1.11 1.11 1.11 

Count of other franchise games 1.15 1.15 1.15 

Previous game days 1.07 1.06 1.06 
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As reported in Table 1, for the FCASM, the estimated value of p is much smaller than that of q, 

indicating that consumers develop interest in the product and subsequently adstock primarily based on the 

word of mouth and network effects associated with the product. The presence of strong word of mouth 

and network effects reveals why the Koyck model and the Erlang-2 model, which do not incorporate 

these effects, empirically underperform compared to the FCASM. 

Furthermore, from Table 1, we can see that the estimated fractional calculus-based memory 

coefficient (β) of the FCASM is much smaller than 1, suggesting that consumers’ adstocks decline with a 

relatively high rate over time due to a rather weak memory rate. Specifically, with β=0.23, the memory 

trend is close to the bottom trend curve shown in Figure 1. When β=0.23, for a given ad exposure, only 

25%, 15%, and 11% of the adstcoks developed in the past one day, two days, and three days, respectively, 

are maintained in the current day. This finding is consistent with a report indicating that consumers 

quickly forget the contents of advertisements and that 80% of them (i.e., four out of five consumers) 

forget branded content in three days (Inc. 2017). 

Table 1 also demonstrates that the three non-advertising covariates under the FCASM are statistically 

significant, and, as expected, all positively influence the hazard rate of adopting the new video game. This 

result demonstrates that those who own more games and play more have a higher tendency to purchase 

the new video game. 

Moreover, we compare the FCASM, Erlang-2 model, and Koyck model based on their out-of-sample 

prediction performance (Norwood, Roberts, and Lusk 2004). Specifically, we fit the models to a training 

sample and use the estimated parameters to calculate the log-partial likelihood value for the out-of-sample 

data. As reported in Table 3, with a 75-25 training-testing data split, the FCASM results in a larger log-

partial likelihood value than the other two models, indicating a better out-of-sample prediction 

performance. This result demonstrates that the FCASM does not run the risk of overfitting, even though it 

has more parameters than the Erlang-2 model and Koyck model. 

The FCASM’s better empirical performance than the Koyck model and Erlang-2 model can be 

primarily attributed to the fact that the model benefits from a simple rationale that is also theoretically 
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supported by the literature. Specifically, the FCASM can accommodate the nonmonotonic effect of 

advertising by assuming that a consumer’s adstock growth is affected by a process through which the 

consumer first learns about the existence of a new product and then begins to accumulate relevant 

information based on which the consumer develops potential interest in the product (Barry 1987). Under 

the FCASM, the information accumulation and interest development process can assume a nonmonotonic 

shape, which in turn results in a nonmonotonic adstock growth trend. In accounting for consumers’ 

information accumulation and interest development, the FCASM explicitly incorporates consumers’ 

independent decision making as well as word of mouth and network effects, generating further insight 

into consumers’ decision-making cycle. We believe that these factors jointly contribute to the FCASM’s 

superior empirical performance. 

Table 3. Out-of-Sample Prediction Performance Comparison 

 Log-Partial Likelihood 

Koyck -3022.44 

Erlang-2 -3022.06 

FCASM -3018.84 

 

It is important to note that in the FCASM, the parameters p and q are grounded in the rich diffusion of 

innovations literature (Mahajan, Muller, and Wind 2000, Bass 2004) and capture the primary drivers that 

affect the rate of adoptions for a new product. By connecting the model to the product diffusion literature, 

users of the FCASM can draw into the huge knowledge base created by pioneering researchers in decades 

of research endeavors, and derive practical insights that are not possible with the benchmark models. 

Additionally, the application of fractional calculus to incorporate adstock erosion due to memory decay 

has resulted in a model that is both theoretically robust and empirically powerful (Tarasov 2018). The 

FCASM can help researchers and practitioners gain a deeper understanding regarding the short- and long-

term effectiveness of advertising, and help them optimize advertising campaigns. Given these advantages, 

we propose that the FCASM should be the model of choice for measuring the long-term effect of 

advertising and digital attribution. 
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5.5.  Nonmonotonic Effect of Advertising: Illustration and Explanation 

One of the major findings of this study concerns the nonmonotonic adstock growth pattern. Given its 

importance, we conduct additional exploration to better understand the nonmonotonic effect of 

advertising. Figure 7 visually demonstrates the nonmonotonic pattern of a random consumer’s adstock 

growth. The consumer’s first advertising exposure occurs before product release. The estimated p, q, and 

β as reported in Table 1 are used to generate the adstock trend. Exposures are randomly generated and 

shown using vertical dotted lines. The time of product release is represented by the vertical solid line. As 

formulated in the FCASM, each exposure positively contributes to the consumer’s adstock. The grey area 

in the figure represents the amount of adstock at different times for the consumer. It can be seen that 

adstock as estimated by the FCASM follows a nonmonotonic pattern, which is consistent with Bass and 

Clarke (1972), while deviates from the trend proposed by Koyck (1954) that assumes that the effect of ad 

exposure only declines over time. 

Despite the similarity between the finding obtained based on the FCASM and that reported by Bass 

and Clarke, it is important to point out that the FCASM has several important advantages over the model 

proposed by Bass and Clarke. First, Bass and Clarke study the advertising effect for a nondurable product 

at an aggregate level, while the FCASM is developed to capture the influence of advertising on the 

adoption of a new durable product at the individual consumer level. Second, the FCASM accounts for 

factors that impact a potential consumer’s adoption decision, including the independent decision-making 

effect as well as the word of mouth and network effects. In contrast, Bass and Clarke’s model does not 

consider these effects. Third, the FCASM can be used in cases in which a company’s marketing campaign 

starts before product release. On the contrary, Bass and Clarke deal with cases where advertising and 

sales take place concurrently, thus the FCASM is applicable to a broader range of settings. 

Furthermore, by predicting consumers’ peak adstock level, the FCASM can help firms avoid 

overspending on advertising. For example, based on the estimation results reported in Table 1, for a 

consumer who views a single exposure through channel E before the product release, the FCASM 

predicts the ad’s impact on the consumer’s purchase tendency will peak at 0.07 on the 27th day after the 
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exposure has occurred. In contrast, the Koyck model as estimated in Table 1 suggests this same consumer 

after receiving seven more exposures, one every three days, reaches 0.06 purchase propensity 27 days 

after the first exposure. This implies that, according to the Koyck model, firms need to keep investing in 

advertising to maintain consumers’ adstock levels, resulting in a suboptimal advertising strategy. 

Additionally, the estimated FCASM as depicted in Figure 7 is also consistent with an important 

finding reported by Ghose and Todri-Adamopoulos (2016) that targeting consumers earlier in their 

purchase funnel can amplify the effectiveness of advertisement. According to the FCASM, ad exposures 

occurring earlier in the purchase cycle can contribute more to consumers’ adstock. In particular, based on 

the adstock trend demonstrated in Figure 7, receiving exposures before the peak of the adstock trend can 

lead to a higher adstock peak. 

 

Figure 7. Estimated Adstock Based on FCASM for a Random Consumer 

Furthermore, Figure 7 shows that the consumer’s adstock reaches its peak before the product release. 

This means that the firm cannot benefit from the peak adstock because the product has not been made 

available in the market yet. This observation can help firms optimize the timing of their advertising 

campaigns. 

6. Model Extensions 

The primary contributions of our research are (i) developing a new adstock model (i.e., the FCASM) that 

incorporates consumer memory as well as the word of mouth and network effects, thereby accurately 
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measuring consumers’ adstocks over time, and (ii) determining the effect of each advertising channel in a 

multichannel setting using a generalized hazard modeling framework. We develop and empirically test 

model extensions to further enhance these two contributions. Specifically, concentrating on (i) we test 

whether the word of mouth and network effects change from before to after product release, and focusing 

on (ii) we examine whether the count of channels through which consumers view advertising has any 

effect on their hazard rate of adoption.3 

6.1. Varying Word of Mouth and Network Effects Before and After Product Release 

The results reported in Table 1 reveal that the nonmonotonic adstock trend emerges due to consumers’ 

decisions being influenced by word of mouth and network effects. In the base FCASM, since the 

parameter q remains unchanged across the observation window, an implicit assumption is that the word of 

mouth and network effects are the same before and after product release. However, once the product is 

released in the market, these effects may change significantly due to more product information becoming 

available. In this subsection we investigate whether word of mouth and network effects have varying 

influences on consumers before and after product release. To this end, we develop a model extension in 

which the parameter q in the FCASM’s underlying Bass model is time-dependent 

𝑞 = {
𝑞0             𝑡 < 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑑𝑎𝑡𝑒

𝑞0 + 𝑞1        𝑡 ≥ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑑𝑎𝑡𝑒
.                                              (15) 

In Eq. (15), q0 represents the influence of word of mouth and network effects for consumers who receive 

their first ad exposures before product release and q1 captures the possible changes in these effects for 

consumers whose first ad exposures occur after the product release. We name this model extension the 

Extended Fractional Calculus-Based Advertising Stock Model or EFCASM. The empirical results 

corresponding to the EFCASM are reported in Table 4. As detailed in the table, q1 is positive and 

                                                           
3 To further test the robustness of the fractional calculus-based memory formulation used in the new adstock model 

(i.e., the FCASM), we develop and empirically test two model versions: one with a time-varying memory rate and 

another with an exposure-influenced memory rate. Our empirical results demonstrate that the two model versions do 

not perform better than the base FCASM, thereby confirming the robustness of the memory formulation used in the 

base FCASM. Further details are provided in Appendix C. 
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statistically significant, indicating that the word of mouth and network effects are stronger for consumers 

whose first ad exposures happened after product release. Specifically, based on the estimated parameters 

of the EFCASM as reported in Table 4 (i.e., the estimated p, q0, q1, and β), the adstock trend for a 

consumer with a single ad exposure occurring after product release peaks at around four days. However, 

consistent with the adstock trend shown in Figure 7 based on the FCASM, the adstock trend under the 

EFCASM for a consumer whose single ad exposure occurred before product release peaks at around 27 

days. This result could be attributed to the fact that, after product release, consumers who have adopted 

the product can share more concrete and convincing information, thus having a strong impact on 

consumers who have just started to collect information about the product. In contrast, the word of mouth 

and network effects might be weaker before product release because consumers’ opinions are to a great 

extent based on speculations. 

In sum, the empirical findings based on the EFCASM suggest that (i) consistent with the findings from 

the base FCASM, consumers’ adstocks are developed predominantly based on the word of mouth and 

network effects, which are not explicitly modeled in the prior literature, and (ii) these effects grow stronger 

when more information about the product becomes available. Furthermore, consistent with the results from 

the FCASM, the estimated value for the EFCASM’s memory parameter reflects relatively low consumer 

memory. Additionally, comparing the EFCASM’s AIC value as reported in Table 4 with that of the FCASM 

reported in Tables 1 and 4 demonstrates that the EFCASM fits the data better than does the FCASM. 

Therefore, considering that the EFCASM generates more insight into the nonmonotonic behavior of 

advertising and that it empirically performs better than the FCASM, we select the EFCASM over the 

FCASM for cases in which advertising starts before product release. 

The findings from the EFCASM bear practical implications. Specifically, the varying magnitude of 

word of mouth and network effects as captured by the model helps firms more accurately predict purchase 

timing for consumers who begin their purchase journey at different times. Additionally, word of mouth 

before product release is expected to be predominantly shaped by influencers who may have access to a 

pre-production version of the product, while word of mouth after product release is expected to be largely 
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formed by consumers who have experienced the actual product. Therefore, the proposed model enables 

firms to compare the effect of influencer-based word of mouth with that of consumer experience-based 

word of mouth, aiding firms in planning their investment in influencer-based marketing. Additionally, 

consistent with the results from the FCASM, the findings from the EFCASM suggest that firms should time 

their advertising campaigns optimally to make the most of the adstock peak period for the consumers who 

start their purchase cycle before product release.  

6.2. Advertising Channel Versatility 

Firms often advertise through multiple channels, resulting in some consumers viewing ads through more 

than one channel. Therefore, a primary focus of our research is dedicated to developing a generalized 

hazard model that incorporates the effect of multiple channels, i.e., Eq. (11). In a multichannel setting, 

some inquiries naturally arise: Does the number of channels through which a consumer is exposed to 

advertising impact the consumer’s product adoption behavior? If so, how many channels should a firm 

utilize for advertising? We extend the proposed proportional hazard model to answer these questions and 

help firms improve their advertising strategy. Specifically, we include Count of channels as a covariate in 

the adoption hazard. To account for the possibility that the association between Count of channels and the 

hazard rate of adoption is nonlinear, we incorporate the quadratic form of Count of channels into the 

hazard model presented in Eq. (11) 

ℎ𝑖(𝑡, 𝐶𝑖(𝑡)) = ℎ0(𝑡)𝑒∑ 𝜃𝑘𝑧𝑖𝑘(𝑡)+𝑘 𝜃𝑐𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠+𝜃𝑐2𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠2+∑ 𝜃𝑗𝑥𝑖𝑗(𝑡)𝑗 .            (16) 

In Eq. (16), 𝜃𝑐 and 𝜃𝑐2 are coefficients for linear and quadratic terms of Count of channels, respectively. 

Considering that we selected the EFCASM over the FCASM in the previous subsection, to measure 

consumers’ adstocks from different channels, we use the EFCASM. 

The estimation results for the model version that incorporates the quadratic form of Count of channels 

are reported in Table 4. As can be seen from the table, the estimated coefficient for Count of channels is 

positive and significant, while that for Count of channels2 is negative and significant, indicating a convex 



30 

relationship between the hazard rate of adoption and Count of channels.4 Additionally, the estimated 

values for the adstock models’ parameters (i.e., p, q0, q1, and β) remain mostly unchanged after including 

Count of channels, reflecting consistency of the results. Furthermore, the AIC value improves after 

incorporating Count of channel, due most likely to having more covariates in the model. Therefore, we 

select the model version with Count of channels because it casts light on the influence of the number of 

channels through which consumers view advertising on their adoption hazard and that it empirically 

performs better than the model version that does not incorporate Count of channel. 

Figure 8 further illustrates the effect of the number of channels on adoption hazard. Here, we assume 

𝐶𝑜𝑢𝑛𝑡𝐸𝑓𝑓𝑒𝑐𝑡 =  𝑒𝜃𝑐𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠+𝜃𝑐2𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠2
, which multiplicatively influences the 

baseline hazard of adoption (h0(t)) in Eq. (18). Figure 8 demonstrates that delivering advertising through 

one or two channels contributes to the highest adoption propensity, while utilizing more than two 

channels may lead to a decline in adoption tendency. 

Table 4. Comparison of Model Extensions with FCASM 

 FCASM 

 

EFCASM 

 

EFCASM 

with Count 

of Channels 

Channel A  -0.009 -0.056 -0.028 

Channel B  0.135 0.107 0.109 

Channel C 0.032 0.042 0.039** 

Channel D  0.186*** 0.239*** 0.180*** 

Channel E  0.389** 0.353 0.356** 

Channel F  -0.010 -0.007 0.022 

Count of channels - - 0.932** 

Count of channels2 - - -0.309*** 

Count of other games 0.016*** 0.016*** 0.016*** 

Count of other franchise games 0.081* 0.08* 0.087* 

Previous game days 0.004*** 0.004*** 0.004*** 

p 0.000001 0.00001 0.000005 

q 0.498* - - 

q0 - 0.414** 0.453** 

q1 - 3.336*** 3.627** 

β 0.23*** 0.207*** 0.295*** 

AIC 30318.98 30313.02 30270.99 

Note: ***99%, **95%, *90% confidence intervals do not include zero. 

                                                           
4 Our empirical testing demonstrates that the associations of Count of channels and Count of channels2 with 

adoption hazard may be time dependent. Therefore, when computing Count of channels and Count of channels2, we 

multiply them with a time-transformation of 1/time. This transformation implies that Count of channels has the 

strongest impact on the product adoption hazard shortly after the product release. 



31 

 

The primary practical takeaway from this result is that exposing consumers to multiple advertising 

channels may prove counter-productive because it may cause fatigue, annoyance, or confusion to 

consumers. Therefore, firms may be better off concentrating on a few select channels with more 

substantial influences on consumers’ purchase decisions. Based on the results detailed in Table 4, not all 

channels have a statistically significant effect in our data sample. This result, coupled with the 

observation from Figure 8 that viewing advertising through more than two channels can reduce 

consumers’ adoption propensity, suggest that the firm should concentrate on two of the statistically 

significant channels that have a larger impact on consumers’ adoption tendency, which are channels D 

and E. 

 

Figure 8. Effect of Count of Channels on Adoption Hazard 

 

7. Conclusions and Directions for Future Research 

The primary goal of this research is to measure the effect of advertising in a multichannel setting, which 

stands as one of the main ongoing challenges concerning online advertising. Challenges in the 

measurement of ad effect can be attributed to factors such as long purchase cycles and unobserved stages 

in consumers’ decision-making process (Gordon et al. 2021). According to the literature, the effect of 

advertising may exhibit a monotonic or nonmonotonic temporal trend. While the possible nonmonotonic 

effect of advertising has been reported in the literature, to the best of our knowledge, no formal modeling 

framework has been introduced to explain this behavior at the individual level. In this research, we 
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propose a new advertising stock model named the Fractional Calculus-Based Advertising Stock Model 

(FCASM) to fill this void. Under the proposed model, a consumer’s adstock can either monotonically 

decline or peak in the middle of a time window, conforming to one of the two main advertising behaviors 

reported in the prior literature. 

An innovative feature of the new adstock model is that it uses fractional calculus to tackle the 

challenging problem of modeling the decaying ad effect due to consumers’ memory decay, thereby 

capturing the lasting effect of ad exposures. Specifically, the proposed model incorporates a fractional 

calculus-based power-law memory trend that resembles human memory to account for consumers’ 

memory decay and the corresponding decline in their advertising stocks. This innovation has a solid 

theoretical foundation and improves model interpretability and empirical performance. 

Based on the new adstock model, we develop a generalized proportional hazard model to estimate the 

influence of exposures from different digital advertising channels on consumers’ timing of product 

adoptions. We test our model using a dataset that includes consumers’ exposures to advertising through 

different channels and their product adoptions. This dataset provides a great opportunity to study the 

effectiveness of advertising because companies rarely are able to monitor advertising exposures and the 

corresponding consumer conversions in a single-source dataset (Gordon et al. 2021). Consistent with the 

literature, we find that the consumers’ adstocks demonstrate a nonmonotonic pattern—it first increases to 

a peak before declining. Furthermore, in a comparison with two benchmark models, we show that the 

proposed model outperforms them in model fitting, out-of-sample prediction, as well as interpretability. 

Notably, the new model accounts for the effect of independent decision-making, as well as the word 

of mouth and network effects. To the best of our knowledge, no model from the previous literature, 

including the widely-used Koyck model, accounts for these effects. Our empirical findings demonstrate 

that the nonmonotonic effect of advertising emerges primarily due to the word of mouth and network 

effects, further underscoring the importance of including these effects. Considering that our research 

primarily concentrates on studying the common practice of starting advertising campaigns before product 

release and to further investigate the role of word of mouth and network effects, we develop a model 
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extension, named the Extended Fractional Calculus-Based Advertising Stock Model (EFCASM), which 

distinguishes between these effects before and after product release. The empirical results based on the 

EFCASM uncovers a significant leap in the word of mouth and network effects post product release, most 

likely due to more product information becoming available. 

Our empirical findings can benefit the advertising practice. Specifically, using the new model, firms 

can accurately estimate consumers’ adstocks over time and predict the timing of consumer purchases, 

enabling them to effectively time their advertising campaigns and product releases. Furthermore, the 

precise estimation of consumers’ adstocks over time can help firms prevent overspending on advertising. 

For instance, the proposed model enables firms to predict consumers’ peak adstock periods during which 

advertising spending can be reduced, thus avoiding excessive expenditure. Moreover, considering that the 

EFCASM distinguishes between word of mouth and network effects pre- and post-product release and 

that word of mouth before product release is expected to be primarily influencer-based, the EFCASM 

enables firms to optimally invest in influencer-based word of mouth. Finally, our results suggest that 

firms may benefit from selecting a smaller number of the advertising channels that have the highest 

impact on consumers’ purchase tendency. The proposed model can help identify the most efficient 

channels and determine the optimal number of channels to employ in advertising campaigns. 

There exist multiple avenues for future research. For example, our dataset records only advertising 

through digital channels. With a richer dataset, a future study could analyze the integration of digital and 

traditional channels. Furthermore, the advertising channels are unknown in our data, a dataset with more 

information on advertising channels can lead to further insights. 
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Online Appendix 

Appendix A. Model Estimation 

In this Appendix, we explain parameter estimation for the Cox model and the estimation of the 

confidence intervals for the model parameters.  

A.1. Model Estimation 

The Cox model leaves the baseline hazard rate h0(t) unspecified. Specifically, the hazard ratio of two 

consumers i and 𝑖′ with the vectors of covariates 𝐶𝑖 and 𝐶𝑖′, respectively, and the vector of coefficients 𝜃 

can be written as 

ℎ𝑖(𝑡,𝐶𝑖)

ℎ𝑖′(𝑡,𝐶𝑖′)
=

ℎ0(𝑡)exp(𝐶𝑖𝛽)

ℎ0(𝑡)exp(𝐶𝑖′𝛽)
=

exp(𝐶𝑖𝜃)

exp(𝐶𝑖′𝜃)
.                                                  (A1) 

It can be seen in Eq. (A1) that the hazard ratio is independent of the baseline hazard h0(t). We next 

elaborate on our model estimation procedure. 

We follow Cox’s (1972) proposed partial likelihood to estimate the vector of coefficients 𝜃, which in 

the FCASM and the benchmark models include 𝜃𝑘s and 𝜃js, reflecting the influence of advertising and 

non-advertising covariates, respectively, on adoption. Cox proposes a partial likelihood method for 𝜃 

without involving the baseline hazard. Assume that Xi is an adoption time censored random variable and 

Ci is a set of covariates. Suppose that τ1 <…< τK are K distinct adoption times and assume that there are 

no tied adoption times, meaning that each adoption takes place at a different time. Let R(t)={i : Xi ≥ t} be 

the set of consumers who are at risk of adoption at time t. At each adoption time Xj, the contribution to the 

likelihood is 

ℎ0(𝑋𝑗)𝑒
𝜃′𝐶𝑗

∑ ℎ0(𝑋𝑗)𝑒𝜃′𝐶𝑙
𝑙𝜖𝑅(𝑋𝑗) 

. 

The partial likelihood for all adoptions is 

𝐿(𝜃) = ∏
ℎ0(𝑋𝑗)𝑒𝜃′𝐶𝑗

∑ ℎ0(𝑋𝑗)𝑒𝜃′𝐶𝑙
𝑙𝜖𝑅(𝑋𝑗) 

𝐾

𝑗=1
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= ∏
𝑒

𝜃′𝐶𝑗

∑ 𝑒𝜃′𝐶𝑙
𝑙𝜖𝑅(𝑋𝑗) 

𝐾
𝑗=1 .                                                           (A2) 

For data with censoring we can write 

𝐿(𝜃) = ∏ [
𝑒

𝜃′𝐶𝑗

∑ 𝑒𝜃′𝐶𝑙
𝑙𝜖𝑅(𝑋𝑗) 

]

𝛿𝑖

𝑛
𝑗=1 ,                                                   (A3) 

where 𝛿𝑖=1 for adopting consumers, 𝛿𝑖=0 for censored consumers at time Xj, and n is the number of 

consumers in the study. Note that Eq. (A2) and Eq. (A3) are equal. Now assume that there are ties in 

adoption times, meaning that there are adoptions that occur on the same day. One popular method to 

handle ties is suggested by Breslow (1972) 

𝐿(𝜃) = ∏ ∏
𝑒

𝜃′𝐶𝑗
𝑖

∑ 𝑒𝜃′𝐶𝑙
𝑙𝜖𝑅(𝑋𝑗) 

𝑑𝑗

𝑖=1
𝐾
𝑗=1                                                       (A4) 

where dj is the number of adoptions at τj and 𝐶𝑗
𝑖 is the vector of covariates for the ith consumer who 

adopts at time τj. Considering that our covariates are time-varying, we modify Eq. (A4) as 

𝐿(𝜃) = ∏ ∏
𝑒

𝜃′𝐶𝑗
𝑖 (𝑡)

∑ 𝑒𝜃′𝐶𝑙(𝑡)
𝑙𝜖𝑅(𝑋𝑗) 

𝑑𝑗

𝑖=1
𝐾
𝑗=1  ,                                                   (A5) 

where 𝐶𝑗
𝑖(𝑡) shows the values at t of the vector of time-varying covariates for the ith consumer who 

adopts at time τj. Taking the log of Eq. (A5) we get the log-partial likelihood as 

𝐿𝐿(𝜃) =  ∑ ∑ (𝜃′𝐶𝑗
𝑖(𝑡) − log (∑ 𝑒𝜃′𝐶𝑙(𝑡)

𝑙𝜖𝑅(𝑋𝑗) ))
𝑑𝑗

𝑖=1
𝑘
𝑗=1 .                                   (A6) 

To estimate 𝜃, we can use an optimization method to maximize Eq. (A6) by changing 𝜃. We conduct 

model estimations in R. We use the maxlik function to maximize the log-partial likelihood for the models 

we estimate.  

A.2. Estimating Confidence Intervals 

We use the profile likelihood approach for estimating the confidence intervals of the estimated 

parameters. Profile-likelihood-based confidence intervals are specifically useful for nonlinear models 

(Royston 2007). Assume 𝜃𝑖 is an element of 𝜃 and is a scalar parameter of particular interest. We would 
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like to construct a profile-likelihood function for 𝜃𝑖. Let the true value of 𝜃𝑖 in the population be 𝜃𝑖0
 and 

𝜃𝑖’s profile likelihood function be 𝑙𝑝(𝜃𝑖). What we need to conduct to compute the 𝑙𝑝(𝜃𝑖) and the 

confidence interval corresponding to 𝜃𝑖0
 is to fix 𝜃𝑖’s value and find the maximum likelihood estimation 

for the remaining parameters of 𝜃. To find the confidence interval, this process is repeated for an 

appropriate set of values of 𝜃𝑖 until the range (𝜃𝑖𝑙𝑒𝑓𝑡
, 𝜃𝑖𝑟𝑖𝑔ℎ𝑡

) is found, which satisfies the equality 

2 {𝑙(𝜃𝑖̂) − 𝑙𝑝(𝜃𝑖𝑙𝑒𝑓𝑡
)} = 2 {𝑙(𝜃𝑖̂) − 𝑙𝑝(𝜃𝑖𝑟𝑖𝑔ℎ𝑡

)} = 𝐶1;1−𝛼 

in which 𝐶1;1−𝛼 is the (1- α)th quantile for the 𝜒2 distribution with 1 degree of freedom. In the models we 

test, 𝑙(𝜃𝑖̂) is the maximum log-partial likelihood estimated by changing all model parameters. For the 

models we examine, we examine the 90%, 95%, and 99% confidence intervals of all model parameters 

including those for the covariates incorporated into the Cox model and the parameter(s) of the adstock 

model based on which the consumers’ adstocks for impressions from different channels are calculated. 
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Appendix B. Operationalization of the Fractional Calculus-Based Operator used in FCASM 

Estimating the FCASM using the Riemann-Liouville integral shown in Eq. (1) may be computationally 

challenging. Therefore, we use a substitute mathematical operator that mimics the Riemann-Liouville 

integral and is computationally less demanding. Specifically, following Lotfi, Jiang, Lotfi, and Jain 

(2023), we use the operator 𝐼𝑛,𝑘
𝛽

 in which k and n are the approximate operator’s parameters. The 

developed approximate operator uses the n-point Gauss quadrature formula proposed for integrals 

(DeVore and Scott 1984) and Spouge’s approximated formulation for the Gamma function (Spouge 

1994). Increasing the values of k and n leads to 𝐼𝑛,𝑘
𝛽

 converging to the original operator Iβ, i.e., the 

Riemann-Liouville integral. Lotfi et al. define 𝐼𝑛,𝑘
𝛽

 as 

𝐼𝑛,𝑘
𝛽

𝑦(𝑡) ∶=
𝑦(0)𝑡𝛽

𝐺𝑘(1+𝛽)
+

𝑦′(0)𝑡1+𝛽

𝐺𝑘(2+𝛽)
+ 𝐼𝑛,𝑘

2+𝛽
𝑦′′(𝑡),                                       (B1) 

where 𝛽 is the order of the operator, y(t) is the function on which the operator is applied, and  

𝐼𝑛,𝑘
2+𝛽

𝑦′′(𝑡) ∶=
1

𝐺𝑘(2+𝛽)

𝑡

2
∑ 𝑤𝑖 (

𝑡

2
(1 − 𝑥𝑖))

1+𝛽
𝑦′′ (

𝑡

2
(𝑥𝑖 + 1))𝑛

𝑖=1 .                       (B2) 

In Eq. (B2), xi and wi denote the quadrature nodes and weights (DeVore and Scott 1984), and Gk(.) is 

defined as 

𝐺𝑘(𝑥) = (𝑥 − 1 + ℎ)𝑥−
1

2𝑒−(𝑥−1+ℎ)√2𝜋 [𝑐0 + ∑
𝑐𝑖(ℎ)

𝑥−1+𝑖
𝑘
𝑖=1 ], 

in which  𝑐0 = 1, the parameter ℎ is real, 𝑘 = ⌈ℎ⌉ − 1, and  

𝑐𝑖(ℎ) =
(−1)𝑖−1(−𝑖 + ℎ)𝑖−

1
2

√2𝜋(𝑖 − 1)!
𝑒−𝑖+ℎ. 

The detailed derivation of 𝐼𝑛,𝑘
𝛽

 and the proof of its convergence to the original operator are provided in 

Lotfi et al. (2023). 
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Appendix C. Validating Robustness of Fractional Calculus-Based Advertising Memory 

 
In this appendix we develop and empirically test model extensions to evaluate the robustness of the 

fractional calculus-based memory formulation used in the FCASM. Specifically, we examine whether the 

memory rate (i) changes over time or (ii) is influenced by ad exposures. 

C.1. Time-Varying Memory Rate 

In the base FCASM, the memory rate captured by the memory coefficient β is constant. However, as the 

consumers are collecting relevant information to form their opinion of the product, they likely receive 

repetitive information. It is known that repetition learning can improve memory performance (Zhan, Guo, 

Chen, and Yang 2018). Based on this expectation, we develop a model version in which memory rate 

increases over time. Considering that it is expected that the memory rate improves as the information 

collection and interest development process progresses, for consumer i, we consider a time-varying 

coefficient of memory 𝛽𝑖(𝑡) that increases as the cumulative amount of information received increases 

                                        𝛽𝑖(𝑡) = 𝛽 ∫ 𝑦(𝜏 − 𝑡𝑖) 𝑑𝜏
𝑡

𝑡𝑖
.                                                         (C1) 

In Eq. (C1), y(.) represents the new information acquired at a given point in time in [ti, t] and ti denotes the 

beginning of the information collection for consumer i, which in our model operationalization is assumed 

to coincide with the consumer’s first ad exposure. Considering that in the FCASM, we use the bell-

shaped Bass density function for y(.), ∫ 𝑦(𝜏 − 𝑡𝑖) 𝑑𝜏
𝑡

𝑡𝑖
 becomes an S-shaped trend that runs between 0 and 

1, resulting in a time-varying memory rate that increases over time from 0 to β. Based on Eq. (C1), β is 

the highest memory rate consumers can achieve as they progress in their purchase cycle. Our empirical 

testing shows that this model extension does not result in an AIC value smaller than that of the FCASM 

reported in Table 1. Therefore, in the absence of empirical support in favor of an increasing memory as 

formulated in Eq. (C1), we select the simpler FCASM. 

C.2. Exposure-Influenced Memory 

In the base FCASM, advertising exposures are assumed to have no influence on memory. In this 

subsection, we introduce an extension of the FCASM in which the adstock memory is influenced by 
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exposures. Specifically, in this model version, with more ad exposures occurring, the memory grows 

stronger. The rationale behind this model version is similar to the one used in developing the extension 

based on Eq. (C1). Particularly, more exposures may serve as a repetition of product-related information 

acquired in the past, resulting in a decline in the memory decay rate. Therefore, we formulate the memory 

rate as 

𝛽 = 𝛽0 + 1 − exp (−𝜎 ∗ 𝑛𝑖(𝑡)),                                                     (C2) 

where 𝛽0 is the base memory, 𝑛𝑖(𝑡) is the number of ad exposures for consumer i until time t and 𝜎 

represents the rate at which memory improves with more exposures. We limit the memory rate 𝛽 shown 

in Eq. (C2) to run between 0 and 1. In our empirical testing the value of 𝜎 approaches zero, indicating that 

the extended model reduces to the base FCASM with constant memory rate reported in Table 1. 

Therefore, we do not find any empirical evidence that memory improves with the occurrence of more ad 

exposures. 


