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Abstract

While the digital advertising markets have been growing rapidly, the effect of advertising is yet to be
properly understood, mainly due to long purchase cycles and unobserved stages in consumers’ decision-
making process. To address this shortcoming, we first propose a new advertising stock model that
accounts for consumers’ independent decision-making as well as the word of mouth and network effects.
Fractional calculus is used to account for advertising stock erosion due to consumers’ memory decay.
Based on the proposed advertising stock model, we then develop a generalized proportional hazard model
that incorporates different channels’ advertising stocks as covariates to measure the effect of these
channels on adoptions. The proposed model is tested using a dataset that records individual-level
adoptions of a new video game and advertising impressions from different digital channels. The results
show that consumers’ advertising stocks exhibit a nonmonotonic pattern, contrary to the geometric decay
assumed in the literature. Furthermore, we compare the proposed model with two benchmark models and
show that our model outperforms them in determining the influence of different channels on adoptions.
We also find that consumers’ decisions are heavily affected by word of mouth and network effects, which
have not been accounted for in prior studies, and that these effects are accentuated post product release.
Additionally, our empirical results demonstrate that firms are better off advertising through a few select
channels instead of utilizing all available channels. Our findings bear important practical implications and

can help advertisers efficiently and effectively plan their advertising campaigns.
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1. Introduction
Digital advertising is becoming the dominant form of advertising (Todri 2022), with total spending
expected to reach $298.4 billion in 2024 (Statista 2023). As a result of such enormous online advertising
(or ad for short) expenditure, consumers experience frequent exposures to advertisements from various
digital channels. Despite the rapid growth of digital advertising market, Gordon, Jerath, Katona,
Narayanan, Shin, and Wilbur (2021) report in a comprehensive review article that ad effect measurement
is yet to be properly addressed. According to them, challenges in advertising effect measurement can be
attributed to different reasons, including long purchase cycles and unobserved stages in consumers’
decision-making process. Specifically, following the hierarchy of effects model, consumers first gain
product awareness based on information received from an advertiser, then potentially develop interest due
to actively acquiring and processing relevant information, and finally may act in the form of product
purchase due to the developed interest (Barry 1987). While consumers’ purchases can be recorded, their
information accumulation and interest development are typically not directly observable to the advertiser.
Additionally, the common practice of starting advertising before product release further complicates the
measurement of advertising effect. Particularly, it is challenging to gauge how advertising campaigns
influence consumers’ purchase decisions before a product is launched. Furthermore, firms often advertise
through multiple channels, making it challenging to determine the effect of each channel. We endeavor to
address these challenges in this study by developing new advertising stock and digital attribution models,
also heeding the recent call by Gordon et al. (2021) to provide an efficient and effective solution to the ad
effect measurement problem.

We first introduce a new advertising stock model based on the premise that the contribution of an ad
exposure to a consumer’s advertising stock is determined by the product information the consumer

receives and the subsequent interest in the product the consumer develops over time. Under the new



model, depending on the rate of information accumulation and interest development, the advertising stock
and subsequently the effect of advertisement either monotonically declines or first increases and then
decreases over time, conforming to the two different patterns reported in the literature and enhancing the
model’s generalizability.

The new model accounts for consumers’ independent decision-making as well as the word of mouth
and network effects. This renders the model more realistic than existing models that do not incorporate
these influences, specifically considering that electronic word of mouth plays a primal role in forming
consumers’ attitudes and behaviors (Todri, Adamopoulos, and Andrews 2022).

Furthermore, considering that memory plays a pivotal role in the temporal dynamics of consumers’
advertising stock, we incorporate consumers’ memory decay in the new advertising model as well. In
particular, accounting for memory decay is of fundamental importance in cases where firms start their
advertising campaigns before releasing their products to the market, expecting to reap the benefit of
advertising after product release. In our advertising stock model, we use fractional calculus to model the
erosion of advertising stock due to consumers’ memory decay over time. Fractional calculus, a novel
mathematical tool that has been applied in multiple disciplines including management science (Lotfi,
Jiang, Naoum-Sawaya, and Begen 2024, Lotfi, Naoum-Sawaya, Lotfi, and Jiang 2024, Lotfi, Jiang, Lotfi,
and Jain 2023), extends the classical integration and differentiation operators, making non-integer
derivatives and integrals possible. The model assumes a power-law memory decay trend, which closely
resembles the Woodworth’s classic forgetting curve (Bennedsen and Caspersen 2009).

The prior literature has used experiments or observational data to analyze the effect of advertising,
with the latter more widely adopted (Gordon et al. 2021). In this research, we test our model using a video
game dataset that records individual-level ad exposures from different channels before and after product
release and product adoptions (purchases) after release. This dataset provides a unique opportunity to
study the advertising effect because it is quite rare that a single-source dataset contains both advertising

exposures and the subsequent conversions (Gordon et al. 2021).



To measure the influence of exposures from different channels on product adoptions, we incorporate
changes in advertising stocks resulting from such exposures, as computed by the proposed advertising
stock model, into a proportional hazard model. The proposed generalized hazard model can utilize data on
individual-level advertising exposures and adoptions, and is also applicable in cases where advertising
exposures start to occur before product release.

We compare the proposed generalized hazard model with two benchmark hazard models. In the first
benchmark model, the measurement of consumers’ stocks of advertisements is conducted using the
widely-used Koyck distributed lag model (1954) based on which the effect of an ad exposure decays
exponentially over time. It is important to note that, even though the Koyck model is proposed decades
ago, this intuitive and parsimonious model is frequently adopted by more recent studies (e.g., Terui, Ban,
and Allenby 2011, Zantedeschi, Feit, and Bradlow 2016, and Chae, Bruno, and Feinberg 2019). We
develop a second benchmark model in which the Erlang-2 distribution is used to represent each
exposure’s advertising stock trend (Chatfield and Goodhardt 1973). This model assumes that the effect of
each ad exposure peaks, following an Erlang-2 distribution.

Our empirical results demonstrate that the proposed model more accurately fits the training data and
delivers a better out-of-sample prediction performance than do the two benchmark models. Additionally,
we show that a consumer’s advertising stock can exhibit a nonmonotonic trend that first increases and
then declines, and that the nonmonotonic pattern emerges due to the word of mouth and network effects.

Moreover, to further adjust the model to cases in which firms start advertising before product release,
we develop a model extension which distinguishes between the word of mouth and network effects before
and after product release. Our empirical findings based on the extended model demonstrate that the word
of mouth and network effects become significantly accentuated after product release, resulting in a much
quicker rise in the adstock trends of consumers who embark on their purchase journey post product

release.



Finally, our results indicate that firms are better off selecting a subset of the available advertising
channels that have the highest impact on consumers’ adoption decisions, because viewing advertisements
through too many channels may negatively impact consumers’ adoption propensity.

This study also offers important practical implications. First, the model we propose explains and
predicts the temporal dynamics of advertising effect, which can help firms decide the timing of their
advertising campaigns. In particular, since the proposed model can capture the effect of advertising
exposures from before product release, it can help firms plan for pre-launch advertising campaigns.
Second, firms can implement the proposed modeling framework to distinguish between the word of
mouth and network effects before and after product release, allowing them to strategically plan to
leverage these effects. Specifically, considering that pre-release word of mouth is expected to be greatly
influenced by influencers, firms can plan to efficiently invest in influencer-based word of mouth before
product release. Third, the proposed model can tease out the effect of different advertising channels on
consumer purchases, which can help firms optimize their selection of advertising channels.

The remainder of this paper is organized as follows. We provide a review of the relevant literature in
Section 2. We present a review of fractional calculus, including its memory interpretation, in Section 3.
Section 4 develops a new advertising stock model and a proportional hazard model for time-to-adoption
analysis. Section 5 evaluates the performance of the proposed model against two benchmark models. We
introduce and empirically test a few extensions of the new advertising stock model in Section 6. Finally,
we provide our concluding remarks in Section 7.

2. Relevant Literature Review

In this section, we briefly review three related bodies of literature on advertising stock (or adstock in
short), digital attribution, and diffusion of innovations.

2.1. Advertising Stock

The present research is closely related to the adstock literature that studies how the effect of advertising
accumulates and then attenuates over time. Empirical works on the initial and long-term effects of

advertising date at least as far back as Koyck (1954). As per Koyck, a consumer accumulates latent



adstock from ad exposures over time. Based on a distributed lag structure, Koyck’s model captures a
process in which the influence of advertising on sales can be characterized by a geometrically decaying
process. An exponential decay function is adopted to account for the declining effect of prior ad
exposures. Although it is proposed decades ago, the intuitive and parsimonious Koyck model is still
frequently adopted by more recent studies to capture the exponentially decaying effect of advertising
(e.g., Terui et al. 2011, Zantedeschi et al. 2016, and Chae et al. 2019).

Nerlove and Arrow (1962) defined a stock of goodwill that summarized the effect of past and current
advertising spending on consumer demand. Similar to Koyck (1954), they assumed that goodwill
depreciates over time. Applying Koyck’s distributed lag technique on a dataset collected from the Lydia
E. Pinkman Medicine Company over a period of more than 50 years, Palda (1965) demonstrated that
incorporating both current and past advertising expenditures into advertising models can produce
significant explanatory power. Palda reported that advertising has a pronounced lagged influence on sales.
On average, it took almost seven years for the advertising spending to achieve 95% of its sales-generating
effect.

Following the standard distributed lag approach by Koyck (1954), Zantedeschi et al. (2016), in an
experimental setting with an email channel and a catalogue channel, studied multichannel advertising
responses and predicted the short- and long-term influences of different ad channels on consumer
purchases. The prior study showed that, by using its method and targeting the most responsive consumers,
the firm can increase its predicted advertising returns by almost 70%, compared to targeting based on the
well-known recency, frequency, and monetary value measures.

Using a Koyck specification to model adstock, Chae et al. (2019) studied consumers’ responses to
online advertising repetition. Specifically, they documented consumers’ weariness, which refers to a
situation that there is a point beyond which more ad exposures can have a negative marginal influence.
Shapiro, Hitsch, and Tuchman (2021) studied television advertising effectiveness. Specifically, they
estimated advertising stock elasticities, which signify the total current and future shifts in sales due to a
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advertising elasticities compared to the results from the literature and a considerable percentage of
negative or statistically insignificant estimates.

Relaxing the assumption that the advertising effect only declines over time, Bass and Clarke (1972)
proposed a generalization of the Koyck distributed-lag model that allows responses to advertisements to
first intensify and then decline, demonstrating a nonmonotonic behavior. However, Bass and Clarke’s
study focused on cases in which sales and advertising take place in parallel, making it inapplicable for the
cases we study in which advertising exposures start to occur before product release. Furthermore, Bass
and Clarke used aggregate-level data on monthly sales and advertising history of a dietary weight-control
non-durable product. By contrast, the model we develop can be fit to individual-level consumer data and
be used to study the influence of advertising on the adoption of durable products.

2.2. Digital Attribution

The second stream of related research is on digital attribution. The aim of digital attribution research is to
distribute the credit for consumer purchases across the digital marketing channels that deliver
advertisements to consumers. The digital attribution literature has empirically estimated the effectiveness
of advertising based on consumer heterogeneity in terms of exposure to advertising (e.g., Ghose and
Todri-Adamopoulos 2016). For example, Shao and Li (2011) proposed a bagged logistic regression
model for advertising channel attribution, and cross-validated their model against a simple probabilistic
model that directly quantifies the attribution to different channels. The results showed that the bagged
logistic regression model and the probabilistic model deliver highly consistent performance. Li and
Kannan (2014) developed a new method to determine the value of each online advertising channel using
individual-level touch data, and found that the channels’ relative effects are significantly different from
those reported using metrics presented in previous studies.

Worth particular mentioning are two studies in the information systems literature. Xu, Duan, and
Whinston (2014) study the influence of different online advertisement types on conversions by analyzing
the interactions among advertisement clicks. The study is motivated by the observation that, while some

advertisement clicks may not lead to immediate conversions, they may trigger subsequent clicks on other



advertisements that eventually result in conversions. The results demonstrated that a commonly used
conversion rate measure overestimates the effect on convergence of search advertisements and
underestimates that of display advertisements. Ghose and Todri-Adamopoulos (2016) studied display
advertising’s effectiveness across various individual behaviors. They empirically showed that exposures
to display advertising increase user propensity to engage in both passive search (using received
information) and active search (applying effort to collect information). Furthermore, they found that the
longer a consumer spends viewing an ad, the more likely she is to engage in direct search behavior (e.g.,
visiting a website) rather than indirect search behavior (e.g., using search engine inquires).

2.3. Diffusion of Innovations

This study also draws upon the literature on the diffusion of innovations. This stream of literature is best
represented by the seminal Bass model (Bass 1969). In one of the directions of extensions of the Bass
model, the influence of marketing-mix variables, including advertising, on product purchases has also
been studied. Examples of such research include the Generalized Bass Model (GBM) (Bass, Krishnan,
and Jain 1994) and the proportional hazard model (PHM) (e.g., Bass, Jain, and Krishnan 2000). Note that
the diffusion models proposed in this stream of research are primarily developed to estimate aggregate-
level consumer adoptions and are not applicable for cases in which ad campaigns start before product
release. However, since the spread of product information during ad campaigns is essentially a diffusion
process, this literature provides the theoretical and modeling foundation for the model proposed in this
research.

An extensive review of the prior literature has not led to any model that (a) can accommodate the
nonmonotonic (first intensifying and then declining) effect of advertising, (b) incorporates the influence
of advertising exposures from different channels, and (c) can be used when ad campaigns start before
product release. In this study, we aim to develop a model that offers such capabilities.

3. Fractional Calculus and Advertising Memory
In this section, we introduce fractional calculus, which is key to the development of our new adstock

model, and discuss its ability in capturing a consumer’s product-related memory based on which her



adstock changes. Memory is a key part of adstock models as such models are expected to measure the
initial and long-term effects of advertising. In fact, it is through memory that advertising demonstrates a
carryover effect. Therefore, we carefully incorporate memory, as well as the corresponding depreciation,
into our new adstock model.

Prior research suggests that a consumer’s advertising stock can be viewed as a process with memory
(Boltzmann 1876), or more specifically an economic process with memory (Baillie 1996, Teyssiere and
Kirman 2006). According to Tarasov (2018), in an economic process with memory, memory captures the
dependence of an output (response variable) at the present time on the history of the changes of an input
(impact variable) in a given time frame. Accordingly, memory of advertisement captures the dependence
of adstock at the current time on the advertising exposures received during a past time window.

Regarding methods used to study economic processes with memory, Tarasov (2018) points out “it is
known that derivatives of positive integer orders are determined by the properties of the differentiable
function only in an infinitesimal neighborhood of the considered point. As a result, differential equations
with integer-order derivatives cannot describe processes with memory.” Tarasov then suggests a powerful
tool that can be used to describe economic processes with memory. The tool is called fractional calculus,
which represents a branch of mathematics that generalizes differentiation and integration so that non-
integer-order differential and integral operators become possible. Interested readers can refer to Samko,
Kilbas, and Marichev (1993), Podlubny (1999), Kilbas, Srivastave, and Trujillo (2006), and Baleanu
Diethelm, Scalas, and Trujillo (2012) for comprehensive reviews of the fractional calculus literature.

Drawing on the prior literature (Samko et al. 1993, Kilbas et al. 2006), Tarasov (2018) suggests that
an economic process with power-law type memory can be captured by the following fractional integral

equation

IBX(t):= f;%(t — P 1X(7)dr . 1)

In this equation, X(t) represents the input of the economic process being modeled. The LHS is the output,

where I# is a non-integer fractional integral of order 8 (8 > 0). The RHS of this equation is obtained



based on the Reimann-Liouville fractional integral (Kilbas et al. 2006), which is a generalization of the

standard n-th integral. The term ﬁ (t — 1)1 is called the kernel of the fractional integral, which is

interpreted as a memory function that is capable of capturing how the output at the present time depends
on the history of the input up to the present time. The Gamma function I'(x), x > 0, takes the following
form
M(x) = [, t* e tdt. 2)

The memory (kernel) function in Eq. (1) is a power-law type function (Tarasov 2018), which assigns
lower weights to earlier events and higher weights to more recent events, as illustrated in Figure 1. The
power-law memory shown in Figure 1 closely resembles human memory, making it suitable for capturing
memory of advertising. For 0 < 8 < 1, the higher the 3, the better the memory retention.

We develop a new adstock model using the fractional integral presented in Eq. (1). Considering that a
consumer’s adstock is expected to change as the consumer acquires relevant product information and
develops interest in the product, we apply the fractional integral operator on a process representing the

consumer’s information accumulation and interest development process. Specifically, in our adstock

model, X(7) in Eq. (1) represents the consumer’s information accumulation and interest development

process.
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Figure 1. Declining-Toward-Past Memory Function (t=10)
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4. Model Formulation

In this section, we first propose a new adstock model using the fractional calculus-based operator
introduced in the previous section, and then develop a proportional hazard model to capture consumers’
timing to product adoptions.

4.1.Fractional Calculus-Based Adstock Model

We propose a model to measure a consumer’s adstock in the presence of multiple digital advertising
channels. The model incorporates two fundamental components that affect a consumer’s adstock: adstock
buildup and adstock decay. The adstock buildup mechanism assumes that a consumer’s adstock changes
as the consumer acquires information related to a product and develops potential interest in the product.
The adstock decay mechanism assumes that a consumer’s adstock declines over time due to memory
decay.

It has been shown that the flow of related information from different sources influences a consumer’s
adoption decision (Sawhney and Eliashberg 1996). Specifically, under the hierarchy of effects model of
advertising, consumers first gain awareness based on information received from an advertiser, then
develop interest due to actively acquiring and processing relevant information, and finally may act in the
form of product purchases due to the developed interest (Barry 1987). Therefore, we expect that a
consumer’s adstock builds up as the consumer acquires relevant information and develops potential
interest in the product.

In the meantime, a consumer also forgets product-related information over time. As such information
is being forgotten, the developed interest is also expected to die down. The amount of information
consumer i maintains at time t depends on the consumer’s memory of the information acquired in 7 € [t;,
t), where t; is the time at which consumer i begins acquiring relevant information. At t, a consumer with
perfect memory remembers all the information acquired in 7 € [ti, t). The information that a perfect-
memory consumer maintains at t equals the cumulative information received until and at t.
Mathematically, this leads to the information held by a perfect-memory consumer at t being the first-order

integration of information acquisition rate in [t;, t]. Thus, we have
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Y(©) = [ y(r—t) dr = P71y (e — 1), ©)
where, for consumer i, Y(t) is the total information held at t and y(-) represents the new information
acquired at any point in time in [t;, t]. We name the degree of integral § in Eq. (3) the memory coefficient.
For a perfect-memory consumer, g = 1.

While a perfect-memory consumer represents an extreme type, we also consider another extreme type
of consumers who only remember the information received at the current time. We name these consumers
amnestic consumers. For an amnestic consumer, we have

V() = 1F=0y(t - t) = y(t — ty). (4)

Most consumers are expected to have a memory capacity that falls between those of amnestic
consumers and perfect-memory consumers. Specifically, most consumers can remember a fraction of the
information they have received in the past. Mathematically, we implement a fractional integral of order g
of y(*) to represent such common consumers

Y(t) = 1Py(t —t), Be(0,1). ()
For such common consumers, the exact amount of information acquired in 7 € [0, t) that is still
remembered at the current time depends on the formulation we use to operationalize the fractional
integral in Eg. (5). In this study, we adopt the Riemann-Liouville integral shown in Eq. (1). Replacing

X(t) in Eq. (1) with y(t - t;), we formulate Y(t) as

Y(©) = 1Py(t = t) = [} = (= DF Ty - tdr.

1
TR
With this formulation, the common consumers modeled by Eqg. (5) have a power-law memory (shown in
Figure 1).

Because a consumer’s adstock is expected to change in accordance with the consumer’s information
accumulation and interest development, we model the contribution of ad exposure j from channel k to
consumer i‘s adstock at time t as

Adstock;j () = IPy(t — t,), (6)

where t; is the time at which the accumulation of relevant information for consumer i begins.
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Note that it is often difficult to determine the exact time at which a consumer begins to collect
relevant information (i.e., tj). Ghose and Todri-Adamopoulos (2016) empirically show that consumers’
exposures to display advertising increase their tendency to search for the advertised product and its brand.
Furthermore, consumers often engage in both passive search, which involves responding to exogenously
arriving information, and active search, in which the consumer exerts effort to acquire information. In our
model operationalization, we assume that a consumer’s information accumulation starts when she
experiences the first advertising exposure.t

Note that the adstock given in Eq. (6) captures the effect of one ad exposure. We next incorporate the
buildup effect of multiple ad exposures into the consumer’s adstock. Specifically, we use an adstock
variable, z;; (t), to represent the aggregate adstock accumulated for consumer i at t for all exposures from

channel k

n, (t)

Zy (t) = ijl Adstock;j (t), (7)
in which n;, (t) is the number of exposures from channel k to consumer i up to time t. Then, a consumer’s

total adstock at t, AS;(t), is the sum of adstocks from all channels
ASi(8) = X zix (). €))
We next elaborate on the functional form that determines the rate at which a consumer acquires

product information. Given that the spread of information is often expected to follow a diffusion process,
we adopt the density function of the most well-known diffusion model—the Bass model (Bass 1969), in
the following form

y(t—t) = (p+qF(t—1t))1 - F(t—t)), ©)
where F(+) represents the cumulative distribution of product information accumulation, and p and q are

called the coefficient of innovation and coefficient of imitation, respectively, in the Bass model. We refer

L Our empirical tests demonstrate that relaxing this assumption and allowing the information accumulation’s start
time to happen either before or after the first exposure does not lead to better empirical performance.
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to the adstock model formulated in Egs. (6), (7), and (8) as the Fractional Calculus-Based Advertising
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Figure 2. Changes in Adstocks Over Time under a Bell-Shaped Underlying Trend
Using the Bass model to represent the underlying information accumulation and interest development
function enables the FCASM to accommodate the monotonic and nonmonotonic advertising trends
reported in the literature, thus rendering the FCASM a generalization of existing models. Specifically,
when p < q, y(t — t;) demonstrates a bell-shaped trend, resulting in an adstock growth process that can
follow the same pattern. This makes the FCASM compatible with the findings of Bass and Clarke (1972),
according to which the effect of advertisement can be nonmonotonic. For p < g, Figure 2 illustrates how

the individual adstocks generated by three exposures that take place at different times and the total
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adstock (summation of the three individual adstocks) change with time. The individual and the total
effects of the three exposures over time are shown by the solid parts of the curves in the figure.

When p > g, the Bass density function declines monotonically, in which case the FCASM is
compatible with the classic Koyck distributed lag model (Koyck 1954), based on which the effect of an
exposure declines exponentially over time. Figure 3 demonstrates the adstock trend corresponding to a
monotonically declining underlying information accumulation and interest development trend (p > q).
Compared to the curves shown in Figure 2, we can see that the adstocks corresponding to the three
exposures, as well as their summation, decay at a much faster rate in Figure 3.

The incorporation of the Bass model into the FCASM not only allows it to assume the two main
adstock trend shapes discussed in the literature (i.e., monotonic and nonmonotonic), but also leads to
further insights. As mentioned earlier, the Bass model in the FCASM represents the process through
which consumers acquire product information and develop potential interest in the product, which may
subsequently result in product adoptions (purchases). In the Bass model, independent decision making is
captured by the parameter p and imitation is represented by the parameter ¢. For the FCASM, we interpret
the parameter p as representing the independently developed interest in the product and the parameter g as

capturing the interest developed based on imitation or word of mouth effect, as well as the network effect.
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Figure 3. Changes in Adstocks Over Time under A Monotonically Decreasing Underlying Trend
The data we use to evaluate the proposed model is collected for a video game product. The likely
existence of a strong network effect for such products suggests g being larger than p, resulting in a

nonmonotonic underlying adstock growth trend instead of the monotonic trend suggested by the Koyck
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distributed lag model.

4.2. Time to Adoption: Hazard Modeling Framework

One of the primary goals of this research is to estimate the influence of digital advertising on consumers’
product purchase (or adoption) decisions. Among various modeling approaches, proportional hazard
models (a type of survival models) have been applied to estimate the timing of product purchases. For
example, Jain and Vilcassim (1991) introduce a conditional hazard function to study household
interpurchase timing while accounting for marketing variables, observed characteristics of households,
and unobserved household heterogeneity. However, Jain and Vilcassim study a non-durable product. Qu,
Lotfi, Jain, and Jiang (2022) use survival analysis to predict upgrade timing for a product line with
successive product generations. However, the effect of advertising on consumers’ decision-making
process is not considered in Qu et al.’s study.

In the present research, we adopt a hazard modeling framework to disentangle the influences of
different digital advertising channels on consumers’ timing of adoptions. Consumer’s adstocks, estimated
based on the FCASM, are incorporated into a proportional hazard model as covariates (i.e., independent
variables), resulting in a generalized proportional hazard model.

A hazard model is typically composed of a baseline hazard function and a term that captures the
effect of covariates. In this study, we denote the baseline hazard function by h(t), and the vector of
time-varying covariates for a consumer i by C;(t), which includes the adstocks estimated using the
FCASM. The resulting hazard rate function of adoption for consumer i is expressed as

R (6, Ci(6)) = ho(D)e€i(®P, (10)
in which @ is the vector of coefficients that captures the impact of covariates on consumer i’s adoption
hazard. Eq. (10) can be expanded as

h(t, Ci(t)) = ho(t)eZkazik(t)+Z]‘ejxij(t)_ (11)
In Eq. (11), z; (t) represents the adstock for consumer i at time t generated by exposures from channel k,

and 6y, is the coefficient that captures the effect of z;;, (t) on the adoption hazard. The model can include
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other covariates in addition to the adstock measures. Specifically, xj; is the jth non-advertising covariate
for consumer i and 6; is the coefficient that captures the effect of this covariate on the adoption hazard.

The survival function for consumer i after incorporating the vector of covariates is expressed as

clie

Si(t, Ci(0) = [So(D)]° " 12)
We will elaborate on the baseline hazard in Eq. (11), i.e., hy(t), and our model estimation procedure in
the next section.
5. Empirical Analysis
We empirically evaluate the FCASM’s performance against two benchmark models using a dataset that
records individual-level advertising exposures and product adoptions.
5.1.Data
We use a large-scale individual-level dataset that records consumers’ advertising exposures in the form of
impressions from six different digital advertising channels, other non-advertising variables, and the
consumers’ adoptions of the video game featured in the advertisements. This dataset provides a special
opportunity to study the effect of advertising on consumer adoptions, because it is rare that companies are
able to track both advertising exposures and the corresponding conversions in a single-source consumer
data (Gordon et al. 2021). As recorded in the dataset, an impression happens when a consumer views an
ad. The dataset includes 89,943 exposure records for 2,233 different consumers. Figure 4 presents a
schematic illustration of ad exposures and adoptions recorded in the data. As portrayed in Figure 4,
consumers started to experience exposures to advertising through different digital channels before the
product was released. After product release, exposures continue to occur, followed by adoptions. The
recorded exposures occurred as early as 81 days before the product release. The data also includes 33
days’ worth of exposures and product adoptions during the time period after the product release. In
addition, the data records non-advertising information, including consumers’ count of other games, count

of other franchise games, and number of previous game days.
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Figure 4. Advertising Exposures and Product Adoptions
The frequency of exposures before and after product release is presented in Figure 5. The vertical
dashed line in the figure represents the product release. It can be seen in this figure that there were
fluctuations in the observation window, which may reflect ebbs and flows in the company’s advertising

efforts and consumers’ changing online behaviors.
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Figure 5. Density of Advertising Exposures

Advertising exposures occurred through six different digital advertising channels. Of all the recorded
exposures, 9,573 occurred through channel A, 3,489 through channel B, 55,885 through channel C,
16,799 through channel D, 1,619 through channel E, and 2,587 through channel F. The nonuniform
distribution of exposures across different channels could be due to the firm’s channel selection strategies

and the varying behavior of consumers across different digital channels.
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Figure 6 shows product adoptions after the product release. The adoption trend exhibits a few spikes.
The spike on the product release day likely reflects the adoptions by those who, based on available
information about the product, have made their adoption decisions prior to product release. The other
spikes could be attributed to price changes.?
5.2.Benchmark Models
To evaluate the performance of the proposed model, we consider two benchmark hazard models. In the
first benchmark model, the adstock covariates are measured based on the classical Koyck distributed-lag
model (Koyck 1954). The model assumes that the effect of an exposure decays exponentially over time.
As explained earlier, due to its intuitive and parsimonious form, this classical model has been frequently
adopted even in recent studies. For simplicity, we name this model the Koyck Model, based on which the
contribution of exposure j from channel k to consumer i s adstock at time t, denoted by K_Adstock; j (t),
is

K_Adstockj. (t) = e~ A¢=tuw),
in which t; . is the time when consumer i’s exposure j from channel k occurs, and 4 is the adstock’s
exponential decay rate. Similar to the FCASM, in the Koyck model, the adstock for consumer i at time t

for exposures from channel k is

2 In the next subsection, we account for these adoption spikes when selecting a hazard modeling framework. Further,
we expect that, even without incorporating the price data, our model would not be much affected because assuming
that consumers are uniformly influenced by price, the hazard ratio is not impacted by price changes.
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ny, (t)

k_z; (t) = ijl K_Adstockj (1), (13)

in which n;, (¢) is the quantity of exposures from channel k that consumer i experiences up to t.
Subsequently, the hazard rate of adoption for consumer i at time t can be expressed as

K_Ri(t, KC;(£)) = ho(t)eZ ks +2; 07241, (14)
in which KC;(t) is the vector of time-varying covariates for consumer i. Similar to Eqg. (10), in Eq. (14),
0, is the coefficient that captures the effect of k_z;; (t) on the adoption hazard, x; is the jth non-
advertising covariate for consumer i, and 6; is the coefficient that captures the effect of the jth non-
advertising covariate on the adoption hazard.

We propose a second benchmark model that comes from the literature on stochastic models of
consumer behavior. This model assumes that each exposure’s adstock growth pattern follows the Erlang-
2’s density function. The Erlang-2 distribution has been used in the literature to describe a consumer’s
interpurchase timing (Chatfield and Goodhardt 1973, Schmittlein and Morrison 1983). We refer to this
benchmark model as Erlang-2 model. In this benchmark model the contribution of exposure j from
channel k to consumer i’s adstock at time t, denoted by E_Adstock;j, (t), is

E_Adstock;jj(t) = A2(t — t;j)e Ak,
where t;, is the time at which consumer i’s exposure j from channel k occurs, and 4 denotes the rate of
the Erlang-2 distribution, reflecting the rate at which an exposure’s contribution to adstock first rises and
then declines. As opposed to the Koyck model, in the Erlang-2 model, each individual exposure’s adstock
peaks. Note that under the proposed Erlang-2 model, the adstock for consumer i at time t generated by
exposures from channel k and the hazard rate of adoption for consumer i at time t follow formulations
similar to Eq. (13) and Eq (14), respectively.
5.3.Model Estimation and Performance Evaluation
The parameter estimation for a hazard model can be performed in a parametric, non-parametric, or semi-
parametric fashion. In this study, we adopt a semi-parametric approach because the adoption trend in our

dataset, as shown in Figure 6, exhibits spikes for various reasons, and we expect that the semi-parametric
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approach is more flexible than the parametric approach in dealing with the spikes. Specifically, we
implement the widely-used Cox model (Cox 1972), a semi-parametric model, for performance evaluation.
The details of model estimation and the estimation of the parameters’ confidence intervals are explained
in Appendix A. To operationalize the fractional operator used in the FCASM, we follow the procedure
implemented by Lotfi et al. (2023), with corresponding details provided in Appendix B. Note that the
generalized hazard model we develop based on the FCASM is more complicated than the base Cox
model, resulting in a more computationally intensive model estimation process.

For model performance evaluation, we use Akaike Information Criteria (or AIC). According to
Burnham and Anderson (2004), an AIC value is not interpretable by itself because it is influenced by the
sample size and has arbitrary constants. Therefore, it is important to rescale AIC to Ai= AIC;i — AlCnin, in
which AlCnin is the minimum AIC value among N different AIC values corresponding to N different
models being tested. Based on this transformation, the best model has Aj= 0, while the remaining models
have positive Aj values. As formulated by Burnham and Anderson, A; allows for a meaningful
interpretation. According to the prior study, models that have A; < 2 have substantial support, those with
4 < A; < 7 have considerably less support, and models with A; > 10 essentially have no support.

5.4. Empirical Results and Discussions

We first estimate the proposed FCASM and the two benchmark models using the video game data.
Estimation results are shown in Table 1. Next, we conduct tests for multicollinearity among the
covariates. The variance inflation factor (VIF; Kutner, Nachtsheim, and Neter 2004) for the FCASM,
Erlang-2 model and Koyck model are reported in Table 2, which shows that all VIF values are smaller
than 2, thus ruling out the multicollinearity problem.

The results reported in Table 1 demonstrate that the two models that incorporate the nonmonotonic
effect of advertising, i.e., the FCASM and Erlang-2 model, lead to smaller AIC values than does the
Koyck model under which adstock for an ad exposure declines monotonically. Based on the results
reported in Table 1, for the Koyck model we have Aj= 30329.57 — 30318.98 = 10.59. Since Ajis larger

than 10, according to Burnham and Anderson (2004), the Koyck model essentially has no significant
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support compared to the FCASM, which has the smallest AIC value. Thus, our empirical testing supports
the expectation mentioned in Section 4.1 that, in the context of adopting a new video game, it is highly
likely that a consumer’s adstock does not follow the monotonic trend suggested by the Koyck distributed
lag model.

Table 1. Comparison of FCASM, Erlang-2 Model, and Koyck Model

Koyck Erlang-2 FCASM
Channel A -0.002 -0.074 -0.009
Channel B 0.002 0.436** 0.135
Channel C 0.003 0.048 0.032
Channel D 0.001 0.047 0.186***
Channel E 0.018** 0.409** 0.389**
Channel F 0.007 0.025 -0.010
Count of other games 0.016*** 0.016*** 0.016***
Count of other franchise games 0.081 0.077 0.081*
Previous game days 0.004*** 0.004*** 0.004***
p - - 0.000001
q - - 0.498*
IB - - 0.23***
7 0.054 0.093*** -
AIC 30329.57 30325.89 30318.98

Note: ***99%, **95%, *90% confidence intervals do not include zero.

For the Erlang-2 model, Ai= 30325.89 — 30318.98 = 6.91, barely placing in the [4, 7] range. This
suggests that the Erlang-2 model has considerably less support than does the FCASM. Therefore, the
results suggest that the FCASM more effectively captures the nonmonotonic effect of advertising than
does the Erlang-2 model.

Table 2. VIF Values for FCASM, Erlang-2, and Koyck Model

Koyck Erlang-2 FCASM

Channel A 1.05 1.08 1.04
Channel B 1.15 1.13 1.05
Channel C 1.64 1.7 1.24
Channel D 1.8 1.86 1.22
Channel E 1.01 1.02 1.03
Channel F 11 1.12 1

Count of other games 1.11 1.11 1.11
Count of other franchise games 1.15 1.15 1.15
Previous game days 1.07 1.06 1.06
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As reported in Table 1, for the FCASM, the estimated value of p is much smaller than that of g,
indicating that consumers develop interest in the product and subsequently adstock primarily based on the
word of mouth and network effects associated with the product. The presence of strong word of mouth
and network effects reveals why the Koyck model and the Erlang-2 model, which do not incorporate
these effects, empirically underperform compared to the FCASM.

Furthermore, from Table 1, we can see that the estimated fractional calculus-based memory
coefficient () of the FCASM is much smaller than 1, suggesting that consumers’ adstocks decline with a
relatively high rate over time due to a rather weak memory rate. Specifically, with £=0.23, the memory
trend is close to the bottom trend curve shown in Figure 1. When £=0.23, for a given ad exposure, only
25%, 15%, and 11% of the adstcoks developed in the past one day, two days, and three days, respectively,
are maintained in the current day. This finding is consistent with a report indicating that consumers
quickly forget the contents of advertisements and that 80% of them (i.e., four out of five consumers)
forget branded content in three days (Inc. 2017).

Table 1 also demonstrates that the three non-advertising covariates under the FCASM are statistically
significant, and, as expected, all positively influence the hazard rate of adopting the new video game. This
result demonstrates that those who own more games and play more have a higher tendency to purchase
the new video game.

Moreover, we compare the FCASM, Erlang-2 model, and Koyck model based on their out-of-sample
prediction performance (Norwood, Roberts, and Lusk 2004). Specifically, we fit the models to a training
sample and use the estimated parameters to calculate the log-partial likelihood value for the out-of-sample
data. As reported in Table 3, with a 75-25 training-testing data split, the FCASM results in a larger log-
partial likelihood value than the other two models, indicating a better out-of-sample prediction
performance. This result demonstrates that the FCASM does not run the risk of overfitting, even though it
has more parameters than the Erlang-2 model and Koyck model.

The FCASM’s better empirical performance than the Koyck model and Erlang-2 model can be

primarily attributed to the fact that the model benefits from a simple rationale that is also theoretically
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supported by the literature. Specifically, the FCASM can accommodate the nonmonotonic effect of
advertising by assuming that a consumer’s adstock growth is affected by a process through which the
consumer first learns about the existence of a new product and then begins to accumulate relevant
information based on which the consumer develops potential interest in the product (Barry 1987). Under
the FCASM, the information accumulation and interest development process can assume a nonmonotonic
shape, which in turn results in @ nonmonotonic adstock growth trend. In accounting for consumers’
information accumulation and interest development, the FCASM explicitly incorporates consumers’
independent decision making as well as word of mouth and network effects, generating further insight
into consumers’ decision-making cycle. We believe that these factors jointly contribute to the FCASM’s
superior empirical performance.

Table 3. Out-of-Sample Prediction Performance Comparison

Log-Partial Likelihood

Koyck -3022.44
Erlang-2 -3022.06
FCASM -3018.84

It is important to note that in the FCASM, the parameters p and ¢ are grounded in the rich diffusion of
innovations literature (Mahajan, Muller, and Wind 2000, Bass 2004) and capture the primary drivers that
affect the rate of adoptions for a new product. By connecting the model to the product diffusion literature,
users of the FCASM can draw into the huge knowledge base created by pioneering researchers in decades
of research endeavors, and derive practical insights that are not possible with the benchmark models.
Additionally, the application of fractional calculus to incorporate adstock erosion due to memory decay
has resulted in a model that is both theoretically robust and empirically powerful (Tarasov 2018). The
FCASM can help researchers and practitioners gain a deeper understanding regarding the short- and long-
term effectiveness of advertising, and help them optimize advertising campaigns. Given these advantages,
we propose that the FCASM should be the model of choice for measuring the long-term effect of

advertising and digital attribution.
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5.5. Nonmonotonic Effect of Advertising: Illustration and Explanation

One of the major findings of this study concerns the nonmonotonic adstock growth pattern. Given its
importance, we conduct additional exploration to better understand the nonmonotonic effect of
advertising. Figure 7 visually demonstrates the nonmonotonic pattern of a random consumer’s adstock
growth. The consumer’s first advertising exposure occurs before product release. The estimated p, g, and
[ as reported in Table 1 are used to generate the adstock trend. Exposures are randomly generated and
shown using vertical dotted lines. The time of product release is represented by the vertical solid line. As
formulated in the FCASM, each exposure positively contributes to the consumer’s adstock. The grey area
in the figure represents the amount of adstock at different times for the consumer. It can be seen that
adstock as estimated by the FCASM follows a nonmonotonic pattern, which is consistent with Bass and
Clarke (1972), while deviates from the trend proposed by Koyck (1954) that assumes that the effect of ad
exposure only declines over time.

Despite the similarity between the finding obtained based on the FCASM and that reported by Bass
and Clarke, it is important to point out that the FCASM has several important advantages over the model
proposed by Bass and Clarke. First, Bass and Clarke study the advertising effect for a nondurable product
at an aggregate level, while the FCASM is developed to capture the influence of advertising on the
adoption of a new durable product at the individual consumer level. Second, the FCASM accounts for
factors that impact a potential consumer’s adoption decision, including the independent decision-making
effect as well as the word of mouth and network effects. In contrast, Bass and Clarke’s model does not
consider these effects. Third, the FCASM can be used in cases in which a company’s marketing campaign
starts before product release. On the contrary, Bass and Clarke deal with cases where advertising and
sales take place concurrently, thus the FCASM is applicable to a broader range of settings.

Furthermore, by predicting consumers’ peak adstock level, the FCASM can help firms avoid
overspending on advertising. For example, based on the estimation results reported in Table 1, for a
consumer who views a single exposure through channel E before the product release, the FCASM

predicts the ad’s impact on the consumer’s purchase tendency will peak at 0.07 on the 27" day after the
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exposure has occurred. In contrast, the Koyck model as estimated in Table 1 suggests this same consumer
after receiving seven more exposures, one every three days, reaches 0.06 purchase propensity 27 days
after the first exposure. This implies that, according to the Koyck model, firms need to keep investing in
advertising to maintain consumers’ adstock levels, resulting in a suboptimal advertising strategy.
Additionally, the estimated FCASM as depicted in Figure 7 is also consistent with an important
finding reported by Ghose and Todri-Adamopoulos (2016) that targeting consumers earlier in their
purchase funnel can amplify the effectiveness of advertisement. According to the FCASM, ad exposures
occurring earlier in the purchase cycle can contribute more to consumers’ adstock. In particular, based on
the adstock trend demonstrated in Figure 7, receiving exposures before the peak of the adstock trend can

lead to a higher adstock peak.

1.0

08

Adstock
04 08

0.2

- T T T T
0 10 20 30 40

Day

Figure 7. Estimated Adstock Based on FCASM for a Random Consumer
Furthermore, Figure 7 shows that the consumer’s adstock reaches its peak before the product release.
This means that the firm cannot benefit from the peak adstock because the product has not been made
available in the market yet. This observation can help firms optimize the timing of their advertising
campaigns.
6. Model Extensions
The primary contributions of our research are (i) developing a new adstock model (i.e., the FCASM) that

incorporates consumer memory as well as the word of mouth and network effects, thereby accurately
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measuring consumers’ adstocks over time, and (ii) determining the effect of each advertising channel in a
multichannel setting using a generalized hazard modeling framework. We develop and empirically test
model extensions to further enhance these two contributions. Specifically, concentrating on (i) we test
whether the word of mouth and network effects change from before to after product release, and focusing
on (ii) we examine whether the count of channels through which consumers view advertising has any
effect on their hazard rate of adoption.

6.1. Varying Word of Mouth and Network Effects Before and After Product Release

The results reported in Table 1 reveal that the nonmonotonic adstock trend emerges due to consumers’
decisions being influenced by word of mouth and network effects. In the base FCASM, since the
parameter g remains unchanged across the observation window, an implicit assumption is that the word of
mouth and network effects are the same before and after product release. However, once the product is
released in the market, these effects may change significantly due to more product information becoming
available. In this subsection we investigate whether word of mouth and network effects have varying
influences on consumers before and after product release. To this end, we develop a model extension in
which the parameter g in the FCASM’s underlying Bass model is time-dependent

t < product release date
q=1{% P (15)

qo + q1 t = product release date’
In Eq. (15), qo represents the influence of word of mouth and network effects for consumers who receive
their first ad exposures before product release and gi captures the possible changes in these effects for
consumers whose first ad exposures occur after the product release. We name this model extension the
Extended Fractional Calculus-Based Advertising Stock Model or EFCASM. The empirical results

corresponding to the EFCASM are reported in Table 4. As detailed in the table, g is positive and

3 To further test the robustness of the fractional calculus-based memory formulation used in the new adstock model
(i.e., the FCASM), we develop and empirically test two model versions: one with a time-varying memory rate and
another with an exposure-influenced memory rate. Our empirical results demonstrate that the two model versions do
not perform better than the base FCASM, thereby confirming the robustness of the memory formulation used in the
base FCASM. Further details are provided in Appendix C.
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statistically significant, indicating that the word of mouth and network effects are stronger for consumers
whose first ad exposures happened after product release. Specifically, based on the estimated parameters
of the EFCASM as reported in Table 4 (i.e., the estimated p, go, g1, and ), the adstock trend for a
consumer with a single ad exposure occurring after product release peaks at around four days. However,
consistent with the adstock trend shown in Figure 7 based on the FCASM, the adstock trend under the
EFCASM for a consumer whose single ad exposure occurred before product release peaks at around 27
days. This result could be attributed to the fact that, after product release, consumers who have adopted
the product can share more concrete and convincing information, thus having a strong impact on
consumers who have just started to collect information about the product. In contrast, the word of mouth
and network effects might be weaker before product release because consumers’ opinions are to a great
extent based on speculations.

In sum, the empirical findings based on the EFCASM suggest that (i) consistent with the findings from
the base FCASM, consumers’ adstocks are developed predominantly based on the word of mouth and
network effects, which are not explicitly modeled in the prior literature, and (ii) these effects grow stronger
when more information about the product becomes available. Furthermore, consistent with the results from
the FCASM, the estimated value for the EFCASM’s memory parameter reflects relatively low consumer
memory. Additionally, comparing the EFCASM’s AIC value as reported in Table 4 with that of the FCASM
reported in Tables 1 and 4 demonstrates that the EFCASM fits the data better than does the FCASM.
Therefore, considering that the EFCASM generates more insight into the nonmonotonic behavior of
advertising and that it empirically performs better than the FCASM, we select the EFCASM over the
FCASM for cases in which advertising starts before product release.

The findings from the EFCASM bear practical implications. Specifically, the varying magnitude of
word of mouth and network effects as captured by the model helps firms more accurately predict purchase
timing for consumers who begin their purchase journey at different times. Additionally, word of mouth
before product release is expected to be predominantly shaped by influencers who may have access to a

pre-production version of the product, while word of mouth after product release is expected to be largely
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formed by consumers who have experienced the actual product. Therefore, the proposed model enables
firms to compare the effect of influencer-based word of mouth with that of consumer experience-based
word of mouth, aiding firms in planning their investment in influencer-based marketing. Additionally,
consistent with the results from the FCASM, the findings from the EFCASM suggest that firms should time
their advertising campaigns optimally to make the most of the adstock peak period for the consumers who
start their purchase cycle before product release.
6.2. Advertising Channel Versatility
Firms often advertise through multiple channels, resulting in some consumers viewing ads through more
than one channel. Therefore, a primary focus of our research is dedicated to developing a generalized
hazard model that incorporates the effect of multiple channels, i.e., Eq. (11). In a multichannel setting,
some inquiries naturally arise: Does the number of channels through which a consumer is exposed to
advertising impact the consumer’s product adoption behavior? If so, how many channels should a firm
utilize for advertising? We extend the proposed proportional hazard model to answer these questions and
help firms improve their advertising strategy. Specifically, we include Count of channels as a covariate in
the adoption hazard. To account for the possibility that the association between Count of channels and the
hazard rate of adoption is nonlinear, we incorporate the quadratic form of Count of channels into the
hazard model presented in Eq. (11)
hi(t, C;(D) = hy (t)eZk Okzik(t)+6cCount of channels+8c;Count of channels®+3%; 6 jx;j(t) (16)

In Eq. (16), 6. and 8, are coefficients for linear and quadratic terms of Count of channels, respectively.
Considering that we selected the EFCASM over the FCASM in the previous subsection, to measure
consumers’ adstocks from different channels, we use the EFCASM.

The estimation results for the model version that incorporates the quadratic form of Count of channels
are reported in Table 4. As can be seen from the table, the estimated coefficient for Count of channels is

positive and significant, while that for Count of channels? is negative and significant, indicating a convex
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relationship between the hazard rate of adoption and Count of channels.* Additionally, the estimated
values for the adstock models’ parameters (i.e., p, go, g1, and ) remain mostly unchanged after including
Count of channels, reflecting consistency of the results. Furthermore, the AIC value improves after
incorporating Count of channel, due most likely to having more covariates in the model. Therefore, we
select the model version with Count of channels because it casts light on the influence of the number of
channels through which consumers view advertising on their adoption hazard and that it empirically
performs better than the model version that does not incorporate Count of channel.

Figure 8 further illustrates the effect of the number of channels on adoption hazard. Here, we assume
CountEffect = efcCount of channels+c;Count of channels® \yhich multiplicatively influences the
baseline hazard of adoption (ho(t)) in Eq. (18). Figure 8 demonstrates that delivering advertising through
one or two channels contributes to the highest adoption propensity, while utilizing more than two
channels may lead to a decline in adoption tendency.

Table 4. Comparison of Model Extensions with FCASM

FCASM EFCASM EFCASM

with Count

of Channels
Channel A -0.009 -0.056 -0.028
Channel B 0.135 0.107 0.109
Channel C 0.032 0.042 0.039**
Channel D 0.186***  0.239*** 0.180***
Channel E 0.389** 0.353 0.356**
Channel F -0.010 -0.007 0.022
Count of channels - - 0.932**
Count of channels? - - -0.309***
Count of other games 0.016***  0.016*** 0.016***
Count of other franchise games 0.081* 0.08* 0.087*
Previous game days 0.004***  0.004*** 0.004***
p 0.000001  0.00001 0.000005
q 0.498* - -
Qo - 0.414** 0.453**
01 - 3.336*** 3.627**
B 0.23***  0.207*** 0.295***
AlIC 30318.98  30313.02 30270.99

Note: ***99%, **95%, *90% confidence intervals do not include zero.

4 Our empirical testing demonstrates that the associations of Count of channels and Count of channels? with
adoption hazard may be time dependent. Therefore, when computing Count of channels and Count of channels?, we
multiply them with a time-transformation of 1/time. This transformation implies that Count of channels has the
strongest impact on the product adoption hazard shortly after the product release.
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The primary practical takeaway from this result is that exposing consumers to multiple advertising
channels may prove counter-productive because it may cause fatigue, annoyance, or confusion to
consumers. Therefore, firms may be better off concentrating on a few select channels with more
substantial influences on consumers’ purchase decisions. Based on the results detailed in Table 4, not all
channels have a statistically significant effect in our data sample. This result, coupled with the
observation from Figure 8 that viewing advertising through more than two channels can reduce
consumers’ adoption propensity, suggest that the firm should concentrate on two of the statistically

significant channels that have a larger impact on consumers’ adoption tendency, which are channels D
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Figure 8. Effect of Count of Channels on Adoption Hazard

7. Conclusions and Directions for Future Research

The primary goal of this research is to measure the effect of advertising in a multichannel setting, which
stands as one of the main ongoing challenges concerning online advertising. Challenges in the
measurement of ad effect can be attributed to factors such as long purchase cycles and unobserved stages
in consumers’ decision-making process (Gordon et al. 2021). According to the literature, the effect of
advertising may exhibit a monotonic or nonmonotonic temporal trend. While the possible nonmonotonic
effect of advertising has been reported in the literature, to the best of our knowledge, no formal modeling

framework has been introduced to explain this behavior at the individual level. In this research, we
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propose a new advertising stock model named the Fractional Calculus-Based Advertising Stock Model
(FCASM) to fill this void. Under the proposed model, a consumer’s adstock can either monotonically
decline or peak in the middle of a time window, conforming to one of the two main advertising behaviors
reported in the prior literature.

An innovative feature of the new adstock model is that it uses fractional calculus to tackle the
challenging problem of modeling the decaying ad effect due to consumers’ memory decay, thereby
capturing the lasting effect of ad exposures. Specifically, the proposed model incorporates a fractional
calculus-based power-law memory trend that resembles human memory to account for consumers’
memory decay and the corresponding decline in their advertising stocks. This innovation has a solid
theoretical foundation and improves model interpretability and empirical performance.

Based on the new adstock model, we develop a generalized proportional hazard model to estimate the
influence of exposures from different digital advertising channels on consumers’ timing of product
adoptions. We test our model using a dataset that includes consumers’ exposures to advertising through
different channels and their product adoptions. This dataset provides a great opportunity to study the
effectiveness of advertising because companies rarely are able to monitor advertising exposures and the
corresponding consumer conversions in a single-source dataset (Gordon et al. 2021). Consistent with the
literature, we find that the consumers” adstocks demonstrate a nonmonotonic pattern—it first increases to
a peak before declining. Furthermore, in a comparison with two benchmark models, we show that the
proposed model outperforms them in model fitting, out-of-sample prediction, as well as interpretability.

Notably, the new model accounts for the effect of independent decision-making, as well as the word
of mouth and network effects. To the best of our knowledge, no model from the previous literature,
including the widely-used Koyck model, accounts for these effects. Our empirical findings demonstrate
that the nonmonotonic effect of advertising emerges primarily due to the word of mouth and network
effects, further underscoring the importance of including these effects. Considering that our research
primarily concentrates on studying the common practice of starting advertising campaigns before product

release and to further investigate the role of word of mouth and network effects, we develop a model
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extension, named the Extended Fractional Calculus-Based Advertising Stock Model (EFCASM), which
distinguishes between these effects before and after product release. The empirical results based on the
EFCASM uncovers a significant leap in the word of mouth and network effects post product release, most
likely due to more product information becoming available.

Our empirical findings can benefit the advertising practice. Specifically, using the new model, firms
can accurately estimate consumers’ adstocks over time and predict the timing of consumer purchases,
enabling them to effectively time their advertising campaigns and product releases. Furthermore, the
precise estimation of consumers’ adstocks over time can help firms prevent overspending on advertising.
For instance, the proposed model enables firms to predict consumers’ peak adstock periods during which
advertising spending can be reduced, thus avoiding excessive expenditure. Moreover, considering that the
EFCASM distinguishes between word of mouth and network effects pre- and post-product release and
that word of mouth before product release is expected to be primarily influencer-based, the EFCASM
enables firms to optimally invest in influencer-based word of mouth. Finally, our results suggest that
firms may benefit from selecting a smaller number of the advertising channels that have the highest
impact on consumers’ purchase tendency. The proposed model can help identify the most efficient
channels and determine the optimal number of channels to employ in advertising campaigns.

There exist multiple avenues for future research. For example, our dataset records only advertising
through digital channels. With a richer dataset, a future study could analyze the integration of digital and
traditional channels. Furthermore, the advertising channels are unknown in our data, a dataset with more
information on advertising channels can lead to further insights.
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Online Appendix
Appendix A. Model Estimation
In this Appendix, we explain parameter estimation for the Cox model and the estimation of the
confidence intervals for the model parameters.
A.1. Model Estimation
The Cox model leaves the baseline hazard rate ho(t) unspecified. Specifically, the hazard ratio of two
consumers i and i" with the vectors of covariates C; and C;,, respectively, and the vector of coefficients 6

can be written as

hi(tC) _ ho(H)exp(CiB) _ exp(Cih) (A1)
hi(t.Ci) ~ ho(Dexp(CuB)  exp(Cys6)’

It can be seen in Eq. (Al) that the hazard ratio is independent of the baseline hazard ho(t). We next
elaborate on our model estimation procedure.

We follow Cox’s (1972) proposed partial likelihood to estimate the vector of coefficients 8, which in
the FCASM and the benchmark models include 6,s and 6;s, reflecting the influence of advertising and
non-advertising covariates, respectively, on adoption. Cox proposes a partial likelihood method for 6
without involving the baseline hazard. Assume that Xi is an adoption time censored random variable and
Ci is a set of covariates. Suppose that 71 <...< 7x are K distinct adoption times and assume that there are
no tied adoption times, meaning that each adoption takes place at a different time. Let R(t)={i : Xi >t} be
the set of consumers who are at risk of adoption at time t. At each adoption time X;, the contribution to the

likelihood is

ho(x;)e® i

ZIER(X].) hO(X]_)eQ’Cl .

The partial likelihood for all adoptions is

. QIC]'
L(O) = HK ol )e

J=1Lier(x;) ho(X;)e® ¢
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For data with censoring we can write
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where §;=1 for adopting consumers, §;=0 for censored consumers at time X, and n is the number of
consumers in the study. Note that Eq. (A2) and Eq. (A3) are equal. Now assume that there are ties in
adoption times, meaning that there are adoptions that occur on the same day. One popular method to

handle ties is suggested by Breslow (1972)

Py 205
L) =Mj=1 012 5——rg (Ad)
ZleR(X]) en
where d; is the number of adoptions at zjand Cji is the vector of covariates for the ith consumer who
adopts at time z;. Considering that our covariates are time-varying, we modify Eq. (A4) as
o'clee)
1k % e J
L(6) =1I1j=4 Hiilm , (A5)
1er(X )
where Cji(t) shows the values at t of the vector of time-varying covariates for the ith consumer who
adopts at time 7;. Taking the log of Eqg. (A5) we get the log-partial likelihood as
dj i ’
LL(8) = Zf-1 X,2,(8'C/(t) — log (ZzeR(xj) e? C’(t)))- (A6)

To estimate 8, we can use an optimization method to maximize Eq. (A6) by changing 6. We conduct
model estimations in R. We use the maxlik function to maximize the log-partial likelihood for the models
we estimate.

A.2. Estimating Confidence Intervals

We use the profile likelihood approach for estimating the confidence intervals of the estimated
parameters. Profile-likelihood-based confidence intervals are specifically useful for nonlinear models

(Royston 2007). Assume 6; is an element of 8 and is a scalar parameter of particular interest. We would



like to construct a profile-likelihood function for ;. Let the true value of 6; in the population be 6;, and
6;’s profile likelihood function be 1,,(6;). What we need to conduct to compute the [,,(8;) and the
confidence interval corresponding to 6, is to fix 6;’s value and find the maximum likelihood estimation

for the remaining parameters of 8. To find the confidence interval, this process is repeated for an

appropriate set of values of ; until the range (6;

iteftr Oirigne) 18 found, which satisfies the equality

2 {l(gl) —b (Qileft)} =2 {1(91) —b (Qiright)} = C11-a
in which Cy,;_, is the (1- a)th quantile for the y? distribution with 1 degree of freedom. In the models we
test, l(HAl) is the maximum log-partial likelihood estimated by changing all model parameters. For the
models we examine, we examine the 90%, 95%, and 99% confidence intervals of all model parameters
including those for the covariates incorporated into the Cox model and the parameter(s) of the adstock
model based on which the consumers’ adstocks for impressions from different channels are calculated.
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Appendix B. Operationalization of the Fractional Calculus-Based Operator used in FCASM
Estimating the FCASM using the Riemann-Liouville integral shown in Eq. (1) may be computationally
challenging. Therefore, we use a substitute mathematical operator that mimics the Riemann-Liouville

integral and is computationally less demanding. Specifically, following Lotfi, Jiang, Lotfi, and Jain
(2023), we use the operator If, « I which k and n are the approximate operator’s parameters. The

developed approximate operator uses the n-point Gauss quadrature formula proposed for integrals

(DeVore and Scott 1984) and Spouge’s approximated formulation for the Gamma function (Spouge

1994). Increasing the values of k and n leads to Iﬁk converging to the original operator I”, i.e., the

Riemann-Liouville integral. Lotfi et al. define Iﬁk as

B ! 148
y(0)t y (0)t + 12+By”(t), (Bl)

B o
Iy (8) = Gr(1+B) = Gy(2+p) = Mk

where £ is the order of the operator, y(t) is the function on which the operator is applied, and

12y ) =

1t t B, rt
i (Ga-x) Yy GG+ D). (82)

In Eq. (B2), xi and w; denote the quadrature nodes and weights (DeVore and Scott 1984), and Gy(.) is

defined as

X=3 ,—(x—1+h) k()
Gr(x) = (x—1+4+h) 2e~C v2n[60+2 —]

=1y 1+i

in which ¢y = 1, the parameter h isreal, k = [h] — 1, and

(D =i+ )2
V2r(i — 1! ¢

+h

ci(h) =

The detailed derivation of Ifi « and the proof of its convergence to the original operator are provided in

Lotfi et al. (2023).
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Appendix C. Validating Robustness of Fractional Calculus-Based Advertising Memory
In this appendix we develop and empirically test model extensions to evaluate the robustness of the
fractional calculus-based memory formulation used in the FCASM. Specifically, we examine whether the
memory rate (i) changes over time or (ii) is influenced by ad exposures.
C.1. Time-Varying Memory Rate
In the base FCASM, the memory rate captured by the memory coefficient g is constant. However, as the
consumers are collecting relevant information to form their opinion of the product, they likely receive
repetitive information. It is known that repetition learning can improve memory performance (Zhan, Guo,
Chen, and Yang 2018). Based on this expectation, we develop a model version in which memory rate
increases over time. Considering that it is expected that the memory rate improves as the information
collection and interest development process progresses, for consumer i, we consider a time-varying

coefficient of memory B;(t) that increases as the cumulative amount of information received increases
t
Bi(®) = B[ y(x —t;) dr. (C1)
In Eq. (C1), y(.) represents the new information acquired at a given point in time in [t;, t] and tidenotes the

beginning of the information collection for consumer i, which in our model operationalization is assumed

to coincide with the consumer’s first ad exposure. Considering that in the FCASM, we use the bell-
shaped Bass density function for y(.), | tt_ y(t —t;) dt becomes an S-shaped trend that runs between 0 and

1, resulting in a time-varying memory rate that increases over time from 0 to 5. Based on Eq. (C1), S is
the highest memory rate consumers can achieve as they progress in their purchase cycle. Our empirical
testing shows that this model extension does not result in an AIC value smaller than that of the FCASM
reported in Table 1. Therefore, in the absence of empirical support in favor of an increasing memory as
formulated in Eg. (C1), we select the simpler FCASM.

C.2. Exposure-Influenced Memory

In the base FCASM, advertising exposures are assumed to have no influence on memory. In this

subsection, we introduce an extension of the FCASM in which the adstock memory is influenced by



exposures. Specifically, in this model version, with more ad exposures occurring, the memory grows
stronger. The rationale behind this model version is similar to the one used in developing the extension
based on Eqg. (C1). Particularly, more exposures may serve as a repetition of product-related information
acquired in the past, resulting in a decline in the memory decay rate. Therefore, we formulate the memory
rate as

B = Bo+1—exp(—0 *n;(t)), (C2)
where S, is the base memory, n;(t) is the number of ad exposures for consumer i until time t and o
represents the rate at which memory improves with more exposures. We limit the memory rate 8 shown
in Eq. (C2) to run between 0 and 1. In our empirical testing the value of o approaches zero, indicating that
the extended model reduces to the base FCASM with constant memory rate reported in Table 1.
Therefore, we do not find any empirical evidence that memory improves with the occurrence of more ad

exposures.



