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Abstract

We develop a Bayesian model in which data scale (𝑛) and feature number(𝑘)—the

resources that turn raw data into actionable insights—jointly shape predictive perfor-

mance and market outcomes. Data expansions boost accuracy but face diminishing

returns, whereas more sophisticated analytics yield superadditive gains that eventually

plateau. Critically, data and algorithms serve as complements at low levels but substitute

for each other once one dimension becomes large. Applying these insights to dynamic

platform and data monopsony settings reveals that incumbents leverage extensive data

stocks yet can lose ground if rivals outpace them in algorithmic sophistication. Monop-

sonists under-acquire data, distorting social welfare, when they invest in technology to

reduce reliance on costly new observations. Taken together, our findings challenge the

“data-equals-power” narrative by underscoring how diminishing returns, technologi-

cal advancements, and strategic data purchasing affect competition. Policy implications

include the need for targeted interventions—such as data-sharing mandates in early-

stage (complementary) regimes and support for algorithmic innovation that can spur

entry—in order to balance innovation incentives and prevent entrenched data-driven

dominance.
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1 Introduction

In recent years, the idea that “data is the new oil” has gained currency in both public dis-

course and academic research. The analogy suggests that large-scale data acts as an in-

dispensable resource in the digital economy—concentrating market power in the hands of

data-rich firms, raising barriers to entry, and arguably necessitating new regulatory frame-

works. Proponents of this view often emphasize that assembling vast user datasets confers

a decisive advantage for machine learning algorithms, making data ownership the key to

monopolizing predictive accuracy. This perspective has informed debates in antitrust, com-

petition policy, and privacy regulation, with proposals ranging from forced data sharing

(“essential facilities”) to data portability mandates.

Despite its intuitive appeal, however, recent studies and industry trends indicate that the

relationship between data and algorithmic performance is more nuanced than a simplistic

“data = power” view implies. Economists and data scientists have increasingly stressed that

data is subject to diminishing returns and crucially dependent on complementary inputs

such as algorithmic sophistication. As a result, expanding the sheer volume of data is not

always sufficient to maintain a durable edge in prediction. A variety of real-world examples

illustrate how improvements in algorithmic design can partially substitute for data volume.

Firms that once relied on massive datasets (e.g., Google Translate in its early statistical

machine translation days) gradually reduced their dependence on specialized data when

they adopted neural architectures that could transfer knowledge across languages. Similar

patterns of data–technology substitution have emerged in industries ranging from predic-

tive maintenance to targeted advertising. Cutting-edge Large Language Model DeepSeek

claims to have been trained with a fraction of the data used to train ChatGPT

Motivated by these tensions, this paper develops a simple theoretical model clarifying

how two distinct factors combine to shape predictive accuracy: data scale, denoted by 𝑛,

and algorithmic capital, denoted by 𝑘. Concretely, 𝑛 represents the quantity (or breadth)

of observations available, while 𝑘 reflects the technological capacity to extract informa-

tion from each data point—an investment in more sophisticated models, richer features,

or advanced analytics. This distinction helps us illuminate precisely when more data and

better models act as complements and when they substitute for one another. In a Bayesian

linear-regression setup, we derive three robust empirical patterns:
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1. Diminishing returns to data scale (𝑛). In line with the Law of Large Numbers and

standard estimation theory, each additional observation yields progressively smaller

incremental gains in predictive accuracy once model parameters are sufficiently well-

identified.

2. Increasing-then-decreasing returns to feature number(𝑘). Investing in better

technology initially has superadditive effects—each improvement in𝑘 boosts the marginal

value of existing features—but eventually plateaus, underscoring that while advanced

analytics can be transformative, it too faces diminishing returns at high levels.

3. Complementarity when both 𝑛 and 𝑘 are low, substitutability when they are

high. At early stages, expansions in data scale and feature numberreinforce each

other, but once either dimension is sufficiently large, further growth in one can re-

duce the marginal returns to investing in the other.

These findings echo observed industry practices. At early stages, leading technology firms

often exert substantial effort to accumulate vast amounts of user data (high 𝑛), capitalizing

on scale-driven feedback loops. As their feature number(𝑘) matures, however, these same

firms pivot from brute-force data collection to more selective methods—developing, for

instance, sophisticated deep-learning models or leveraging transfer learning. Our model

formalizes how such a Data–Technology Substitution Threshold emerges naturally from the

interplay of data scale (𝑛) and feature number(𝑘).

We develop several applications:

• Prediction Monopoly and Data Valuation: A firm selling a horizontally differen-

tiated good benefits from predictive accuracy to better match products to consumer

preferences. Our model shows that the firm’s willingness to purchase data (𝑛) depends

on the trade-off between data scale and feature number(𝑘). Specifically, we find that

firms facing high per-unit data costs prioritize algorithmic improvements over addi-

tional sample collection, reinforcing the substitutability of data and technology once

the dataset is already large. This implies that, in data-rich environments, further

investments in collecting observations may be less attractive, while smaller firms or

new entrants, who are still in the complementarity phase, benefit from acquiring

additional consumer data. From a policy perspective, this insight suggests that data-

sharing mandates may be most effective in industries where scale and capital are still
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in the complementary region. Conversely, in mature markets where substitutabil-

ity dominates, forcing incumbents to share data may yield diminishing competitive

benefits.

• Platform Competition and Entry Barriers: In a dynamic setting where platforms

compete over time, our model predicts that incumbents with a large stock of historical

data (𝑛) enjoy a significant advantage, especially when predictive technology (𝑘) is

in a complementary phase. However, once technology matures, new entrants can

compete effectively by leveraging algorithmic innovations rather than relying solely

on catching up in data acquisition. This nuance challenges the common narrative

that “big data” permanently locks in incumbents. Instead, it shows how technological

progress can erode incumbency advantages over time. Policymakers concerned with

platform competition could thus encourage algorithmic innovation (e.g., R&D tax

credits or support for AI research), rather than focusing exclusively on data-sharing

regulations.

• Data Monopsony and incentives to invest in algorithms: When firms acquire

data from users or third-party suppliers, they may act as monopsonists in data mar-

kets. Our framework shows that under certain conditions, firms under-purchase data

because the marginal value of additional data diminishes at high 𝑛. If data scale and

feature numbereventually become substitutes, firms’ reliance on data alone declines,

potentially reducing compensation for data suppliers. These findings highlight a pos-

sible justification for policies that protect or augment data suppliers’ bargaining posi-

tions. If a firm’s monopsony power leads to inefficiently low data acquisition, requir-

ing fair compensation or revenue-sharing could bring outcomes closer to the social

optimum. Conversely, if the firm and data remain in a region of strong complemen-

tarity, ensuring open access to large user datasets may be more critical to achieving

efficiency.

These insights speak directly to debates in antitrust and digital-market competition. Regu-

lators often worry that the “new oil” of massive user data confers insurmountable advantages

to incumbents, but our results suggest this advantage may be constrained if (i) diminish-

ing returns kick in, and (ii) competitive firms develop superior algorithms to glean similar

insights from fewer observations. From this standpoint, proposals such as data portability
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mandates—designed to help smaller firms catch up on “big data”—may be most valuable in

the early stages of technology adoption, when across-individual data and within-individual

granularity are still complements. Once technology matures, large swaths of additional user

data may become less pivotal than algorithmic innovation.

A second policy dimension concerns data-minimization regulations such as the General

Data Protection Regulation (GDPR). Our framework indicates that restricting the volume

of data available might reduce incumbents’ reliance on brute-force scale, potentially in-

creasing the returns to investing in richer but more privacy-friendly data sources, or in

high-quality modeling techniques. Paradoxically, firms with advanced algorithms could

be less impacted by data minimization, because at high levels of technological sophisti-

cation, data and technology become substitutes. Our theoretical model thus underscores

the importance of carefully calibrating privacy and competition policies to the context of

actual data returns, rather than applying broad-brush assumptions about data’s “oil-like”

properties.

The rest of the paper is structured as follows. Section 3 presents our baseline univari-

ate regression model and derives the three stylized facts about returns to across-individual

and within-individual information. Section 4 generalizes the analysis to a multi-covariate

context, connects it to standard econometric methods (e.g. ridge regression), and examines

how the value of data changes in high-dimensional settings. Section 6 explores the model’s

implications in scenarios of monopoly pricing, data monopsony, and platform competition,

highlighting how sample size and feature depth interact to shape market outcomes. Sec-

tion 7 concludes with policy remarks on data sharing, regulation, and the evolving role of

algorithmic sophistication in modern digital markets.

By emphasizing that data alone need not be destiny—and that algorithmic capacity

mediates the benefits of data at scale—this paper contributes to a more nuanced, evidence-

based framework for understanding data’s role in competition and innovation. In doing so,

we hope to inform ongoing debates around “data as the new oil,” shedding light on when

data truly constitutes a binding constraint and when technological advances can (and do)

reduce dependence on sheer volume.
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2 Relevant Literature

The paper is at the intersection of four strands of literature:

The Value of Data. This paper characterizes separately how scale (the number of ob-

servations) and scope (the number of covariates) determine the value of data. Empirical and

theoretical work by Varian (2018), Bajari et al. (2019), and Schaefer and Sapi (2023) finds

that expanding a dataset’s breadth of users yields diminishing marginal returns. Schaefer

and Sapi (2023) also show empirically that complementarities exist between the number

of observations and the number of covariates. Carballa Smichowski et al. (2022) provide

empirical evidence of economies of scope, where adding covariates improves predictions

with increasing returns. This paper:

1) Formalizes these empirical findings in a coherent theoretical framework. 2) Gener-

alizes these properties, showing that complementarities between dimensions are specific to

small datasets, while in large datasets, observations and covariates are substitutes. 3) Pro-

vides clear statistical explanations demonstrating that returns to observations and covariates

follow predictable patterns determined by statistical laws. Specifically, economies of scope

arise because when the number of covariates varies, the level of misspecification is endoge-

nous.

Data and Platform Competition. The analysis shows how prediction generates value

in recommendation systems where platforms compete to offer recommendations to users

positioned at an unknown location on the Hotelling line. It demonstrates that data col-

lection is a strategic substitute, analogous to quantity competition in Cournot (1838). The

paper relates to Hagiu and Wright (2021), who distinguish between across-user and within-

user data and introduce the concept of a data-quality feedback loop. In their framework,

multi-sided platforms leverage data to strengthen network effects: larger datasets improve

predictions, increasing platform quality, attracting more users, and further expanding the

dataset. Similarly, Prüfer and Schottmüller (2021) show that firms with large user bases

benefit from a reinforcing feedback loop, where additional user data reduces per-user in-

vestment costs in product improvements, making it harder for smaller competitors to catch

up.

Bayesian Statistics and Random Matrix Theory. Methodologically, this paper de-

velops a Bayesian linear regression model with a variable number of regressors under quadratic

loss. Bayesian linear regression is a well-established approach covered in DeGroot (2005)
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and Berger (1990), where the value of data corresponds to the reduction in posterior vari-

ance relative to prior variance. This framework enables a transparent decomposition of

how user-level covariates and training observations contribute to reducing predictive un-

certainty. This paper innovates by:

1. Allowing the regression residual to be endogenous, depending on the number of

covariates observed—a key factor in determining economies of scope.

2. Addressing the technical issue that the posterior variance of Bayesian regression co-

efficients is random, as it depends on the data itself. Using high-dimensional asymp-

totics from Marčenko and Pastur (1967), popularized in theoretical machine learning

applications by Hastie et al. (2020), the paper derives simple expressions for the value

of data as a function of the number of observations and covariates in large-dimensional

datasets. Applying these tools in a Bayesian framework is particularly revealing, as

ridge regression naturally emerges as a regularization technique to account for data

noise.

3 A Simple Model of Prediction

In this section we will develop a reduced form model of prediction. We characterize the

value of the information contained in a training dataset and we show how it depends on

across-individual information (i.e. , the amount of data or the sample size) and within-

individual information (i.e., the level of complexity in our prediction technology or the

amount of information we have on every sample). We show that even modeling learn-

ing using the most basic econometric model, univariate linear regression, we can establish

three stylized facts on the returns to scale of datasets: there are decreasing returns to across-

individual information, increasing returns to within-individual information, complemen-

tarities between across- and within-individual information when information is scarce and

substitutability when information is abundant.

3.1 Setup

Prediction Problem A decision-maker 𝑀 must predict a target variable 𝑦 ∈ R for a

continuum of individuals indexed by 𝑖 ∈ I, where the total mass of individuals is normalized
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to one. Denoting by 𝑦𝑖 the prediction for individual 𝑖, 𝑀 incurs in a quadratic loss given

by:

𝐿 (𝑦𝑖, 𝑦𝑖) ≡
∫
I
(𝑦𝑖 − 𝑦𝑖)2 𝑑𝑖.

We assume that 𝑦𝑖 is i.i.d. across individuals with mean 0 and variance 𝜎2 ≥ 0. The param-

eter 𝜎2 reflects the difficulty of the prediction problem.

Data-Generating Process On each individual 𝑖 ∈ I, 𝑀 observes a covariate 𝑥𝑖 , which is

i.i.d. with mean 0 and variance 𝑆 ∈ [0, 1), which is the signal in the data. The relationship

between 𝑥𝑖 and 𝑦𝑖 is:

𝑦𝑖 = 𝛽𝑥𝑖 + 𝜖𝑖,

where we assume:

1. 𝛽 is unknown Gaussian and common across individuals with prior mean 0 and vari-

ance 𝜎2.

2. 𝛽, 𝑥𝑖 , and 𝜖𝑖 are mutually independent.

3. 𝜖𝑖 is an independent individual-specific noise, with mean 0 and variance 𝜎2 (1 − 𝑆).

As E[𝛽] = 0, it follows that E [𝑦𝑖 |𝑥𝑖] = 0. Therefore, in the absence of any additional

knowledge about 𝛽, the optimal prediction is trivially the prior mean 𝑦𝑖 = 0. This implies

that 𝑀 must first acquire information about 𝛽 to make use of 𝑥𝑖 for prediction.

Learning 𝑀 can purchase a training dataset {(𝑥 𝑗 , 𝑦 𝑗 )}𝑛𝑗=1 from the same population to

update beliefs about 𝛽, with 𝑛 ∈ N∗. The value of information (VoI) in {(𝑥 𝑗 , 𝑦 𝑗 )}𝑛𝑗=1 depends

on the improvement in predictive accuracy 𝑀 can achieve by training thereon:

DEFINITION 1 (Value of Information). Let 𝑦∗𝑛 denote the optimal predictor after observing 𝑛 data

points, and let 𝑦∗ = 0 denote the optimal predictor without data. The Value of Information (“VoI”)

of a dataset {(𝑥 𝑗 , 𝑦 𝑗 )}𝑛𝑗=1 is:

VoI
(
{(𝑥 𝑗 , 𝑦 𝑗 )}𝑛𝑗=1

)
=

∫
I
E𝑦𝑖

[
(𝑦𝑖 − 𝑦∗(𝑥𝑖))2 − (𝑦𝑖 − 𝑦∗𝑛 (𝑥𝑖))2] 𝑑𝑖.
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3.2 The Value of Data

The following result characterizes the value of information in large samples. Intuitively,

this approximation is valid in modern machine learning models which are trained with

large samples of data.

Theorem 1 (Asymptotic Value of Information). As 𝑛 → ∞, the VoI converges asymptotically

to a function of 𝑛 and 𝑘:

VoI
(
{(𝑥 𝑗 , 𝑦 𝑗 )}𝑛𝑗=1

)
= 𝑆

(
V [𝛽] − V

[
𝛽 |{(𝑥 𝑗 , 𝑦 𝑗 )}𝑛𝑗=1

] )
∼ 𝑉

(
𝑛, 𝑘

)
,

where

𝑉
(
𝑛, 𝑆

)
≡ 𝑆︸       ︷︷       ︸

Specification

· 𝜎2

1 + 1
𝑛

( 1
𝑆
− 1

)︸          ︷︷          ︸
Estimation

.

Conceptually the VoI is the product of two terms:

1. Specification term: this captures the knowledge about target individuals, i.e., how informative

the covariate 𝑥𝑖 is about 𝑦𝑖 . A higher 𝑆 increases the maximum amount of information that

could theoretically be extracted from each 𝑥𝑖 with an infinite number of samples.

2. Estimation term: this captures the knowledge about 𝛽 . This reflects the level of understanding

of the relationship between 𝑥𝑖 and 𝑦𝑖 . how much additional precision is gained from increasing

the sample size 𝑛. As 𝑛 grows, this term approaches 1, meaning 𝛽 is fully learned.

Across-individual Learning The VoI depends on 𝑛 only though the estimation term: as indi-

viduals are i.i.d. the only information relevant to predicting 𝑦𝑖 for the target individuals from different

individuals in {(𝑥 𝑗 , 𝑦 𝑗 )}𝑛𝑗=1 is that which pertains to the estimation of 𝛽 . 𝑉 (𝑛, 𝑆) is increasing and

concave in 𝑛

Corollary 1 (Decreasing Returns to Scale). The marginal value of data

𝑚𝑣 (𝑛;𝑘) ≡ 𝜕𝑉 (𝑛, 𝑆)
𝜕𝑛

=
𝜎2 (1 − 𝑆)(
𝑛 + 1

𝑆
− 1

)2 is decreasing in 𝑛.

This is because the estimation term is increasing and concave in 𝑛. This follows from the Law

of Large Numbers: as 𝑛 increases, the estimation of 𝛽 becomes more precise, but each additional

observation reduces uncertainty on 𝛽 by less than the previous ones. Thus, VoI exhibits diminishing
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returns in sample size. This is coherent with the results in Bajari et al. (2019) and Schäfer et al.

(2018).

Within-individual Learning The VoI is increasing and convex in 𝑘 as the technology has

two positive effects on the value of data, the former of which is linear.

𝜕𝑉
(
𝑛; 𝑆

)
𝜕𝑆

≡ 𝑆 · 𝜎2

1 +
1−𝑆
𝑆

−1
𝑛︸         ︷︷         ︸

Specification Effect

+ 𝜎2(
𝑛 + 1

𝑆
− 1

)2 (1 − 𝑆)︸                   ︷︷                   ︸
Estimation Effect

> 0.

A better technology 𝑘 has two effects on 𝑉 (𝑛; 𝑆) :

1. Specification effect (SE): a higher 𝑘 increases knowledge about target individuals as𝑥𝑖 ex-

plains a greater fraction of the variance in 𝑦𝑖 .

2. Estimation effect (EE): a higher 𝑘 improves the estimation of 𝛽 because the fraction of

variance in (𝑦𝑖, 𝑥𝑖)𝑛𝑖=1 due to noise 1−𝑆
𝑆

decreases, meaning that updates on 𝛽 are more efficient.

The double derivative of𝑉 (𝑛;𝑘) is strictly positive, as the SE is increasing in 𝑘 and this effect always

dominates the EE, which is inverted-U shaped in 𝑘 .

Corollary 2 (Economies of Scope). The marginal value of additional within-individual infor-

mation is S-shaped:
𝜕2𝑉

(
𝑛; 𝑆

)
𝜕2𝑆

≡ 𝜕SE
𝜕𝑆︸︷︷︸
>0

+ 𝜕EE
𝜕𝑆︸            ︷︷            ︸
>0

> 0.

This is consistent with the economies of scope to data: as information on individual is contex-

tual, additional units of information allow to “place into context” previously collected information,

increasing the latter’s usefulness. This has a clear statistical meaning: as 𝑆 increases, the fraction of

variability in the data which is due to noise decreases; therefore 𝑀 will increase its reliance on the

empirical estimates and reduce the influence of the prior. This compounding effect implies that there

are increasing returns to within-individual learning. However, the decreasing returns to 𝑘 reflected in

𝛼 contrast these increasing returns. Note also that the scope for increasing returns is decreasing in 𝑛.

This implies that firms with less data benefit from larger economies of scope. Note that these results

are coherent with the findings of Carballa Smichowski et al. (2022) who find that there are S-shaped

returns to additional of covariates in a prediction model using health data.
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Across- and within-individual Learning It is interesting to explore how better knowledge a

across individuals affect the value of learning within-individual and vice verse. To study this context

vs specialisation problem we study the cross derivative 𝜕2𝑉 (𝑛;𝑘)
𝜕𝑘𝜕𝑛

or equivalently we analyze how the

marginal value of data𝑚𝑣 (𝑛;𝑘) changes as within-user learning 𝑘 increases:

Corollary 3. The marginal value of data is increasing in the within-individual information 𝑘 if

and only

𝜕𝑚𝑣 (𝑛, 𝑆)
𝜕𝑆

=
𝜕2𝑉 (𝑛, 𝑆)
𝜕𝑆𝜕𝑛

=
𝜕SE
𝜕𝑛︸︷︷︸
>0,

+ 𝜕EE
𝜕𝑛︸      ︷︷      ︸

≥0 ⇐⇒ 𝑛≤ 1−𝑆
𝑆

≥ 0 ⇐⇒ 𝑛 ≤ �̃�(𝑆) ≡ 1 + 1
𝑆

(
2
𝑆
− 3

)
.

Equivalently, across- and within-individual information are complements when they are small

and substitutes when they are large.

The marginal value of data is inverted U-shaped in within user learning 𝐴. The following

proposition draws conclusions for the marginal value of data as a function of the amount of data 𝑛.

To understand this, let’s break it down the impact of 𝑛 on the specification and estimation effects of

𝐴 on 𝑉 (𝑛, 𝑆):

1. SE is increasing: as higher 𝑛 means𝑀 has a better knowledge about 𝛽 the relationship between

𝑥𝑖 and 𝑦𝑖 , this increases the marginal value of gaining extra knowledge on the target individ-

uals by increasing 𝑆 . This effect is decreasing in 𝑛 due to diminishing returns, and therefore

dominates for small 𝑛.

2. EE is increasing if 𝑛 ≤ 1−𝑆
𝑆

and decreasing otherwise. Intuitively, for small 𝑛, each additional

data point carries a lot of new information about 𝛽 . Hence, a rise in 𝑆 (which increases the

signal to noise ratio of the dataset) strengthens that information gain. However, for large 𝑛 the

learning about 𝛽 is already very precise (diminishing returns to adding even more data). Even

though 𝑘 makes each data point more informative, once 𝑛 is large, adding yet another data

point has a smaller incremental contribution in reducing the uncertainty about 𝛽 .

This implies that SE drives a complementarity between data and technology but the EE entails that

they are complements when data is scarce and technology rudimentary nut substitutes when data is

abundant and the technology is sophisticated.

This finding is consistent with Figure 7 in Schaefer and Sapi (2023), which compares the marginal

value of 𝑛 as a function of 𝑘 for words in different deciles of number of searches (𝑛), and shows that
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𝑚𝑣 (𝑛;𝑘)

𝜏2 𝛼
√
𝑘

𝜎2
𝜏2 𝛼√

𝑘
−1

𝑚𝑣 (𝑛;𝑘′) |𝑘 ′>𝑘

𝜏2 𝛼
√
𝑘 ′

𝜎2
𝜏2 𝛼√

𝑘′
−1

0
𝑛

Figure 1: This figure illustrates the effect of an increase in 𝑘 on the marginal value of
data. There exists a unique interior point such that is increasing in for and decreasing for .
Equivalently, an increase in makes rotate clockwise around �̃�(𝑘). The solid curve represents
the marginal value of data 𝑚𝑣 (𝑛;𝑘), while the dashed curve corresponds to the marginal
value function after an increase in signal strength, 𝑘′ > 𝑘

the marginal value of 𝑛 is increasing in 𝑘 for words with a short search history (small 𝑛), but inverted

U-shaped in 𝑘 for words with a long search history (large 𝑛), a finding which confirms the insight

that the dimensions of data are complements for small datasets and substitutes for large ones. This

finding suggests a general pattern:

• In the early stages of technological development, firms depend heavily on gathering vast amounts

of data.

• As predictive algorithms and modeling capabilities improve, technology becomes a substitute

for data, enabling firms to achieve comparable (or even superior) predictive performance with

less incremental data.

• This shift allows mature firms to focus less on data volume and more on the quality of models

and aggregation of different data sources.

This theoretical insight into the Data-Technology Substitution Threshold not only helps explain

these industry trends but also has implications for data regulation. Firms that possess cutting-edge
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modeling technology will need far less data to maintain competitive performance, potentially reducing

their vulnerability to data minimization regulations like GDPR. Conversely, firms with less

sophisticated algorithms will continue to depend heavily on expansive data collection to achieve

competitive prediction performance.

In summary the preceding study establishes three stylized facts about across- and within-individual

learning.

Fact 1. There are decreasing returns across-user learning

Fact 2. There are S-shaped or decreasing returns to within-user learning.

Fact 3. Across- and within-individual learning are complements when they are scarce and substi-

tutes when they are large.

4 Ridge Regression

A drawback of the reduced model explored above is that it abstracts form issues of dimen-

sionality in estimation. Specifically, it assumes that the platform can increase the variance

in the data, whilst keeping constant the number of covariates used in the regression. A

more realistic model would model the choices of a platform which must choose how many

covariates to sample knowing each one has a given variance. Such a model should take into

account that increasing the number of covariates increases the number of linear parameters

to be estimated, which comes with additional noise in estimation. We identify across-user

learning as the number of observations in a dataset and within-user learning as the num-

ber of covariates per user. We therefore assume that the individual is take from a different

decision-making process:

Data-Generating Process On each individual 𝑖 ∈ I, 𝑀 observes a vector of individual

covariates 𝒛𝑖 ∈ R𝑍 , with 𝑍 ∈ N∗, which are i.i.d. with mean 0 and variance 1/𝑍 . The

relationship between 𝒛𝑖 and 𝑦𝑖 is:1

𝑦𝑖 = 𝜷 ′𝒛𝑖,

2 where we assume:
1The normalization of covariate variance ensures that the variance of vector 𝒛 is 1 and the variance of 𝑦𝑖

does not depend on 𝑍 .
2We denote all vectors as column vectors.
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1. 𝜷 ∈ R𝑍 is an unknown vector of coefficients common across individuals, i.i.d. Gaus-

sians with prior mean 0 and variance 𝜎2.3

2. 𝜷 and 𝒛𝑖 are mutually independent.

Data. 𝑀 collects two types of data:

1. For each individual 𝑖 ∈ I, a vector of covariates 𝒙𝑖 ∈ R𝑍𝑆 which is a subvector of

𝒛𝑖 , where 𝑆 ∈ [0, 1) is the fraction of observed covariates. We denote the collection

of covariate vectors (𝒙𝑖)𝑖∈I . Without loss of generality, we assume they are the first

components of 𝒛𝑖 so that the latter can be partitioned as

𝒛′𝑖 = (𝒙′𝑖 , 𝒖′𝑖 ),

where 𝒖𝑖 ∈ R(1−𝑘)𝑍 are the unobserved covariates. The coefficients associated with

these covariates are correspondingly partitioned as 𝜷 ′ = (𝜷 ′
𝑥 , 𝜷

′
𝑢).

2. Realizations of 𝑦 and 𝒙 for individuals 𝑖 = 1, ..., 𝑛𝑍 taken from a population identical

to I, with 𝑛 ∈ N∗ 4

(𝒚,𝑿 ) ≡ {(𝑦𝑖, 𝒙𝑖)}𝑛𝑍𝑖=1 ∈ R𝑛𝑍×(1+𝑘𝑍 ) .

We will denote by 𝑫 ≡ ((𝒙𝑖)𝑖∈I, (𝒚,𝑿 )) ∈ D ≡ R𝑘𝑍 × R𝑛𝑍×(1+𝑘𝑍 ) the dataset observed

by 𝑀 .

In Section section 4.1 we will characterize the optimal predictor and in Section section 4.2

we will characterize the value of data as a function of 𝑛 and 𝑘.
3In this section we assume that the decision maker has a mean zero prior on all coefficients𝑚(𝑡) = 0 and

the same level of uncertainty on all the coefficients, theat is 𝑣 (𝑡) = 1. This assumption is can be given both a
statistical and a information-theoretical interpretation. From an information-theoretic perspective, the prin-
ciple of maximum entropy suggests that, in the absence of further information about the relative importance
of the individual coefficients in the model, the least informative prior is one that treats all coefficients equally.
In this case, setting 𝑣 (𝑡) = 1 implies that the variance is uniformly distributed across all coefficients, reflecting
no prior preference or bias regarding the importance of any particular covariate. Statistically, this assumption
corresponds to an isotropic prior, meaning that the coefficients are equally uncertain, which is a common
choice in high-dimensional Bayesian regression settings. Additionally, this assumption leads to asymptotic
efficiency in learning, as it ensures that no single covariate is over- or under-weighted, promoting an even
contribution from each covariate as the model is estimated. Therefore, the assumption that 𝑣 (𝑡) = 1 is a
reasonable choice as it maximizes the uncertainty about the model parameters in a way that is unbiased and
computationally tractable.

4We are assuming that prediction and training data have the same covariates. This is a reasonable assump-
tion as the choice is typically technological (e.g. how many data sensors to build into an app).
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4.1 Prediction Problem

The problem of prediction with quadratic loss is well-studied in the Bayesian decision the-

ory literature and its solution is the following result which can be found in DeGroot (2005):

Lemma 1. The optimal predictor is 𝑦 : D → R such that

𝑦∗(𝑫) = E [𝑌 |𝑫] .

To minimize the expected quadratic loss, 𝑀 predicts the most likely value of 𝑌 given

the data. The posterior mean optimally trades off the influence of the prior and the data

based on their respective variance. Straightforward application of Lemma 1 to Definition

1 yields the following result:

Corollary 4. The VoI in 𝑫 is the reduction of posterior variance

VoI (𝑫) ≡
∫
𝑖∈I

V [𝑌 ] − V [𝑌 |𝑫] 𝑑𝑖.

To characterize VoI (𝑫) we characterize the posterior distribution of 𝑌 |𝑫 in the follow-

ing result:

Lemma 2. For all 𝑖 ∈ I,the posterior distribution of 𝑌 |𝑫 is

𝑌𝑖 |𝑫 ∼ N
(
𝑠∗𝑖 (𝑫),V

[
𝑠∗𝑖 (𝑫)

]
+ 𝜎2 (1 − 𝑆)

)
,

and the optimal predictor conditional on 𝑫is

𝑠∗𝑖 (𝑫) = 𝒙′𝑖E [𝜷𝑥 | (𝒚,𝑿 )] ,

V
[
𝑠∗𝑖 (𝑫)

]
= 𝒙′𝑖V [𝜷𝑥 | (𝒚,𝑿 )] 𝒙𝑖 .

2 shows that the posterior mean is a weighted average of 𝒙𝑖 , the covariates observed on

𝑖, with weights equal to the posterior mean of coefficients E [𝜷𝑥 | (𝒚,𝑿 )]. The independence

of 𝒛𝑖 across individuals implies that the information in (𝒚,𝑿 ) enters the prediction of 𝑌𝑖 only

through the belief on 𝜷𝑥 . Prediction occurs in two steps, first 𝑀 updates the prior on 𝜷𝑥

based on (𝒚,𝑿 ), and the uses 𝒙𝑖 to personalize the prediction on 𝑖 based on the updated beliefs

on 𝜷𝑥 . By Proposition 2 and Corollary 4, to characterize 𝑉 (𝑫) we need only characterize
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the posterior distribution 𝜷𝑥 | (𝒚,𝑿 ).

Proposition 1. The posterior distribution of 𝜷𝑥 | (𝒚,𝑿 )is

𝜷𝑥 | (𝒚,𝑿 ) ∼ N
(
𝒕∗𝑥 (𝒚,𝑿 ) , 𝜎2

(
𝑰𝑘𝑍 + 1

1 − 𝑆 · 𝑿 ′𝑿

)−1
)
,

where 𝒕𝑥 : R𝑛𝑍×(1+𝑘𝑍 ) → R𝑘𝑍 is an estimator defined by

𝒕∗𝑥 (𝒚,𝑿 ) ≡ ((1 − 𝑆) · 𝑰𝑘𝑍 + 𝑿 ′𝑿 )−1 (𝑿 ′𝒚) .

Proposition 1 characterizes the posterior distribution of the coefficient vector 𝜷𝑥 after

observing training data (𝒚,𝑿 ), which determines how the observed covariates 𝒙 relate to

the location 𝑌 . The posterior mean 𝒕∗𝑥 (𝒚,𝑿 ) represents a weighted least squares estimator

that balances prior knowledge with empirical evidence from training data. The depen-

dence on 1 − 𝑆 reflects how much uncertainty remains after observing a fraction 𝑥 of the

covariates: when 1−𝑆 is large, a substantial portion of variance is still unexplained, increas-

ing the weight of the prior and thus amplifying shrinkage. This mechanism ensures that

coefficient estimates are not overly influenced by noise in the data, stabilizing predictions

by integrating prior knowledge with empirical observations in a structured way. It is well

known that the optimal estimator in a Bayesian linear regression model is the ridge regres-

sion estimator with a specifically chosen regularization parameter. The following section

shows how the estimator characterized in Proposition 1 can be seen as a generalized ridge

regression estimator which closely maps estimators which are convergence points of tech-

niques used in machine learning. This section can therefore be skipped by readers who are

not interested in the statistical underpinnings of the paper’s results.

4.1.1 Ridge Regression

Ridge regression is a technique used in statistical and econometric modeling to address in-

vertibility issues in regression analysis. When there is a large number of features compared

to observations, ordinary least squares (OLS) estimates are unstable because the inverse of

𝑿 ′𝑿 is close to being non defined and therefore estimator variance is high. Ridge regres-

sion introduces a penalty term that shrinks the estimated coefficients toward zero, thereby

reducing overfitting and improving predictive performance. This technique helps improve
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out-of-sample predictions by trading off bias for lower variance.5 The following result

illuminates the connection between our results and the ridge estimator.

Corollary 5. The estimator 𝒕∗𝑥 (𝒚,𝑿 ) is the unique solution to

min
𝒕𝑥

{
| |𝒚 − 𝑿𝒕𝑥 | |22 + 𝜆𝒕′𝑥 𝒕𝑥

}
,

where 𝜆 = 𝜆(𝑘) ≡ 1 − 𝑆.

The result in Proposition 1 can therefore be interpreted as a ridge regression estimator,

where regularization depends the unexplained variance fraction 1 − 𝑆 which depends on

the dimensionality of the data. This structure closely resembles modern machine learning

algorithms, such as adaptive regularization techniques used in neural networks, gradient-

boosted trees and data-driven shrinkage. Thus, Proposition 1 formalizes a Bayesian frame-

work that mirrors the principles of adaptive regularization in real-world predictive algo-

rithms, capturing both prior beliefs and observed information to optimize predictions.

Finally, it is important to note that as more covariates are observed (higher 𝑘), a lower

unexplained variance 1 − 𝑆 leads to less aggressive shrinkage as 𝑘 increases. Intuitively, as

the model gains access to more informative covariates, the weight placed on the observed

data increases, reducing the reliance on prior regularization. This means that for small 𝑘,

where much of the variance in 𝑌 remains unexplained, regularization plays a stronger role

in controlling the estimator’s variance. Conversely, as 𝑘 grows, the estimation relies more

on observed data, leading to weaker shrinkage and a greater responsiveness to the training

sample. This feature suggests that there can be increasing returns to increasing the fraction

of covariates collected 𝑘: by reducing the reliance on the prior, adding a marginal covariates

increases the value of inframarginal covariates ceteris paribus.
5Mathematically, ridge regression solves the following optimization problem:

min
𝒕𝑥

{
| |𝒚 − 𝑿𝒕𝑥 | |22 + 𝜆𝒕 ′𝑥 𝒕𝑥

}
,

where 𝜆 ≥ 0 is a tuning parameter that controls the strength of regularization. When 𝜆 = 0, ridge regression
reduces to OLS, while larger values of 𝜆 increase the shrinkage effect.
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4.2 The Joint Value of Data

Theorem 2. The VoI (𝑫) is to 𝑉 (𝑛, 𝑘)

VoI (𝑫) = 𝑆 −
(
1 − Tr

[(
𝑰𝑘𝑍 + 1

1 − 𝑆 · 𝑿 ′𝑿

)−1
])
. (4.1)

The following result exploits the properties of large random matrices using the conver-

gence results in Marčenko and Pastur (1967).

Theorem 3. As 𝑍 → ∞, VoI (𝑫) converges to 𝑉 (𝑛, 𝑘)

VoI (𝑫) → 𝑉 (𝑛, 𝑆) ≡ 𝜎2

2
(𝑛 + 1)

(
1 −

√︄
1 − 4𝑛𝑆

(𝑛 + 1)2

)
. (4.2)

Theorem #.1 shows that as the number of covariates 𝑍 grows, the value of informa-

tion in a dataset converges to a deterministic function 𝑉 (𝑛, 𝑘), depending only on dataset

dimensions rather than specific data realizations. This suggests that in large datasets, in-

dividual data points contribute negligibly to overall predictive improvement, making data

valuation predictable. This challenges Arrow’s Information Paradox (see Arrow (1962)),

which states that information’s value is unknown until acquired, but once acquired, it has

effectively been obtained for free—creating a fundamental obstacle to information markets.

The theorem implies that when data is sufficiently granular, its value depends only on its

size rather than specific content. The result therefore provides a theoretical foundation for

data valuation based on statistical properties of datasets.

The following corollary highlights that the results in Corollary 1 apply also to the mul-

tivariate case.

Corollary 6 (Decreasing Returns to Scale). The marginal value of data

𝑚𝑣 (𝑛;𝑘) ≡ 𝜕𝑉 (𝑛;𝑘)
𝜕𝑛

is decreasing in 𝑛.

The following corollary highlights that the results in Corollary 2 apply also to the mul-

tivariate case.

Corollary 7 (Economies of Scope). The marginal value of additional within-individual infor-
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mation is increasing:
𝜕2𝑉

(
𝑛; 𝑆

)
𝜕2𝑆

> 0.

The following corollary highlights that the results in Corollary 3 apply also to the mul-

tivariate case.

Corollary 8. The marginal value of data is increasing in the within-individual information 𝑘 if

and only
𝜕𝑚𝑣 (𝑛;𝑘)

𝜕𝑘
≥ 0 ⇐⇒ 𝑛 ≤ �̃�(𝑘) ≡ 1

2𝑘 − 1
.

Equivalently, across- and within-individual information are complements when they are small

and substitutes when they are large

4.3 Multiple Datasets

We now develop a more general model in which 𝑃 has 𝑗 datasets, each of which has 𝑛 𝑗𝑍

observations and 𝐹 (𝑘 𝑗 )𝑍 non overlapping covariates so that

𝑫 𝑗 ≡
( (
𝒙 𝑗

)
𝑖∈I , (𝒚 𝑗 ,𝑿 𝑗 )

)
=

{(
𝑦𝑖 𝑗 , 𝒙𝑖 𝑗

)}𝑛 𝑗𝑍
𝑖=1 ∈ R𝑛 𝑗𝑍×(1+𝐹 (𝑘 𝑗 )𝑍 ),

with 𝒙 𝑗 ≡ (𝑥ℎ)ℎ∈ 𝑗 the vector consisting of covariates in 𝑗 and 𝜷 𝑗 as the corresponding vector

of coefficients. We assume there is no overlap of covariates across datasets. We therefore

have a collection of datasets 𝑫 ≡
(
𝑫 𝑗

)𝑑
𝑗=1.

Definition 1. The contribution of a dataset 𝑫 𝑗 to a collection of datasets 𝑫 is a function

defined by:

Δ 𝑗 (𝑫 𝑗 ,𝑫) ≡ 𝑉 (𝑫) −𝑉 (𝑫 \ 𝑫 𝑗 ).

Lemma (1) is unchanged and can applied directly to the new definition of 𝑫. The

following result plays the role of Proposition (2).

Proposition 2. The posterior distribution of 𝑌 |𝑫 is

𝑌 |𝑫 ∼ N
(
𝑠∗(𝑫),V [𝑠∗(𝑫)] + 𝜎2 (1 − 𝑘)

)
,
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where

𝑠∗(𝑫) =
𝑑∑︁
𝑗=1

𝒙′𝑗E
[
𝜷 𝑗 |

(
𝒚 𝑗 ,𝑿 𝑗

)𝑑
𝑗=1

]
,

V [𝑠∗(𝑫)] =
𝑑∑︁
𝑗=1

𝒙′𝑗V
[
𝜷 𝑗 |

(
𝒚 𝑗 ,𝑿 𝑗

)𝑑
𝑗=1

]
𝒙 𝑗 . (4.3)

The following proposition characterizes the posterior distribution of coefficients after

the observation of a collection of non-overlapping datasets.

Proposition 3. The posterior distribution of 𝜷 𝑗 |
(
𝒚 𝑗 ,𝑿 𝑗

)𝑑
𝑗=1 is

𝜷 𝑗 |
(
𝒚 𝑗 ,𝑿 𝑗

)𝑑
𝑗=1 ∼ N

(( (
1 − 𝐹 (𝑘 𝑗 )

)
· 𝑰𝑘𝑍 + 𝑿 ′

𝑗𝑿 𝑗

)−1
𝑿 ′
𝑗𝒚 𝑗 , 𝜎

2 ·
(
𝑰𝑘𝑍 + 1

1 − 𝐹 (𝑘 𝑗 )
· 𝑿 ′

𝑗𝑿 𝑗

)−1
)
.

The proof relies on the prior independence of covariates and coefficients, which ensures

coefficients are affected exclusively by the covariate which they refer to. The following

proposition exploits independence. The posterior of 𝜷 𝑗 the coefficients of covariates in

dataset 𝑗 is not affected by the realization of covariates outside that dataset. Therefore the

variance is the sum of the contributions of each dataset and each dataset’s contribution is its

value, a result contained in the following theorem.

Corollary 9. The value of a collection of non-overlapping datasets is the sum of the contribution

of each dataset

𝑉 (𝑫) =
𝑑∑︁
𝑗=1
𝑉 (𝑫 𝑗 ),

which implies the contribution of each dataset is equal to its value Δ 𝑗 (𝑫 𝑗 ,𝑫) = 𝑉 (𝑫 𝑗 ).

Therefore the application of Theorem naturally yields the following result

Theorem 4. When 𝑍 → ∞, the value 𝑉 (𝑫) converges to a deterministic function 𝑣 (𝒌, 𝒏) :

R𝑑 × R𝑑 :

𝑉 (𝑫) → 𝑣 (𝒌, 𝒏) ≡
𝑑∑︁
𝑗=1

𝑣 (𝑘 𝑗 , 𝑛 𝑗 ) .
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5 Applications

5.1 A monopoly problem

Netflix has a continuum of movies it can show to consumers, and movies are ranked from

the least comedic to the most comedic, with 𝑦 ∈ R reflecting their inherent comediness,

so that 𝑦 = −∞ is a total tragedy and 𝑦 = +∞ is utterly comnedic. Each consumer has an

unknown preferred variety 𝑦 ∈ R which will give her utility 𝑣 ≥ 0, and suffers a quadratic

disutility proportional to a scalar 𝑡 ≥ 0 for deviations from 𝑦 so that the utility from pur-

chasing variety 𝑦 for price 𝑝 ≥ 0 is

𝑢𝑦 (𝑦, 𝑝) = 𝑣 − 𝑡 (𝑦 − 𝑦)2 − 𝑝.

Suppose there is a population of consumers of unit mass I = [0, 1] in which 𝑦 is dis-

tributed according to some distribution with mean 0 and variance 𝜎2. The expected utility

is

𝑈 (𝑝) ≡ E𝑦
[
𝑢𝑦 (𝑝)

]
= 𝑣 − 𝑡E𝑦

[
(𝑦 − 𝑦)2] − 𝑝.

The users have as outside option going to the local cinema which will show the mean

movie 𝑦 = 0. Doing so will yield

𝑢 = 𝑣 − 𝑡𝜎2

So Netflix can set a subscription price

𝑝 = 𝑡
(
𝜎2 − E𝑦

[
(𝑦 − 𝑦)2] )

and make a revenue of

𝑅 = 𝑡
(
𝜎2 − E𝑦

[
(𝑦 − 𝑦)2] ) .

Therefore the increase in profit from collecting a dataset of 𝑛 observations is precisely

𝑅 = 𝑡𝑉 (𝑛;𝑘).
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Assume 𝑀 pays a fixed cost 𝑐 per observation. Then the problem of Netflix will be

max
𝑐,𝑘

𝑡𝑉 (𝑛;𝑘) − 𝑐𝑛 − 𝑟𝑘.

The parameter 𝑐 is the cost of acquiring/maintaining data on many users. It can be a

storage cost The paramer 𝑟 is the cost of collecting a lot of data on one user. It can stem

from regulation like GDPR

quite trivially, 𝑛∗ is decreasing in 𝑐 and inverted U-shaped in 𝑟 as quite trivially, 𝑘∗ is

decreasing in 𝑘 and inverted U-shaped in 𝑐.

Corollary 10. The amount of data purchased 𝑛∗(𝑟 ) is increasing in 𝑟 if 𝑐 ≥ 𝑐 (𝑘) ∈ [0,∞) which

is increasing in 𝑘 and decreasing otherwise.

𝑚𝑣 (𝑛;𝑘)

𝜏2 𝛼
√
𝑘

𝜎2
𝜏2 𝛼√

𝑘
−1

𝑚𝑣 (𝑛;𝑘′) |𝑘 ′>𝑘

𝜏2 𝛼
√
𝑘 ′

𝜎2
𝜏2 𝛼√

𝑘′
−1

𝑐′

𝑐

𝑛∗ (𝑐′, 𝑘)
𝑛∗ (𝑐′, 𝑘 ′)

𝑛∗ (𝑐, 𝑘)
𝑛∗ (𝑐, 𝑘 ′)0

𝑛

𝑃

Figure 2: This figure illustrates the effect of an increase in signal strength 𝑘 on the optimal
data acquisition decision. The solid curve represents the marginal value of data mv(𝑛;𝑘),
while the dashed curve corresponds to the marginal value function after an increase in signal
strength, 𝑘′ > 𝑘. As the signal improves, the optimal number of observations purchased
increases, shifting the equilibrium data quantity from 𝑛∗(𝑐, 𝑘) to 𝑛∗(𝑐, 𝑘′) and from 𝑛∗(𝑐′, 𝑘)
to 𝑛∗(𝑐′, 𝑘′).
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5.2 Dynamic model

We consider a two-period game in which two platforms, an incumbent (𝐼 ) and an entrant

(𝐸), compete to sell predictions to consumers of a horizontally differentiated good. Each

consumer has unit demand and can purchase from only one platform in each period. We

let 𝑣 𝑗 ≥ 0 represent the standalone quality of platform 𝑗 ∈ {𝐼 , 𝐸}, and let 𝑛 𝑗𝑡 denote the

number of users who have previously purchased from platform 𝑗 by period 𝑡 ∈ {1, 2}. The

price charged by platform 𝑗 in period 𝑡 is 𝑝 𝑗𝑡 ∈ R; it may be negative (i.e., a subsidy). The

expected (indirect) utility of a representative consumer who buys from platform 𝑗 in period

𝑡 is

𝑈
𝑗
𝑡 = 𝑣 𝑗 +𝑉

(
𝑛
𝑗
𝑡 ; 𝑆

)
− 𝜎2 − 𝑝

𝑗
𝑡 ,

where𝑉 (·; 𝑆) is the surplus from predictive accuracy (increasing in 𝑛 𝑗𝑡 ), 𝜎2 captures variance

costs, and 𝑆 reflects the level of predictive-analytics technology.

There is a unit mass of consumers arriving each period. The first period has duration 1

and the second period has duration 𝛿 , with 𝛿 ∈ (0, 1). The incumbent starts with a stock of

historical data, 𝑛, which corresponds to the number of past periods in which it engaged in

sales. Firms face no production costs, so if a firm is active in both periods, its total profit is:

𝑝
𝑗

1 + 𝛿 𝑝
𝑗

2.

To ensure nontrivial competition, we assume that

Δ ≡ 𝑣𝐸 − 𝑣 𝐼 ≥ 0,

so that the entrant’s standalone quality is not strictly lower than the incumbent’s.

5.2.1 Equilibrium Analysis

Proposition 4 (Free Reentry). There exists a unique threshold Δ̂(𝛿, 𝑛, 𝑘) ≥ 0 such that 𝐸 sells

in both periods if and only if

Δ ≥ Δ∗(𝛿, 𝑛, 𝜆, 𝑆) ≡ 𝑉 (𝑛𝜆, 𝑆) + 𝛿 (𝑉 ((𝑛 + 1)𝜆, 𝑆) +𝑉 (𝑛𝜆, 𝑆) −𝑉 (𝜆, 𝑆))
1 + 2𝛿

.

It is increasing in 𝑛 and decreasing in 𝛿 . If 𝑛 is large it is inverted U-shaped in 𝑆 and
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𝜆, otherwise if 𝑛 is small it is increasing in both. Higher 𝑛 (the incumbent’s data stock)

pushes up this threshold because the incumbent’s advantage from accumulated data is more

difficult to surmount, forcing the entrant to rely on a larger standalone quality edge. The

parameter 𝛿 ∈ (0, 1) measures the length of the second period: as 𝛿 decreases, the second

period becomes ’shorter,’ reducing the entrant’s incentive to incur first-period competitive

costs, thereby decreasing the likelihood of long-term competition. The function 𝑉 (·; 𝑆) is

increasing and concave in 𝑛 and increasing and convex in 𝑆 . Hence, when 𝑛 is large, further

improvements in 𝑆 or 𝜆 do not increase𝑉 (·; 𝑆) as significantly, making the threshold behave

in an inverted-U shape in 𝑆 and 𝜆. When 𝑛 is small, the gains from collecting data in the

first period are more pronounced, so Δ∗ becomes increasing in 𝑆 and 𝜆.

5.2.2 Welfare Analysis

Proposition 5 (Social Optimum). A benevolent social planner would make 𝐸 sell in both periods

if and only if

Δ ≥ Δ𝑤 ≡ 𝑉 (𝑛𝜆, 𝑆) + 𝛿 (𝑉 ((𝑛 + 1)𝜆, 𝑆) −𝑉 (𝜆, 𝑆))
1 + 𝛿 .

It is inverted U-shaped in 𝑆 and 𝜆, increasing in 𝑛 and decreasing in 𝛿 . Because 𝑉 (·; 𝑆) is

concave in 𝑛, the marginal gains of having a larger user base diminish at high 𝑛. When

𝑛 is large and 𝑆 grows, the function 𝑉 (·; 𝑆) increases at a decreasing rate in 𝑛 but at an

increasing rate in 𝑆 , thus the overall shape in (𝑆, 𝜆) becomes inverted U-shaped. By contrast,

for small 𝑛, the direct effect of additional data is more pronounced, so a higher 𝑆 or 𝜆

strictly boosts welfare gains from allowing the entrant to compete in both periods. Finally,

since 𝛿 < 1, a longer second period (larger 𝛿) makes it relatively more valuable to foster

competition over the entire horizon, but higher 𝛿 also increases the discount factor for

immediate costs/benefits, rendering Δ𝑤 decreasing in 𝛿 .

Corollary 11. Define the excess in incumbency advantage

Ψ(𝛿, 𝑛, 𝜆, 𝑆) = Δ∗(𝛿, 𝑛, 𝜆, 𝑆) − Δ𝑤 (𝛿, 𝑛, 𝜆, 𝑆) = 𝛿2 (𝑉 (𝑛𝜆, 𝑆) −𝑉 ((𝑛 + 1)𝜆, 𝑆) +𝑉 (𝜆, 𝑆))
(1 + 𝛿) (1 + 2𝛿) .

Increasing in 𝜆, 𝑆 , 𝛿 and 𝑛. It represents the ’excess’ advantage that an incumbent enjoys

(or, equivalently, the additional standalone quality advantage the entrant must have) in or-

der to justify entering two-period competition, relative to what would be socially efficient.

Because 𝑉 (·; 𝑆) is increasing and concave in 𝑛, additional data from either period may not
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always translate into proportionate gains if 𝑛 is already large. However, the fraction 𝜆 of

users who generate usable data, along with higher 𝑆 or a longer second period (𝛿), can

amplify these data-driven benefits. The result is that Ψ(𝛿, 𝑛, 𝜆, 𝑆) increases in all parameters

(𝛿, 𝑛, 𝜆, 𝑆), indicating that as the value of data grows in the marketplace, the gap between

private and social incentives to admit new entrants can widen.

Our analysis highlights how an incumbent’s initial stock of data, 𝑛, confers a persistent

advantage that may exceed the socially optimal level. This excess incumbency advantage is

magnified when a larger fraction 𝜆 of users contributes data, when the predictive-analytics

technology 𝑆 is more powerful, or when the second period is sufficiently long (higher

𝛿). In practice, such dynamics can lead to market structures where new entrants find it

increasingly difficult to break in, even if it would be welfare-enhancing to do so.

One policy approach suggested by these findings is to mitigate entrenched advantages

through data-portability or data-sharing requirements. For instance, measures akin to the

European Union’s General Data Protection Regulation (GDPR) facilitate user mobility by al-

lowing consumers to transfer their historical data to alternative platforms. The proposed

Digital Markets Act (DMA) in the EU also discusses obligations for ’gatekeeper’ platforms to

ensure interoperability and data-sharing, which could help entrants close the gap in predic-

tive accuracy. Similar policies are emerging in various jurisdictions, such as open-banking

initiatives that require incumbent financial institutions to share consumer banking data

with licensed challengers. By reducing the incumbent’s data advantage, such interventions

effectively lower Δ∗ toward the socially optimal threshold Δ𝑤 .

Another potential remedy involves promoting collaboration among incumbents, en-

trants, and public institutions to create open data pools or standardized data formats. These

arrangements can reduce duplication of data-gathering efforts, cut entry costs, and foster

competition on overall service quality rather than on raw data. In some cases, competition

authorities might consider mandating structured data access for qualified entrants, subject

to privacy and security safeguards. These policy instruments aim to realign private incen-

tives with social optima, ensuring that competition is neither stifled by excessive data-based

barriers nor distorted by free-riding concerns. Overall, our model underscores that data-

based network effects can be powerful and self-reinforcing, demanding careful regulatory

scrutiny to safeguard dynamic competition and innovation.
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5.3 Data Monopsony

We assume 𝑀 is a monopsonist and faces an upward sloping supply curve for data 𝑃 (𝑛),

meaning acquiring more data becomes more costly.6 Therefore 𝑀 must solve:

max
𝑛,𝑘

Π(𝑛) ≡ 𝑉 (𝑛, 𝑘) − 𝑐𝑛𝑃 (𝑛) − 𝑟𝑘𝑊 (𝑘).

This model can be solved analogously to a monopsony model, where 𝑀 is analogous to

a monopsonist purchasing labor, but instead, here, it is acquiring data.

Theorem 5. Provided second-order conditions hold, the monopsonist’s problem has a unique solu-

tion (𝑛∗, 𝑘∗)characterized by

𝜕

𝜕𝑛
𝑉 (𝑛∗, 𝑘∗) = 𝑐 (𝑃 (𝑛∗) + 𝑛∗𝑃 ′(𝑛∗))

𝜕

𝜕𝑆
𝑉 (𝑛∗, 𝑆 (𝑘∗)) 𝑠 (𝑘∗) = 𝑟 (𝑊 (𝑘∗) + 𝑘∗𝑊 ′(𝑘∗)) .

A social planner would maximize

max
𝑛,𝑘

𝑊 (𝑛, 𝑘) = 𝑉 (𝑛, 𝑘) − 𝑐
∫ 𝑛

0
𝑃 (𝑠)𝑑𝑠 − 𝑟

∫ 𝑘

0
𝑊 (𝑠)𝑑𝑠.

Theorem 6. Provided second-order conditions hold, the planner’s problem has a unique solution

(𝑛∗, 𝑘∗)characterized by

𝜕

𝜕𝑛
𝑉

(
𝑛opt, 𝑘opt) = 𝑐𝑃 (𝑛opt)

𝜕

𝜕𝑆
𝑉

(
𝑛opt, 𝑆

(
𝑘opt) )𝑠 (𝑘opt) = 𝑟𝑊 (𝑘opt)

The following corollary captures the policy conclusions.

Corollary 12. The monopsonist always purchases less data than optimal as 𝑛∗(𝜂) < 𝑛opt(𝜂).

Furthermore, the monopolist underinvests in 𝑘 if 𝑛∗(𝜂) ≤ �̃� (𝑘∗(𝜂)), equivalently, there exists a level
6To microfound the supply function 𝑃 (𝑛), one could suppose that the data has to be purchased (directly

through monetary transfers or indirectly through transfers in utility) from a population of 𝑁 potential users
who have different outside options. Concretely, one may think of users having to spend some time on an
app developed by 𝑀 in order to generate the data, and the opportunity cost of time to be some 𝜃 distributed
according to some CDF 𝐹 (·). Assuming quasilinear utilities a user of type 𝜃 will earn a utility of𝑈𝜃 = 𝑝−𝜃,from
using the app developed by 𝑀 . Only the users of type 𝜃 such that 𝜃 ≤ 𝑝 will use the app so the demand for
the app will therefore be 𝑛 = 𝑁𝐹 (𝑝). Assuming each user generates one unit of data the supply of data will
be equal to 𝑃 (𝑛) ≡ 𝐹 −1 (

𝑛
𝑁

)
.
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of technological efficiency 𝜂 (𝜎2) increasing in 𝜎2such that there is underinvestment in technology if

and only if 𝜂 ≤ 𝜂 (𝜎2).

This is the standard result in monopsony, where the buyer does not internalize the rev-

enue that the data suppliers earns. Therefore it will buy less data than socially optimal. If in

this optimum 𝑛 and 𝑘 are complements there will also be an underinvesment in technology

𝑘: the firm does not internalize the full positive impact that technology has on the value of

data as part of it goes to data suppliers. Conversely, if 𝑘 and 𝑛 are substitutes the firm will

overinvest in 𝑘: effectively it uses technology to drive down the marginal value of data to

reduce the compensation it must pay to data suppliers.

This suggests that if it is cheap to collect more data on each user (𝜂 is large), monopolists

will overinvest in technology to drive down the compensation they pay data suppliers.

5.3.1 Stackelberg

A firm collects too much data to deter entry.

5.3.2 Data Shring

Two firms, each with a number of users 𝑛𝑖 and tehcnilogy 𝐴𝑖 . Suppose they can share users

and 𝑝 is price paid by 1.

(𝑉 (𝑛1 + 𝑛2, 𝑘1) − 𝑝 −𝑉 (𝑛1, 𝑘1))𝛾 (𝑉 (𝑛1 + 𝑛2, 𝑘2) + 𝑝 −𝑉 (𝑛2, 𝑘2))1−𝛾

The Nash price is

𝑝∗ = 𝑉 (𝑛1 + 𝑛2, 𝑘1) −𝑉 (𝑛1, 𝑘1) − 𝛾 (𝑉 (𝑛1 + 𝑛2, 𝑘1) +𝑉 (𝑛1 + 𝑛2, 𝑘2) −𝑉 (𝑛1, 𝑘1) −𝑉 (𝑛2, 𝑘2)) ≥ 0

⇐⇒ 𝛾 <
𝑉 (𝑛1 + 𝑛2, 𝑘1) −𝑉 (𝑛1, 𝑘1)

𝑉 (𝑛1 + 𝑛2, 𝑘1) +𝑉 (𝑛1 + 𝑛2, 𝑘2) −𝑉 (𝑛1, 𝑘1) +𝑉 (𝑛2, 𝑘2)

So

Π1 = 𝑉 (𝑛1, 𝑘1) + 𝛾 (𝑉 (𝑛1 + 𝑛2, 𝑘1) +𝑉 (𝑛1 + 𝑛2, 𝑘2) −𝑉 (𝑛1, 𝑘1) −𝑉 (𝑛2, 𝑘2))

hence
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𝜕Π1

𝜕𝑘2
= 𝛾 [𝑉𝐴 (𝑛1 + 𝑛2, 𝑘2) −𝑉𝐴 (𝑛2, 𝑘2)]

𝜕Π1

𝜕𝑛2
= 𝛾 [𝑉𝑛 (𝑛1 + 𝑛2, 𝑘1) +𝑉𝑛 (𝑛1 + 𝑛2, 𝑘2) −𝑉𝑛 (𝑛2, 𝑘2)]

5.3.3 Cournot

Let us now consider 𝑍 firms

𝜕

𝜕𝑛
𝑉 (𝑛∗𝑖 , 𝑘∗𝑖 ) = 𝑃

(
𝑛∗𝑖 +

∑︁
𝑗≠𝑖

𝑛 𝑗

)
+ 𝑛∗𝑖 𝑃 ′

(
𝑛∗𝑖 +

∑︁
𝑗≠𝑖

𝑛 𝑗

)
𝜕

𝜕𝑘
𝑉 (𝑛∗𝑖 , 𝑘∗𝑖 ) =

1
𝜂

It is well known we can rewrite it as

𝜕

𝜕𝑛
𝑉 (𝑛∗, 𝑘∗) = 𝑃 (𝑍𝑛∗) + 𝑛∗𝑃 ′ (𝑍𝑛∗)

𝜕

𝜕𝑘
𝑉 (𝑛∗, 𝑘∗) = 1

𝜂

A planner would set

max
𝑍∑︁
𝑖=1

(
𝑉 (𝑛𝑖, 𝑘𝑖) −

𝑘𝑖

𝜂

)
−

∫ ∑𝑍
𝑖=1 𝑛𝑖

0
𝑃 (𝑠)𝑑𝑠

𝜕

𝜕𝑛
𝑉

(
𝑛opt, 𝑘opt) = 𝑃 (

𝑍𝑛opt)
𝜕

𝜕𝑘
𝑉

(
𝑛opt, 𝑘opt) = 1

𝜂

As𝑛∗is decreasing in 𝑍 so if complements (underinvestment), the underinvestment be-

comes worse as 𝑘 decreases in 𝑍 . If substitutes there is overinvestment also overinvestment

becomes wors as 𝑘 increases.
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5.4 Perfect competition

Let us now assume 𝜂 → ∞ and that 𝑘 = 𝑘, as 𝑉 (𝑛, 𝑘) is always increasing in 𝑘.

𝑉 (𝑛,𝐴) − 𝑛𝑃 (𝑛𝑍 ) = 0

therefore

𝑍 =

𝐹

(
𝑉 (𝑛,𝑘)
𝑛

)
𝑛

Assume that there is a common level of technology 𝐴 in firms competing for data in

market where the prediction difficulty is 𝜎2. Under perfect competition denoting by

𝑚𝑣 (𝑛;𝐴) ≡ 𝜕𝑉 (𝑛;𝐴)
𝜕𝑛

=
𝜎2 −𝐴(

𝜎2

𝐴
+ 𝑛 − 1

)2 ≥ 0 ⇐⇒ 𝑝 ≤ 𝑝choke(𝐴) ≡
𝐴

𝜎2

𝐴
− 1

.

Note that the choke price is increasing in 𝐴 and decreasing in 𝜎2. This implies that the

market will be active only in markets where the prediction problem is not too hard and if

and only if the technology 𝐴 is high enough. In markets with high 𝜎2 and low 𝐴, the cost

of acquiring enough data to be competitive is prohibitive, creating barriers to entry.

The data demand curve is

𝑚𝑣 (𝐷 ;𝐴) = 𝑝 ⇐⇒ 𝐷 (𝑝,𝐴) =

√︄
𝜎2 −𝐴
𝑝

−
(
𝜎2

𝐴
− 1

)
.

The elasticity of demand is 𝜖𝐷

𝜀𝐷 (𝐴) ≡ −𝑝𝐷
′(𝑝)

𝐷 (𝑝) =
1

2
(
1 −

√︂
𝑝

𝐴

(
𝜎2

𝐴
− 1

)) .
It is increasing in 𝜎2 implying and decreasing in 𝐴 implying that an equal percentage

increase in the price of data reduces data acquisition by a larger percentage in markets where

predictions are more difficult and where there is worse technology. This implies several

things: an optimal subsidy directed to incentivizing data collection (conversely a

tax directed to reduce it) will be most effective in markets where the demand for

data is elastic meaning the difficulty 𝜎2 is high (health, financial services) and the
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level of technology 𝐴 is low. As the level of technology 𝐴 becomes larger, the effect of

taxes and subsidies on data collection will become smaller.

The competitive equilibrium is

𝐷 (𝑝,𝐴) = 𝑆 (𝑝),

where 𝜂 is a privacy externality. The comparative statics of the equilibirum 𝑛∗(𝐴) will

depend on 𝜕𝑚𝑣 (𝑛;𝐴)
𝜕𝐴

=
𝜕2𝑉 (𝑛;𝐴)
𝜕𝑛𝜕𝐴

which implies that 𝑛∗ will be inverted U-shaped in 𝐴 and

U-shaped in 𝜎2.

Suppose there is a tax on data (for instance GDPR)

𝐷 (𝑝) = 𝑆 (𝑝 − 𝑡).

Let us study by how much the price paid by firms increases if 𝑡 increases and call it the

incidence 𝜌 ≡ 𝑑𝑝

𝑑𝑡
. Implicit differentiation yields

𝐷′(𝑝)𝜌 = (𝜌−1)𝑆′(𝑝−𝑡) ⇐⇒ 𝜌 (𝐴) = 1

1 + 𝜀𝐷 (𝐴,𝜎2)
𝜀𝑆

is increasing in 𝐴 and decreasing in 𝜂 and 𝜎2.

The fraction of an increase of a tax/subsidy on data passed on to firms (respectively paid

for by data owners) will be larger (smaller) if technology 𝐴 is large and the prediction 𝜎2 is

small.The model predicts that stricter data protection laws (analogous to raising the cost of

data collection per user, 𝑐) push platforms into a regime where the value of each additional

user increases. This is because platforms need to offset the loss of granular data per user by

increasing sample size. As a result, platforms will be willing to offer higher compensation

or more favorable terms to attract new users.

Interpretation: Data minimization rules (as found in GDPR and CCPA) do not neces-

sarily reduce the economic value of data. Instead, they shift the source of value from deep

profiling (within-user data) to broader participation (across-user data). This shift could lead

to more competitive user compensation markets, where platforms actively bid for access to

user data.

Policy takeaway: Regulators could frame data minimization not only as a privacy-

enhancing measure but also as a mechanism to foster competition for user data and re-
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distribute some of the data’s value back to consumers.

The model captures how technological sophistication (higher 𝑥) changes the relative

importance of adding more users (higher 𝑛). This has significant regulatory implications:

• In early stages (low 𝑥), platforms are data-hungry and heavily reliant on user partici-

pation. Regulations limiting individual-level data collection shift the focus to partic-

ipation incentives, fostering a competitive market for user data.

• As technology improves (higher 𝑥), platforms become better at extracting value from

sparse data. This reduces the marginal value of additional users, making platforms less

reliant on broad participation.

Over time, the importance of data volume declines relative to data quality and model-

ing sophistication. This shift may reduce the effectiveness of data portability regulations

(which assume data volume drives competitive advantage) and highlight the importance

of ensuring fair access to algorithmic innovations. The policy takeaway is that regulators

should anticipate the shift from data-centric competition (focused on collecting more data)

to model-centric competition (focused on better algorithms). This suggests that policies fo-

cused on algorithmic transparency and fair access to machine learning infrastructure may

become more important than policies focused on raw data access.

5.5 Ad intermediation by a Monopsonist

Suppose that there is a unit mass of potential users of a platform 𝑃 . Each user 𝑖 ∈ I ≡ [0, 1]

consumes online content through 𝑃 app and has an unknown preferred variety of content

𝑦𝑘 ∈ R which gives her a stand alone utility 𝑢 ≥ 0 which is a monetary transfer by 𝑃 . We

assume each user is located at an unknown point 𝑦𝑘 ∈ R on an extended Hotelling line

which describes the possible content varieties, and must pay a quadratic cost for distance

traveled to the variety of content they consume, scaled by a transportation cost 𝑡𝑘 > 0. The

utility from content of a user with preferred variety 𝑦𝑘 consuming 𝑦𝑘 when 𝑛 consumer use

the app offered by 𝑃 is therefore

𝑈𝑘 = 𝑢 − 𝑡𝑘 (𝑦𝑘 − 𝑦𝑘)2 − 𝑐 (𝜃 ) + 𝑒 (𝑛),

where 𝑐 (𝜃, 𝑛) ≥ 0 is the opportunity cost which is increasing in the type of the user
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𝜃 ∈ Θ (the cost of privacy and/or the cost of time wasted) and decreasing in the number

of users who use the platform 𝑛. There are two main reasons for which a user’s choice of

using an app might have a negative externality on non-users: on the one hand, there is a

fear-of-missing-out (FOMO) effect that makes it more costly for individuals not to use aqn

app the greater the number of their peers who use; this effect has been widely documented

in social media cite XXX; on the other hand there are privacy externalities which imply

that the privacy value of not using an app is decresaing in the number of user who use it.

Suppose that users receive ads for a horizontally differentiated good. Each user has an

unknown preferred variety of good 𝑦𝑎 ∈ R, which gives her a stand alone utility 𝑣 ≥ 0

which is exogenous. We assume each user is located at an unknown point 𝑦𝑎 ∈ R on an

extended Hotelling line which describes the possible consumption good varieties, and must

pay a quadratic cost for distance traveled to the variety of good they consume, scaled by

a transportation cost 𝑡𝑎 > 0. The utility from consumption of a user with preferred good 𝑦𝑎

consuming 𝑦𝑎 is therefore

𝑈𝑎 = 𝑣 − 𝑡𝑎 (𝑦𝑎 − 𝑦𝑎)2 − 𝑝,

where we assume a zero outside option. We assume that 𝑧𝑖 and 𝑎𝑖 are mutually indepen-

dent and i.i.d. across individuals with mean 0 and variance 𝜎2 ≥ 0. The variance parameter

𝜎2 is a measure of the difficulty of the prediction problem. For each individual 𝑖 ∈ I, 𝑃

observes a covariate 𝑥𝑖 . The relationship between 𝑥𝑖 and the target variable𝑦 ∈ {𝑦𝑘 , 𝑦𝑎} is

given by:

𝑦𝑖 = 𝛽𝑥𝑖 + 𝜖𝑖,

as per Eq. XXX

5.5.1 Advertiser Problem

The expected utility from consumption of a user with preferred good advertised by 𝑦𝑎 con-

suming 𝑦 is therefore

𝑈𝑎 = 𝑣 − 𝑡𝑎
(
𝜎2 −𝑉

(
𝑛; 𝑆

) )
− 𝑝.

If 𝑃 collects 𝑛 samples, the advertising firm can therefore set

𝑝 (𝑛) = 𝑣 − 𝑡𝑎
(
𝜎2 −𝑉

(
𝑛; 𝑆

) )
,
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and leave the user/consumer with nothing. If 𝑛 users use 𝑃 , the advertiser therefore

makes

𝜋𝐴 =


(1 − 𝑓 )𝑝 (𝑛) if use 𝑃

𝑝 (0) if sell directly

where 𝑓 is an ad valorem fee charged by platform. The platform can therefore charge

𝑓 ∗ = 1 − 𝑝 (0)
𝑝 (𝑛) =

𝑉
(
𝑛; 𝑆

)
𝑣/𝑡𝑎 −

(
𝜎2 −𝑉

(
𝑛; 𝑆

) ) .
The advertiser will net a profit of 𝜋𝐴 = 𝑣 − 𝑡𝑎𝜎2, which is its outside option on the users

of 𝑃 and the same non non-users.

Therefore the platform makes per user revenue

𝑅(𝑛) = 𝑡𝑎𝑉
(
𝑛; 𝑆

)
5.5.2 User Problem

As users get no utility from the app. The expected utility from content of a user with preferred

content variety 𝑦𝑘 consuming 𝑦𝑎 is therefore

𝑈𝑘 = 𝑢 − 𝑡𝑘
(
𝜎2 −𝑉

(
𝑛; 𝑆

) )
− 𝑐 (𝜃 ) (1 − 𝑒 (𝑛)) .

Note that

𝑢 − 𝑡𝑘
(
𝜎2 −𝑉

(
𝜃 ;𝑘

) )
− 𝑐 (𝜃 ) (1 − 𝑒 (𝜃 )) is concave in 𝜃 .

Therefore if𝑢 ≥ 𝑡𝑘
(
𝜎2 −𝑉

(
𝜃
) )
+𝑐 (𝜃, 𝜃 ) (which will always be the case because otherwise

𝑃 would have no users and therefore make no profit).

Proposition 6. There is a cutoff 𝜃 such that 𝜃 ≤ 𝜃 use the platform and the other users do not.

Especially

𝑢 = 𝑡𝑘
(
𝜎2 −𝑉

(
𝜃 ;𝑘

) )
+ 𝑐 (𝜃 ) (1 − 𝑒 (𝜃 )) .

Trivially this cutoff is increasing in 𝑝𝑧and 𝑘 and decreasing in 𝑡𝑧 . Better technology

induces more users to enter for the same price. Therefore there is a Supply function for

data
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𝑆 (𝑛) = 𝑡𝑧
(
𝜎2 −𝑉

(
𝑛; 𝑆

) )
+ 𝑐 (𝑛) (1 − 𝑒 (𝑛)) .

5.5.3 Platform Problem

The platform solves

max
𝑛

Π(𝑛) ≡ 𝑅(𝑛) − 𝑛𝑆 (𝑛)

Therefore

𝑟 (𝑛) = 𝑆 (𝑛) + 𝑛𝑠 (𝑛)

The social planner maximizes total welfare,

𝑊 (𝑛) = 𝑅(𝑛) −
∫ 𝑛

0

(
𝑡𝑘 (𝜎2 −𝑉 (𝑛;𝑘)) + 𝑐 (𝜃 )

)
𝑑𝜃 −

∫ 1

𝑛

𝑒 (𝑛)𝑑𝜃

= 𝑅(𝑛) −
∫ 𝑛

0
(𝑆 (𝑛) − 𝑐 (𝑛) + 𝑒 (𝑛) + 𝑐 (𝜃 )) 𝑑𝜃 − (1 − 𝑛)𝑒 (𝑛)

= 𝑅(𝑛) − 𝑛 (𝑆 (𝑛) − 𝑐 (𝑛)) −
∫ 𝑛

0
𝑐 (𝜃 )𝑑𝜃 − 𝑒 (𝑛)

First-Order Condition (FOC). Differentiating with respect to 𝑛:

𝑑𝑊 (𝑛)
𝑑𝑛

= 𝑟 (𝑛) − (𝑆 (𝑛) − 𝑐 (𝑛)) − 𝑛 (𝑠 (𝑛) − ¤𝑐 (𝑛)) − 𝑐 (𝑛) − ¤𝑒 (𝑛) = 0. (5.1)

Therefore

𝑛 ¤𝑐 (𝑛) − ¤𝑒 (𝑛) ≤ 0

As 𝑛 is inverted U-shaped in 𝑘

5.6 Hotelling Model

Model Setup. Consider two platforms, 𝑃1 and 𝑃2, located at the endpoints of a unit

Hotelling line [0, 1], on which a continuum of consumers of total unit mass is uniformly

distributed. Each consumer is identified by their location 𝛽 ∈ [0, 1] and must choose to buy

from 𝑃1 or 𝑃2. The consumer’s location 𝛽 determines a transportation cost 𝜏 ≥ 0, so that if
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a consumer at 𝛽 purchases from 𝑃1 (at location 0), she incurs a travel cost 𝜏 𝛽2. If instead she

purchases from 𝑃2 (at location 1), she incurs travel cost 𝜏 (𝛽 − 1)2.

Additionally, each consumer has a “favorite variety” of the good 𝑌 ∼ N
(
0, 𝜎2) which

has a data-generating process described in Eq. (??)-(??) and is independent of 𝛽. However,

the consumer does not know 𝑌 . Each platform 𝑃𝑖 observes some data 𝑫𝑖 of dimensions

(𝑛𝑖, 𝑘𝑖), which determines a targeting value 𝑣𝑖 ≥ 0 as per Eq. (4.2).

A representative consumer’s gross utility from buying the good of her favorite variety

is 𝑢 ≥ 0. If she buys from 𝑃𝑖 at price 𝑝𝑖 , her expected mismatch loss is 𝑡 E
[
(𝑌 − 𝑠 (D𝑖))2] ,

where 𝑡 ≥ 0 indicates how “picky” (mismatch-sensitive) consumers are. Hence, the net

utility of purchasing from 𝑃𝑖 is:

𝑈 (𝑝1, 𝑝2) =


𝑢 − 𝑝1 − 𝑡 E

[
(𝑌 − 𝑠 (𝑫1))2] − 𝜏 𝛽2, if buying from 𝑃1,

𝑢 − 𝑝2 − 𝑡 E
[
(𝑌 − 𝑠 (𝑫2))2] − 𝜏 (𝛽 − 1)2, if buying from 𝑃2.

Let 𝐷𝑖 (𝑝𝑖) be the fraction of consumers who choose 𝑃𝑖 . Then 𝑃𝑖 ’s profit is

Π𝑖 (𝑝𝑖) = 𝑝𝑖 𝐷𝑖 (𝑝𝑖) .

We solve for a Nash equilibrium in prices (𝑝1, 𝑝2), taking each platform’s data value (𝑣1, 𝑣2)

as given. Denote the equilibrium profit of 𝑃𝑖 , when each platform’s data value is (𝑣𝑖, 𝑣 𝑗 ), by

Π̂𝑖 (𝑣𝑖, 𝑣 𝑗 ) = Π𝑖
(
𝑝∗𝑖 (𝑣𝑖, 𝑣 𝑗 )

)
.

Proposition #5 (Nash Equilibrium in Prices and Demands). In the interior solution where��𝑣𝑖 − 𝑣 𝑗 �� < 3𝜏
𝑡

, the unique Nash equilibrium in prices is

𝑝∗𝑖 (𝑣𝑖, 𝑣 𝑗 ) = 𝜏 +
𝑡
(
𝑣𝑖 − 𝑣 𝑗

)
3𝜏

,

and the associated market shares are

𝐷𝑖 (𝑣𝑖, 𝑣 𝑗 ) = 1
2 +

𝑡
(
𝑣𝑖 − 𝑣 𝑗

)
6𝜏

.
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Hence, 𝑃𝑖 ’s equilibrium profit is

Π̂𝑖
(
𝑣𝑖, 𝑣 𝑗

)
=

(
𝜏 + 𝑡 (𝑣𝑖−𝑣 𝑗 )

3

)2

2𝜏
.

Proof. A consumer at location 𝛽 chooses 𝑃1 if

𝑢 − 𝑝1 − 𝑡 E
[
(𝑌 − 𝑠 (D1))2] − 𝜏 𝛽2 ≥ 𝑢 − 𝑝2 − 𝑡 E

[
(𝑌 − 𝑠 (D2))2] − 𝜏 (𝛽 − 1)2.

Simplifying yields

𝛽 ≤ 1
2

+ 𝑝2 − 𝑝1 + 𝑡 (𝑣1 − 𝑣2)
2𝜏

.

Hence,

𝐷1(𝑝1, 𝑝2) =
1
2

+ 𝑝2 − 𝑝1 + 𝑡 (𝑣1 − 𝑣2)
2𝜏

.

Each platform maximizes Π𝑖 (𝑝𝑖 ;𝑝 𝑗 ) = 𝑝𝑖 𝐷𝑖 (𝑝𝑖, 𝑝 𝑗 ). The first-order condition gives

𝑝𝑖 (𝑝 𝑗 ) =
𝜏

2
+
𝑝 𝑗 + 𝑡 (𝑣𝑖 − 𝑣 𝑗 )

2
.

Solving simultaneously yields

𝑝∗𝑖 = 𝜏 +
𝑡
(
𝑣𝑖 − 𝑣 𝑗

)
3𝜏

.

Substituting 𝑝∗𝑖 back into 𝐷𝑖 and Π𝑖 yields the expressions in the proposition. The equi-

librium is interior if
��𝑣𝑖 − 𝑣 𝑗

�� < 3𝜏
𝑡

, which guarantees strictly positive demand for both

platforms. □

Proposition (5.6), together with Theorem (3), which establishes that 𝑣𝑖 is increasing in

both dimensions, implies the following result on the strategic behaviour of the platforms in

when collecting data.

Corollary 13. Data collection choices are strategic substitutes,

𝜕2Π̂𝑖
(
𝑣 (𝑛𝑖, 𝑘𝑖), 𝑣 (𝑛 𝑗 , 𝑘 𝑗 )

)
𝜕𝑥𝑖 𝜕𝑦 𝑗

= −
𝑡2𝑣𝑥 (𝑛𝑖, 𝑘𝑖)𝑣𝑦 (𝑛 𝑗 , 𝑘 𝑗 )

9𝜏
< 0,

for 𝑥,𝑦 ∈ {𝑛, 𝑘}.

When one platform invests in more or better data, the other platform’s incentive to invest
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shrinks. If one platform takes the lead in data gathering (thus boosting its targeting quality),

the rival sees less benefit from investing in its own data. This dynamic can create a disparity

in data capabilities rather than both firms investing aggressively. Because the return to the

second investor falls, one platform may end up with a significant advantage in data/targeting

precision. Over time, this can reinforce that platform’s competitive position—especially if

the initial “data lead” snowballs into higher margins and even more data investment. Fur-

thermore, just like in the Cournot equilibrium, total industry data investment may be lower

than if both firms had incentives to match each other’s data expansions. This finding sug-

gests that regulators should be concerned that a platform starting with a data advantage can

entrench its position by deterring rivals’ investment, strengthening the case for scrutinizing

whether initial data advantages can lock out effective competition over time.

Let us now imagine that a new dataset Δ of dimensions 𝑛 and 𝑘 is made available which

we assume contains covariates unobserved by either platform. Let us assume that the indi-

viduals in the dataset are a subset of the users of both platforms, and are identified so that

platforms can perform a merge operations to study the covariates of each individual con-

jointly. How much would each platform be willing to pay for it? This will be the subject

of our next exercise.

6 Applications

In this section, we will apply the model to analyze several scenarios under which data affects

competition between platforms. In the applications, 𝑘 can also represent the sophistication

or capacity of the AI/algorithm that processes the data.

6.1 Contextual Ads

Suppose now that there are 𝐷 data brokers each holding distinct covariates. Each data bro-

ker 𝑑 ∈ 1, ..., 𝐷has data on the same 𝑛𝑍 individuals but comprising 𝑘𝑍
𝑑

distinct covariates

so that the total amount of covariates is 𝑘𝑍 . As 𝑑 has a monopoly on its covariates, it can

achieve a profit of 𝑣 (𝑛, 𝑘
𝐷
) by basing targeting on its own covariates, namely doing con-

textual advertising. However there is an ad tech that can aggregate their data. The outside

option of the data brokers is selling directly and earning 𝑣 (𝑛, 𝑘
𝐷
). Straightforward appli-

cation of Theorem 4 leads to the following definition of the surplus deriving from data
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aggregation:

Definition 2. The Aggregation Surplus of 𝑘 covariates siloed in 𝐷 datasets on 𝑛 observa-

tions is

𝑆 (𝑛, 𝑘, 𝐷) = 𝑣 (𝑛, 𝑘) − 𝐷 𝑣

(
𝑛, 𝑘

𝐷

)
.

The following result analyzes how the value of aggregation depends on the dimensions of

the data and the level of fragmentation 𝐷.

Proposition 7. The Aggregation Surplus 𝑆 (𝑛, 𝑘, 𝐷) is increasing in𝐷 , increasing in 𝑘 , and exhibits

an inverted-U shape in both 𝑛 and 𝑘 .

Proof. First, for a fixed 𝑛 and 𝐷, convexity of 𝑣 (·, ·) in 𝑘 implies that distributing 𝑘 among

many data brokers, each with 𝑘
𝐷

covariates, is (weakly) less efficient than having all 𝑘 co-

variates combined. Formally,

𝜕

𝜕𝑘

[
𝑣 (𝑛, 𝑘) − 𝐷 𝑣

(
𝑛, 𝑘

𝐷

)]
≥ 0,

so 𝑆 (𝑛, 𝑘, 𝐷) is increasing in 𝑘. Similarly, for a fixed 𝑛 and 𝑘, splitting the same total 𝑘 across

more data brokers raises total standalone usage only sub-linearly under the usual convexity

of 𝑣 in its second argument; hence

𝜕

𝜕𝐷

[
𝑣 (𝑛, 𝑘) − 𝐷 𝑣

(
𝑛, 𝑘

𝐷

)]
≥ 0,

so 𝑆 (𝑛, 𝑘, 𝐷) is increasing in 𝐷. To see the inverted-U shape in 𝑛 and 𝑘, note that for small

(𝑛, 𝑘), 𝑣 is supermodular, so increments in 𝑛 increase returns to combining data. How-

ever, once (𝑛, 𝑘) become sufficiently large, 𝑣 switches to submodularity, making further

increments in 𝑛 reduce additional benefits from data combination. This change from su-

permodular to submodular behavior in 𝑣 explains why 𝑆 follows an inverted-U pattern in

both 𝑛. □

Assume now that 𝑃 that bargains bilaterally with each of the data brokers following a

Nash-in-Nash as per Collard-Wexler et al. (2019). We can state the following result:

Proposition 8. For a generic data broker 𝑑 ∈ {1, ..., 𝐷}, the Nash-in-Nash price will solve

max
𝑝

[
𝑣 (𝑛, 𝑘) − 𝑝 − 𝑣

(
𝑛,

(𝐷−1) 𝑘
𝐷

)]𝛾 [
𝑝 − 𝑣

(
𝑛, 𝑘

𝐷

)]1−𝛾
,
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where 𝛾 ∈ [0, 1] is 𝑃 ’s bargaining power. Then the equilibrium price is

𝑝∗(𝑛, 𝑘, 𝐷,𝛾) = 𝛾 𝑣

(
𝑛, 𝑘

𝐷

)
+ (1 − 𝛾)

[
𝑣 (𝑛, 𝑘) − 𝑣

(
𝑛,

(𝐷−1) 𝑘
𝐷

)]
,

which is increasing in 𝑘 and 𝑛 and decreasing in 𝐷 and 𝛾 .

Proof. If 𝑃 obtains all data brokers’ data, it secures 𝑣 (𝑛, 𝑘). If it misses developer 𝑑, it secures

𝑣
(
𝑛,

(𝐷−1) 𝑘
𝐷

)
. Data broker 𝑑 ’s outside option is 𝑣

(
𝑛, 𝑘

𝐷

)
. 𝑃 ’s disagreement point is 𝑣

(
𝑛,

(𝐷−1) 𝑘
𝐷

)
therefore its net surplus if it pays 𝑝 for the data of 𝑑 is

𝑈𝑃 (𝑝) = 𝑣 (𝑛, 𝑘) − 𝑝 − 𝑣

(
𝑛,

(𝐷−1) 𝑘
𝐷

)
.

The disagreement point of 𝑑 is 𝑣
(
𝑛, 𝑘

𝐷

)
her net payoff is

𝑈𝑑 (𝑝) = 𝑝 − 𝑣

(
𝑛, 𝑘

𝐷

)
.

The Nash product is [
𝑈𝑃 (𝑝)

]𝛾 [
𝑈𝑑 (𝑝)

]1−𝛾
.

Taking logs, differentiating with respect to 𝑝, and setting the derivative to zero yields

𝛾
−1

𝑈𝑃 (𝑝)
+ (1 − 𝛾) 1

𝑈𝑑 (𝑝)
= 0.

Rearranging gives

𝛾

[
𝑝 − 𝑣

(
𝑛, 𝑘

𝐷

)]
= (1 − 𝛾)

[
𝑣 (𝑛, 𝑘) − 𝑝 − 𝑣

(
𝑛,

(𝐷−1) 𝑘
𝐷

)]
.

Solving for 𝑝 yields

𝑝∗(𝑛, 𝑘, 𝐷,𝛾) = 𝛾 𝑣

(
𝑛, 𝑘

𝐷

)
+ (1 − 𝛾)

[
𝑣 (𝑛, 𝑘) − 𝑣

(
𝑛,

(𝐷−1) 𝑘
𝐷

)]
.

□

Corollary 14. The total data broker surplus is

𝑅∗(𝑛, 𝑘, 𝐷,𝛾) = 𝐷 · 𝑝∗(𝑛, 𝑘, 𝐷,𝛾),
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which is U-shaped in 𝐷 .

The proft of 𝑃 is

Π∗(𝑛, 𝑘, 𝐷,𝛾) = 𝑣 (𝑛, 𝑘) − 𝑅∗(𝑛, 𝑘, 𝐷,𝛾),

which is inverted U-shaped in 𝐷 , 𝑘 and 𝑛.

Π∗(𝑛, 𝑘, 𝐷,𝛾) ≥ 0 ⇐⇒ 𝛾 ≥ 𝛾 (𝑛, 𝑘, 𝐷) =

𝐷−1
𝐷
𝑣 (𝑛, 𝑘) − 𝑣

(
𝑛,

(𝐷−1) 𝑘
𝐷

)
𝑣 (𝑛, 𝑘) − 𝑣

(
𝑛, 𝑘

𝐷

)
− 𝑣

(
𝑛,

(𝐷−1) 𝑘
𝐷

) ≥ 1
2
.

Proof. From Π∗(𝑛, 𝑘, 𝐷,𝛾) = 𝑣 (𝑛, 𝑘) −𝐷 𝑝∗(𝑛, 𝑘, 𝐷,𝛾), substituting the expression for 𝑝∗ from

Proposition 8 and rearranging the inequality Π∗ ≥ 0 yields

𝛾

[
𝑣

(
𝑛, 𝑘

𝐷

)
+ 𝑣

(
𝑛,

(𝐷−1) 𝑘
𝐷

)
− 𝑣 (𝑛, 𝑘)

]
≥ 𝐷 − 1

𝐷
𝑣 (𝑛, 𝑘) − 𝑣

(
𝑛,

(𝐷−1) 𝑘
𝐷

)
.

Solving for 𝛾 gives 𝛾 (𝑛, 𝑘, 𝐷). □

The function 𝛾 (𝑛, 𝑘, 𝐷) is increasing in 𝑘 and 𝐷, because as more covariates are collected

or data becomes more fragmented, the incremental synergy from combining an additional

piece of data increases (because of convexity), meaning 𝑃 ’s outside option decreases and 𝑑 ’s

outside option increases, pushing up the minimum bargaining power 𝑃 must have in order

to stay profitable. An analogous reasoning explains why 𝛾 (𝑛, 𝑘, 𝐷) is inverted-U shape in

𝑛, for the same reason as in Proposition 7, namely that Π∗ is tied to the incremental surplus

𝑆 (𝑛, 𝑘, 𝐷) and inherits the supermodular-for-small versus submodular-for-large behavior of

𝑣 (𝑛, 𝑘) in its two arguments.

The U-shaped value of aggregation suggests that there is indeed a peak scale at which

the platform can extract he highest marginal value from its aggregation services, a finding

which is analogous to the S-shaped returns suggested in Posner and Weyl (2018) and Tirole

(2020). These findings have several implications for competition policy and antitrust. A

more fragmented upstream data brokerage sector can fundamentally impair innovation by

downstream ad tech platforms.

Proposition 9. As 𝐷 → ∞, the total broker profit tends to
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lim
𝐷→∞

𝑅∗(𝑛, 𝑘, 𝐷,𝛾) = 𝛾 𝑛𝑘

𝑛 + 1
+ (1 − 𝛾) 𝑛𝑘√︁

(𝑛 + 1)2 − 4𝑛𝑘
,

and

lim
𝐷→∞

𝛾 (𝑛, 𝑘, 𝐷) = 1√︃
1 − 4𝑘𝑛

(𝑛+1)2 + 1
.

7 Conclusion

By emphasizing that data alone need not be destiny—and that feature numbermediates the

benefits of data at scale—this paper offers a more nuanced, evidence-based lens for assessing

data’s role in shaping competition and innovation. Our theoretical framework clarifies

when accumulating more data confers unique advantages, when further improvements in

feature numberserve as a partial substitute, and how market dynamics shift as firms evolve

from data scarcity to abundance.

These insights help refine ongoing debates around digital regulation. Policies premised

on “data equals power” may overstate the value of additional observations once a plat-

form has already crossed into a high-𝑛 region. Meanwhile, measures that foster algo-

rithmic innovation—such as supporting AI research or encouraging portability for smaller

data sets—could be pivotal in bolstering competition. The analysis also suggests that data

monopsony can distort data prices or quantities, prompting potential remedies such as col-

lective bargaining rights for users or forced data-sharing arrangements.

Ultimately, the interplay of data scale (𝑛) and feature number(𝑘) dictates whether in-

cumbents preserve an unassailable lead or face renewed competition from more agile, tech-

savvy entrants. Understanding this interplay is crucial for policymakers seeking to balance

innovation incentives with protections against data-driven market power.
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Appendix

The optimal predictor trivially corresponds to the posterior mean:

𝑦∗𝑛 = E𝑌
[
𝑌

��𝑥, (𝒙,𝒚)𝑛] .
The value of information is therefore the reduction of posterior variance of 𝒚𝑚 which is

characterized in the following result.

Lemma 3. The Value of Information of (𝒙,𝒚)𝑛 for a decision maker observing covariates 𝑥 is given

by:

VoI(𝒙,𝒚)𝑛 (𝑥) =
𝑥2

1 + 𝜎2
𝜀 (𝑆 ;𝜎2)∑𝑛
𝑖=1 𝑥

2
𝑖

.

7

Proof. The optimal prior predictor (before observing data) is:

𝑦 = 0

with mean squared error (MSE):

E[(𝑦0 − 𝑦)2 | 𝑥] = 𝑥 + 𝜎2
𝜖

After observing 𝑛 data points, the platform forms an estimate 𝛽𝑛. The posterior variance

of 𝛽 is given by precision weighting:

𝜎2

V(𝛽 | 𝑦1, . . . , 𝑦𝑛, 𝑥1, . . . , 𝑥𝑛)
= 1 +

∑𝑛
𝑖=1 𝑥

2
𝑖

𝜎2
𝜖

The posterior prediction for 𝑦 given 𝑥 is:

𝑦𝑛 = E[𝑦 | 𝑥, data] = 𝑥 · E[𝛽 | data]
7Observe that the vector of target variables 𝑦 does not affect the VoI. The reason is that 𝑦 gives information

about where 𝛽 is (the location/mean), but not about the precision of that estimate once the 𝑥 ’s are fixed. Once
you condition on 𝑥 , 𝑦 doesn’t change how "spread out" your posterior beliefs about 𝛽 — it just shifts the mean.
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The corresponding posterior MSE is:

E[(𝑦0 − 𝑦𝑛)2 | 𝑥] = 𝑥 · V(𝛽 | data) + 𝜎2
𝜖

The value of information is then:

VoI𝑛 (𝑥) = 𝜎2𝑥 + 𝜎2
𝜖 −

(
𝑥 · V(𝛽 | data) + 𝜎2

𝜖

)
which simplifies to:

VoI𝑛 (𝑥) = 𝑥 ·
(
𝜎2 − V(𝛽 | data)

)
Substituting the expression for V(𝛽 | data),

VoI𝑛 (𝑥) = 𝜎2𝑥 ·
(
1 −

(
1 +

∑𝑛
𝑖=1 𝑥

2
𝑖

𝜎2
𝜖

)−1)
This completes the proof. □

Theorem 7. The expected Value of Information for large 𝑛 for technological level 𝑥 is:

E{𝑥𝑖 }𝑛𝑖=0
[VoI𝑛 (𝑥)] ∼ 𝑣 (𝑘, 𝑛) =

𝑘𝜎2

1 +
1
𝑘
−1
𝑛

Proof. It is sufficient to observe E
[∑𝑛

𝑖=1 𝑥
2
𝑖

]
= 𝑛 · 𝑆 , using the LLN we can put this into the

formula

lim
𝑛→∞

VoI𝑛,𝑘 (𝑥) = 𝜎2𝑘 ·
(
1 − 1

1 + 𝑛 · 𝑘
1−𝑘

)
then we take the expectation E𝑥 = 𝑆 and we are done. □

Proposition 10. Let 𝑫 ≡
(
𝒙, (𝒚,𝑿 )

)
be the data described above. Then the posterior distribution

of 𝑌 | 𝑫 is

𝑌
��𝑫 ∼ N

(
𝑠∗(𝑫), V

[
𝑠∗(𝑫)

]
+ 𝜎2 (1 − 𝑘 ) ),

where

𝑠∗(𝑫) = 𝒙′ E
[
𝜷𝑥

�� (𝒚,𝑿 )
]
, V

[
𝑠∗(𝑫)

]
= 𝒙′V

[
𝜷𝑥

�� (𝒚,𝑿 )
]
𝒙 .
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Proof. Recall that 𝒛𝑖 =
©­­«
𝒙𝑖

𝒖𝑖

ª®®¬ and 𝜷 =
©­­«
𝜷𝑥

𝜷𝑢

ª®®¬ so that for the individual of interest,

𝑌 = 𝒛′𝜷 = 𝒙′𝜷𝑥 + 𝒖′𝜷𝑢 .

Since we observe only the “observed” covariates 𝒙 (but not the “unobserved” part 𝒖), we

decompose the posterior distribution of 𝑌 using:

𝑌 = 𝒙′𝜷𝑥︸︷︷︸
term (A)

+ 𝒖′𝜷𝑢︸︷︷︸
term (B)

.

Term (A). The data set
(
𝒚,𝑿

)
(with 𝑿 partitioned analogously into its 𝒙𝑖 parts) identifies

the posterior distribution of 𝜷𝑥 . Because prior and likelihood are both Gaussian (and 𝒙 is

independent of 𝒖), standard Bayesian linear regression results imply:

𝜷𝑥
�� (𝒚,𝑿 ) ∼ N

(
E
[
𝜷𝑥

�� (𝒚,𝑿 )
]
, V

[
𝜷𝑥

�� (𝒚,𝑿 )
] )
.

Hence, the random variable 𝒙′𝜷𝑥 | (𝒚,𝑿 , 𝒙) is normally distributed with mean 𝒙′ E[𝜷𝑥 |

(𝒚,𝑿 )] and variance 𝒙′V[𝜷𝑥 | (𝒚,𝑿 )]𝒙.

Term (B). Because the unobserved 𝒖 and its associated coefficients 𝜷𝑢 are independent

of 𝒙 (and not identified by the data), the posterior for 𝜷𝑢 remains the same as its prior

N(0, 𝜎2I), and 𝒖 itself is also independent (with mean 0). Thus, the contribution 𝒖′𝜷𝑢 still

has mean 0 and variance 𝜎2(1 − 𝑘) (the factor 1 − 𝑘 reflects that 𝒖 is a (1 − 𝑘)𝑍-dimensional

subvector of 𝒛, whose total variance of 𝒛′𝜷 was 𝜎2).

Since term (A) and term (B) are independent Gaussian random variables, their sum is

Gaussian with mean equal to the sum of means and variance equal to the sum of variances.

Hence,

𝑌
��𝑫 =

(
𝒙′𝜷𝑥 + 𝒖′𝜷𝑢

) �� (𝒙, (𝒚,𝑿 )) ∼ N
(
𝒙′ E

[
𝜷𝑥

�� (𝒚,𝑿 )
]
, 𝒙′V

[
𝜷𝑥

�� (𝒚,𝑿 )
]
𝒙 + 𝜎2(1 − 𝑘)

)
.

Equivalently, letting

𝑠∗(𝑫) ≡ 𝒙′ E
[
𝜷𝑥

�� (𝒚,𝑿 )
]
, V

[
𝑠∗(𝑫)

]
≡ 𝒙′V

[
𝜷𝑥

�� (𝒚,𝑿 )
]
𝒙,
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we obtain the stated normal distribution:

𝑌
��𝑫 ∼ N

(
𝑠∗(𝑫), V

[
𝑠∗(𝑫)

]
+ 𝜎2(1 − 𝑘)

)
.

□

Proposition 11. The posterior distribution of 𝜷𝑥 | (𝒚,𝑿 )is

𝜷𝑥 | (𝒚,𝑿 ) ∼ N
(
(1 − 𝑘 + 𝑿 ′𝑿 )−1 𝑿 ′𝒚, 𝜎2

(
1 + 1

1 − 𝑘 · 𝑿 ′𝑿

)−1
)
.

We base our proof on the classic treatment by DeGroot (2005) , generalized to allow

an endogenous noise term. We can rewrite the DGP as 𝑦 = 𝒙′𝜷𝑥 + 𝜀 where 𝜀 ≡ 𝒖′𝜷𝑢 ∼

N(0, (1 −𝑉 (𝑥))). Hence, the likelihood is

𝑦 |𝜷𝑥 ∼ N (𝒙′𝜷𝑥 , (1 −𝑉 (𝑥))) .

Hence, using the Bayes rule, we express the posterior as a function of the prior 𝑝 (𝜷𝑥 ), the

likelihood L (𝒚 |𝑿 , 𝜷𝑥 ) and the evidence 𝑝 (𝒚 |𝑿 ):

𝑝 (𝜷𝑥 |𝑿 ,𝒚) =
L (𝒚 |𝑿 , 𝜷𝑥 )𝑝 (𝜷𝑥 )

𝑝 (𝒚 |𝑿 ) , (7.1)

where the prior and the likelihood are known to be Gaussians:

𝑝 (𝜷𝑥 ) =
√︂

1
2𝜋tr(𝑽𝑥 )

𝑒−
𝜷′𝑥𝑽𝑥 𝜷𝑥

2 , (7.2)

L (𝒚 |𝑿 , 𝜷𝑥 ) =
(

1
2𝜋 (1 −𝑉 (𝑥))

) 𝑁
2

𝑒
− (𝒚−𝑿𝜷𝑥 )′ (𝒚−𝑿𝜷𝑥 )

2(1−𝑉 (𝑥 ) ) . (7.3)

As we are interested in computing the posterior of 𝜷𝑥 , we want to isolate the terms in the

product of Eq. (7.2) and (7.3) that depend on it. Define the Maximum Likelihood Estimator

implicitly as 𝜷𝑥 , to avoid invertibility issues, as𝑿 ′𝑿𝜷𝑥 = 𝑿 ′𝒚. We can rewrite the numerator

of the exponent of the exponential in (7.3) as

(𝒚 − 𝑿𝜷𝑥 )′ (𝒚 − 𝑿𝜷𝑥 ) = 𝒚′𝒚 + (𝜷𝑥 − 𝜷𝑥 )′𝑿 ′𝑿 (𝜷𝑥 − 𝜷𝑥 ) − 𝜷𝑥
′𝑿 ′𝑿𝜷𝑥

∝ (𝜷𝑥 − 𝜷𝑥 )′𝑿 ′𝑿 (𝜷𝑥 − 𝜷𝑥 ),
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given that we only care about the terms that depend on 𝜷𝑥 . We can therefore rewrite the

part of the product of Eq. (7.2) and (7.3) which depends on 𝜷𝑥 as

𝜷 ′
𝑥𝑽𝑥𝜷𝑥 +

(𝜷𝑥 − 𝜷𝑥 )′𝑿 ′𝑿 (𝜷𝑥 − 𝜷𝑥 )
(1 −𝑉 (𝑥)) .

define a ridge estimator as

�̂�𝑥 =
(
(1 −𝑉 (𝑥)) · 𝑽−1

𝑥 + 𝑿 ′𝑿
)−1

𝑿 ′𝑿𝜷𝑥 .

We now want to isolate the term depending on 𝜷𝑥 to find the posterior

(𝜷𝑥 − �̂�𝑥 )′
(
𝑽−1
𝑥 + 1

(1 −𝑉 (𝑥)) · 𝑿
′𝑿

)
(𝜷𝑥 − �̂�𝑥 ) +

�̃� ′
𝑥𝑿

′𝑿�̃�𝑥
(1 −𝑉 (𝑥)) − �̂� ′

𝑥

(
𝑽−1
𝑥 + 1

(1 −𝑉 (𝑥)) · 𝑿
′𝑿

)
�̂�𝑥 .

Therefore,

𝜋 (𝜷𝑥 |𝒚) ∝ exp
{
−𝜎

2

2
(𝜷𝑥 − �̂�𝑥 )′

(
𝑽−1
𝑥 + 1

(1 −𝑉 (𝑥)) · 𝑿
′𝑿

)
(𝜷𝑥 − �̂�𝑥 )

}
.

We can deduce

𝜷𝑥 |𝒚,𝑿 ∼ N
(
�̂�𝑥 , 𝜎

2 ·
(
𝑽−1
𝑥 + 1

(1 −𝑉 (𝑥)) · 𝑿
′𝑿

)−1
)
.

Corollary 15. The estimator 𝒕𝑥 (𝒚,𝑿 ) is the unique solution to the optimization problem

min
𝒕𝑥

∥𝒚 − 𝑿𝒕𝑥 ∥2
2 + (1 −𝑉𝑍 (𝑥))

𝑘𝑍∑︁
𝑗=1

𝑡2
𝑗

𝑣

(
𝑗

𝑍

)  . (7.4)

Proof. We prove this by explicitly solving the optimization problem and showing that the

resulting estimator matches the Bayesian posterior mean derived in Proposition 2.

The given optimization problem is a ridge regression problem with a weighted penalty.

The objective function to minimize is:

𝐿(𝒕𝑥 ) = ∥𝒚 − 𝑿𝒕𝑥 ∥2
2 + (1 −𝑉𝑍 (𝑥))

𝑘𝑍∑︁
𝑗=1

𝑡2
𝑗

𝑣

(
𝑗

𝑍

) . (7.5)

To find the optimal solution, we differentiate 𝐿(𝒕𝑥 ) with respect to 𝒕𝑥 and set the deriva-
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tive to zero:
𝜕𝐿

𝜕𝒕𝑥
= −2𝑿 ′(𝒚 − 𝑿𝒕𝑥 ) + 21 −𝑉𝑍 (𝑥)𝑽−1

𝑥 𝒕𝑥 = 0. (7.6)

Rearranging, we obtain the normal equation:

(𝑿 ′𝑿 + (1 −𝑉𝑍 (𝑥)) · 𝑽−1
𝑥 )𝒕𝑥 = 𝑿 ′𝒚. (7.7)

Solving for 𝒕𝑥 yields:

𝒕∗𝑥 (𝒚,𝑿 ) = (𝑿 ′𝑿 + (1 −𝑉𝑍 (𝑥)) · 𝑽−1
𝑥 )−1𝑿 ′𝒚, (7.8)

which matches the Bayesian posterior mean of 𝜷𝑥 From Proposition 2. This completes

the proof. □

Proposition 12. The following convergence holds as 𝑍 → ∞

V [𝑠∗(𝑫)] →
𝜎2
𝑘

2
©­«𝑘 ©­«2 − 𝑛

𝑘
−

√︄(
𝑛 + 1
𝑘

)2
− 4𝑛
𝑘

ª®¬ − 1ª®¬ .
Concentration for Quadratic Forms

We start with the following proposition from Boucheron et al. ?, Example 2.12:

Proposition. Let 𝑥1, . . . , 𝑥𝑘𝑍 be 𝑘𝑍 independent, zero-mean normal random variables with E[ 𝑥2
𝑗 ] =

1
𝑍

for 𝑗 = 1, . . . , 𝑘𝑍 . For any matrix 𝑨 ∈ R𝑘𝑍×𝑘𝑍 and any 𝜉 > 0,

P
(
𝒙′𝑨𝒙 − E[𝒙′𝑨𝒙] > 2

𝑍

(
∥𝑨∥𝐻𝑆

√︁
𝜉 + ∥𝑨∥2

2 𝜉
))

≤ 𝑒−𝜉 .

This result tells us that, conditionally on𝑨, the quadratic form 𝒙′𝑨𝒙 concentrates sharply

about its meanE
[
𝒙′𝑨𝒙

]
. In our setting, 𝒙 is a Gaussian vector of dimension𝑘𝑍 with variance

E[ 𝑥2
𝑗 ] = 1/𝑍 , and

𝑨 ≡ V
[
𝜷𝑥

�� (𝒚,𝑿 )
]
.

By conditioning on 𝑿 and applying the above proposition, one obtains that

𝒙′V
[
𝜷𝑥 | (𝒚,𝑿 )

]
𝒙

𝑝
−→ E

[
𝒙′V

[
𝜷𝑥 | (𝒚,𝑿 )

]
𝒙
]

as 𝑍 → ∞.

That is, we may replace the random quadratic form with its conditional (hence also uncon-
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ditional) expectation as 𝑍 grows large.

Rewriting the Variance as a Trace and Inverting

It is a well-known property of quadratic forms that for any vector 𝒘 (with mean 𝝁 and

covariance 𝛀) and any matrix 𝚲,

E
[
𝒘𝑇𝚲𝒘

]
= tr

[
𝚲𝛀

]
+ 𝝁𝑇 𝚲 𝝁 .

Since 𝒙 is zero-mean and independent of 𝑿 , the second term vanishes, and we simply get

E
[
𝒙′V

[
𝜷𝑥 | (𝒚,𝑿 )

]
𝒙
]
= tr

[
V

[
𝜷𝑥 | (𝒚,𝑿 )

]
Cov(𝒙)

]
.

But by construction, Cov(𝒙) = 1
𝑍
I𝑘𝑍 . Hence

𝒙′V
[
𝜷𝑥 | (𝒚,𝑿 )

]
𝒙 =

1
𝑍

tr
[
V

[
𝜷𝑥 | (𝒚,𝑿 )

] ]
.

Therefore,
1
𝑍

tr
[
V

[
𝜷𝑥 | (𝒚,𝑿 )

] ]
. (7.9)

By Proposition 1, we know that

V
[
𝜷𝑥 | (𝒚,𝑿 )

]
= 𝜎2 ·

(
𝑽−1
𝑥 + 1

1−𝑉𝑍 (𝑥) 𝑿
′𝑿

)−1
.

Hence the quantity in (7.9) is

𝜎2

𝑍
tr

[(
𝑽−1
𝑥 + 1

1−𝑉𝑍 (𝑥) 𝑿
′𝑿

)−1]
.

We factor out 1−𝑉𝑍 (𝑥)
𝑛

from the inverse, yielding

1 −𝑉𝑍 (𝑥)𝜎2

𝑛𝑍
tr
[(

1−𝑉𝑍 (𝑥)
𝑛

𝑽−1
𝑥 + 1

𝑛
𝑿 ′𝑿

)−1]
.

Note that the emprical varianec copvariacne matrix Σ̂ ≡ 1
𝑛𝑍

𝑿 ′𝑿 , so 1
𝑛
𝑿 ′𝑿 = 𝑍 Σ̂ is the

standardized empirical variance covariance matrix whose expectation is the identity matrix

𝑰𝑘𝑍 .
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7.1 Spectral Decomposition

Denote by 𝜆1, . . . , 𝜆𝑘𝑍 the eigenvalues of 1
𝑛
𝑿 ′𝑿 . Since the prior 𝜷𝑥 has diagonal covariance 𝑽𝑥

with diagonal entries 𝑓 , one finds that

𝑽−1
𝑥 is diagonal with

[
𝑓
]−1 on the diagonal.

Hence, in block form, (
1−𝑉𝑍 (𝑥)

𝑛
· 𝑽−1

𝑥 + 1
𝑛
𝑿 ′𝑿

)−1

leads to terms of the form
1

1−𝑉𝑍 (𝑥)
𝑛𝑣

(
𝑗

𝑍

) + 𝜆 𝑗

.

Thus, we can write
𝑉𝑍 (𝑥)
𝑛𝑍

𝑘𝑍∑︁
𝑗=1

1
1−𝑉𝑍 (𝑥)
𝑛𝑣

(
𝑗

𝑍

) + 𝜆 𝑗
.

Decoupling the index 𝑗 from the eigenvalues 𝜆 𝑗

The subtlety is that we have
𝑘𝑍∑︁
𝑗=1

1
1−𝑉𝑍 (𝑥)
𝑛𝑣

(
𝑗

𝑍

) + 𝜆 𝑗
,

which might appear to couple the index 𝑗 (which specifies 𝑣) with the 𝑗th eigenvalue 𝜆 𝑗 .

However, in i.i.d. Gaussian designs, the 𝑘𝑍 eigenvalues are exchangeable, so there is no fun-

damental pairing of coordinate 𝑗 with eigenvalue 𝜆 𝑗 . A permutation argument, together

with continuity bounds on 𝑣 (·), shows that any re–labeling 𝜆𝜋 (1), . . . , 𝜆𝜋 (𝑘𝑍 ) yields the same

asymptotic distribution. Therefore we can treat
{
𝑣

(
𝑗

𝑍

)}
and {𝜆 𝑗 } “independently” in the

large limit.

More precisely, one shows by bounding that, for suitable permutation 𝜋 ,

𝑘𝑍∑︁
𝑗=1

1
1−𝑉𝑍 (𝑥)
𝑛𝑣

(
𝑗

𝑍

) + 𝜆( 𝑗)
−

𝑘𝑍∑︁
𝑗=1

1
1−𝑉𝑍 (𝑥)
𝑛𝑣

(
𝑗

𝑍

) + 𝜆𝜋 ( 𝑗)

𝑝
−−−−→
𝑍→∞

0,

where 𝜆( 𝑗) denotes the 𝑗th ordered eigenvalue. Hence we can “separate” 𝑗 from 𝜆 𝑗 in the

large–𝑍 limit.
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Double integral limit

As a consequence, the normalized sum

1
𝑘𝑍

𝑘𝑍∑︁
𝑗=1

1
1−𝑉𝑍 (𝑥)
𝑛𝑣

(
𝑗

𝑍

) + 𝜆 𝑗

becomes a two–dimensional Riemann sum in the variables
(
𝑡 =

𝑗

𝑍
, 𝜆 𝑗

)
, where 𝑡 ∈ [0, 𝑥]

(via uniform partition as 𝑗 runs 1, . . . , 𝑘𝑍 ) and 𝜆 𝑗 are distributed according to 𝐺 1
𝑛
𝑿 ′𝑿

, the

standardized empirical spectral distribution (SESD) of 1
𝑛
𝑿 ′𝑿 . By the MP convergence and

bounded convergence arguments, we obtain

1
𝑘𝑍

𝑘𝑍∑︁
𝑗=1

1
1−𝑉𝑍 (𝑥)
𝑛𝑣

(
𝑗

𝑍

) + 𝜆 𝑗
−−−−→
𝑍→∞

∫ 𝑥

0


∫ ∞

0

𝑑𝐺 1
𝑛
𝑿 ′𝑿

(𝜆)
1−𝑉 (𝑥)
𝑛𝑣 (𝑡) + 𝜆


𝑑𝑡

𝑥
=

∫ ∞

0

∫ 𝑥

0

1
1−𝑉 (𝑥)
𝑛𝑣 (𝑡) + 𝜆

𝑑𝑡

𝑥
𝑑𝐺 1

𝑛
𝑿 ′𝑿

(𝜆).

Multiplying by the appropriate factor 1−𝑉𝑍 (𝑥)
𝑛𝑍

·𝑘𝑍 yields exactly the final limit for the trace.

Using1 −𝑉𝑍 (𝑥) → (1 −𝑉 (𝑥)) that establishes

𝜎2

𝑍
tr
[(
𝑽−1
𝑥 + 1

1−𝑉𝑍 (𝑥) 𝑿
′𝑿

)−1]
−−−−→
𝑍→∞

(1 −𝑉 (𝑥)) 𝜎2

𝑛

∫ 𝑥

0


∫ ∞

0

𝑑𝐺 1
𝑛
𝑿 ′𝑿

(𝜆)
(1−𝑉 (𝑥))
𝑛𝑣 (𝑡) + 𝜆

 𝑑𝑡
which can be simplified to

(1 −𝑉 (𝑥))
𝑛

∫ 𝑥

0
𝑚𝐺 1

𝑛𝑿 ′𝑿

(
− (1−𝑉 (𝑥))

𝑛𝑣 (𝑡)

)
𝑑𝑡

where𝑚𝐺 1
𝑛𝑿 ′𝑿

(𝑧) is the Stieltjes transform of the SESD. Now we can use the following classic

result which is a reformulation of Marčenko and Pastur (1967) and Bai and Silverstein (2009)

found in Tibshirani (2023). The SESD 1
𝑛
𝑿 ′𝑿 is the empirical covariance matrix of a i.i.d.

standard normal matrix 𝑾 =
√
𝑍 · 𝑿 as 1

𝑛𝑍
𝑾 ′𝑾 = 1

𝑛
𝑿 ′𝑿 . Therefore 𝑚𝐺 1

𝑛𝑿 ′𝑿
is the same as

𝑚𝐺 1
𝑛𝑍

𝑾 ′𝑾
, which is governed by a Marchenko Pastur law.

Theorem. Let {W𝑛}𝑛≥1 be a sequence of random matrices, where

W𝑛 ∈ R𝑛×𝑥
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has i.i.d. entries𝑊 (𝑛)
𝑖 𝑗

∼ N(0, 1) (mean 0, variance 1). Suppose

lim
𝑛→∞

𝑥

𝑛
= 𝛾 ∈ (0,∞).

Consider the sample covariance matrix

1
𝑛
W′

𝑛W𝑛 ∈ R𝑘×𝑘 .

For each 𝑛, let𝐺𝑛 be its empirical spectral distribution (ESD), i.e. the probability distribution that

places mass 1
𝑥

at each of the 𝑥 eigenvalues of 1
𝑛
W′

𝑛W𝑛 .

Then, as 𝑛 → ∞, the ESD 𝐺𝑛 converges weakly (almost surely) to the Marchenko–Pastur

distribution 𝐹MP,𝛾 with parameter 𝛾 . The limit distribution 𝐹MP,𝛾 is supported on

[
𝜆−, 𝜆+

]
=

[
(1 − √

𝛾)2, (1 + √
𝛾)2]

and has density

𝑓MP,𝛾 (𝜆) =
1

2𝜋 𝛾 𝜆
√︁
(𝜆+ − 𝜆) (𝜆 − 𝜆−) 1[𝜆−, 𝜆+](𝜆).

Equivalently, its Stieltjes transform𝑚MP,𝛾 (𝑧) satisfies the well-known functional equation

− 1
𝑚MP,𝛾 (𝑧)

= 𝑧 − 𝛾

1 +𝑚MP,𝛾 (𝑧)
.

The theorem essentially says that the spectral bulk of 1
𝑛
W′

𝑛W𝑛 concentrates near the MP

curve, whose support length grows with 𝛾 . Therefore, the value of data is

𝜎2
[
𝑣 (𝑥) − (1 −𝑉 (𝑥))

𝑛

∫ 𝑥

0
𝑚𝐺 1

𝑛𝑿 ′𝑿

(
− (1−𝑉 (𝑥))

𝑛𝑣 (𝑡)

)
𝑑𝑡

]
= 𝜎2

∫ 𝑥

0
𝑣 (𝑡)

[
1 − (1 −𝑉 (𝑥))

𝑛𝑣 (𝑡) 𝑚𝑀𝑃,𝛾

(
− (1−𝑉 (𝑥))

𝑛𝑣 (𝑡)

)]
𝑑𝑡

where

𝑚𝑀𝑃,𝛾 (𝑧) =
𝛾 +

√︁
𝛾2 − 2𝛾 (𝑧 + 1) + (𝑧 − 1)2 − 𝑧 − 1

2𝑧
.

𝑚𝐺 1
𝑛𝑿 ′𝑿

(𝑡) 𝑑→𝑚(𝑡)
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This limiting distribution can be identified with its Stieltjes transform 𝑚𝐹 , which can be

described as follows:

𝑚𝐹 (𝑡) + 1
𝑧

=
𝑛

𝑥

(
𝑣𝐺 (𝑡) + 1

𝑡

)
, (7.10)

where 𝑣𝐺 (𝑧) is the unique solution of the nonlinear equation:

− 1
𝑣𝐺 (𝑡)

= 𝑡 − 𝑥/𝑛
1 + 𝑣𝐺 (𝑡)

. (7.11)

In our application 𝛾 = 𝑥
𝑛
,and 𝐻 (𝑠) = 𝛿

( 1
𝑍

)
where 𝛿 (·) is the Dirac delta function. There-

fore

− 1
𝑣𝐺 (𝑧)

= 𝑧 − 𝛾

𝑍 + 𝑣𝐺 (𝑧)
.

𝑣 (𝑛, 𝑥) =
∫ 𝑥

0

𝑣 (𝑡)
𝑥

©­­­­«
1 −

√√√√√1 − 4𝑛𝑥(
𝑛 + 1−

∫ 𝑥

0 𝑣 (𝑠)𝑑𝑠
𝑣 (𝑡) + 𝑥

)2

ª®®®®¬
(
𝑛 +

1 −
∫ 𝑥

0 𝑣 (𝑠)𝑑𝑠
𝑣 (𝑡) + 𝑥

)
𝑑𝑡

Variational Bayes

We will here show that analogous results can be derive using a differnet approach under

which the decision make chooses a posterior satisfying certain conditions (variational Bayes

approach). Assume we have a parameter space 𝚯 = R𝑍 and a prior 𝑝 ∈ Δ(𝚯). Let D =

R𝑛𝐾 (1+𝑥𝐾) be the set of possible signal realizations (training datasets). We denote by L (𝑫 |

𝜷) the likelihood of data 𝑫 ∈ D given 𝜷 ∈ 𝚯. Suppose the agent’s posterior belief upon

observing 𝑫 is 𝑞𝑫 ∈ Δ(𝚯). Standard Bayesian updating says:

𝑞𝑫 (𝜷) =
L (𝑫 | 𝜷) 𝑝 (𝜷)∑

𝜷 ′∈𝚯 L (𝑫 | 𝜷 ′) 𝑝 (𝜷 ′) .

Recall the Kullback-Leibler (KL) divergence

𝐷 (𝑞 ∥ 𝑝) =
∑︁
𝜷∈𝚯

𝑞(𝜷) ln
𝑞(𝜷)
𝑝 (𝜷) ,

which is always nonnegative. A well-known variational characterization of Bayesian up-
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dating is:

arg min
𝑞∈Δ(𝚯)

{
𝐷 (𝑞 ∥ 𝑝) −

∑︁
𝜷∈𝚯

𝑞(𝜷) ln L (𝑫 | 𝜷)
}

= (Bayes rule solution).

In other words, the posterior 𝑞 solves

min
𝑞∈Δ(𝚯)

𝐷 (𝑞 ∥ 𝑝) −
∑︁
𝜷∈𝚯

𝑞(𝜷) ln L (𝑫 | 𝜷).

7.1.1 Revisiting the Benchmark

Recall that

𝑫 = (𝑿 ,𝒚),

where 𝒚 ∈ R𝑛𝑍 and 𝑿 ∈ R𝑛×(𝑘𝑍 ) .

Proposition 13. The posterior distribution of 𝜷 |𝑫 characterized in Proposition 1 is the solution

to

min
𝑞∈Δ(𝚯)

𝐷 (𝑞 ∥ 𝑝) + 1
(1 −𝑉 (𝑥))

∑︁
𝜷∈𝚯

𝑞(𝜷) (𝒚 − 𝑿 𝜷𝑥 )′(𝒚 − 𝑿 𝜷𝑥 )
2

.

Proof. The likelihood factorizes as:

L (𝑫 | 𝜷) ≡ L (𝒚 | 𝑿 , 𝜷𝑥 ) 𝑝 (𝑿 ),

using the assumption 𝑿 ⊥ 𝜷𝑥 . Because 𝑝 (𝑿 ) does not depend on 𝑞(·), the Bayesian update

is equivalently given by

min
𝑞∈Δ(𝚯)

𝐷 (𝑞 ∥ 𝑝) −
∑︁
𝜷∈𝚯

𝑞(𝜷) ln L
(
𝒚 | 𝑿 , 𝜷𝑥

)
.

If the likelihood is Gaussian with variance (1 −𝑉 (𝑥)), namely

L
(
𝒚 | 𝑿 , 𝜷𝑥

)
=

(√︃
1

2𝜋 (1−𝑉 (𝑥))

)𝑛𝑍
exp

(
− (𝒚−𝑿 𝜷𝑥 )′ (𝒚−𝑿 𝜷𝑥 )

2 (1−𝑉 (𝑥))

)
,
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then up to constants independent of 𝑞, the objective becomes

min
𝑞∈Δ(𝚯)

𝐷 (𝑞 ∥ 𝑝) + 1
1 −𝑉 (𝑥)

∑︁
𝜷∈𝚯

𝑞(𝜷) (𝒚 − 𝑿 𝜷𝑥 )′(𝒚 − 𝑿 𝜷𝑥 )
2

.

□

Now suppose the agent relies on a different prior described by CVDF𝐺 (·). We will say

that the agent behaves more confidently compared to 𝐹 (·) at 𝑥 if and only if 𝐺 (𝑥) ≥ 𝑣 (𝑥).

Therefore if 𝑥 covariates are collected the neglected variance is (1 −𝐺 (𝑥)). The agent’s

update is thus given by minimizing:

min
𝑞𝑤∈Δ(𝚯)

𝐷 (𝑞𝑤 ∥ 𝑝) + 𝜆

(1 −𝐺 (𝑥))
∑︁
𝜷∈𝚯

𝑞𝑤 (𝜷)
(
𝒚 − 𝑿 𝜷𝑥

)′ (
𝒚 − 𝑿 𝜷𝑥

)
2

, (7.12)

where 𝜆 is a “misspecification penalty” that weights the agent’s empirical term. The fol-

lowing proposition highlights that there is a clean interpretation of Proposition 13.

Corollary 16. The solution to Problem 7.12 satisifies

𝑞𝑤 ∝ 𝑝 (𝜷) [𝑓 ((𝒘,𝑿 ) |𝜷)]𝜆 .

Therefore 𝜆 can be interperted as a parameter which weighs the reliance on the data to

account for misspecification.

Proposition 14. A decision maker with prior CDF 𝐺 (·) will have the posterior characterized in

Proposition 1 if and only if

𝜆∗(𝑥) ≡ 1 −𝐺 (𝑥)
1 −𝑉 (𝑥) .

Consider an agent updating their belief about a prediction problem based on an alter-

native prior 𝐺 (·), which differs from the original prior 𝐹 (·). The key result states that the

relative weight placed on empirical data versus prior beliefs is given by 𝜆∗(𝑥) = 1−𝐺 (𝑥)
1−𝑉 (𝑥) . If

𝐺 (𝑥) < 𝑉 (𝑥), then 𝜆∗(𝑥) > 1, meaning the agent discounts the prior more and relies more

on empirical observations due to a greater perceived level of uncertainty. Conversely, if

𝐺 (𝑥) > 𝑉 (𝑥), then 𝜆∗(𝑥) < 1, indicating the agent places more trust in their prior and

behaves more confidently. This formulation suggests that different initial beliefs can lead to
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identical posterior distributions if the updating process adjusts for the prior’s misspecifica-

tion, making it difficult to distinguish between Bayesian and non-Bayesian learning solely

based on observed updates. This formulation highlights a key source of observational equiv-

alence: an econometrician observing only the agent’s posterior inference may be unable to

distinguish whether deviations from standard Bayesian updating stem from prior hetero-

geneity or from a non-Bayesian adjustment rule that corrects for model misspecification.

We define the elastivicty of residual variance 𝐻 (·) at covariate 𝑥 as

𝜀𝐻 (𝑥) = |𝑥ℎ(𝑥)
𝐻 (𝑥)

|,

which captures the percentage decrease in unexplained variance in response to a per-

centage increase in the fraction of covariates observed. Essentially this measure captures

how rapidly uncertainty shrinks as they observe more data, i.e. how diminishing she ex-

pects the returns to new covariates to be. If 𝜀𝐺 (𝑥) ≥ 𝜀𝑉 (𝑥),a marginal increase in the amount

of data observed 𝑥 will increase the level of overconfidence of 𝐺 (·) relative to 𝑉 (·).

Corollary 17. 𝜆∗(𝑥) is increasing in 𝑥 if and only if 𝜀𝐺 (𝑥) ≥ 𝜀𝑉 (𝑥).

If 𝜀𝐺 (𝑥) ≥ 𝜀𝑉 (𝑥), then 𝜆∗(𝑥) is increasing in 𝑥 , meaning the discrepancy in confidence

between the two priors grows as more data is observed. This implies that if an agent with

𝐺 (·) becomes more overconfident relative to 𝑉 (·) as they observe additional covariates, the

penalty needed to align their inference with a standard Bayesian approach must increase.

In practice, this means that an agent relying on a miscalibrated prior may appear to increas-

ingly deviate from Bayesian updating as their dataset expands.

These results highlight that observed deviations from standard Bayesian learning can

emerge due to prior misspecification rather than fundamentally different learning processes.

If an agent’s prior systematically underestimates or overestimates uncertainty, their updates

may compensate in a way that mimics alternative updating rules. Furthermore, as more

covariates are observed, the elasticity of residual variance determines whether the agent’s

level of confidence relative to a standard Bayesian increases or decreases. This is crucial

in settings where an econometrician aims to infer the nature of an agent’s belief system,

as differences in observed behavior may stem from adjustments to model misspecification

rather than intrinsic deviations from Bayesian rationality.

Proposition 15. There exists a unique threshold Δ∗(𝛿, 𝑛,𝐴) ≥ 0 such that 𝐸 enters and sells for
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both periods if and only if Δ ≥ Δreentry(𝐴). Especially,

Δ∗(𝛿, 𝑛,𝐴) ≡ 𝑉 (𝑛,𝐴) + 𝛿 (𝑉 (𝑛 + 1, 𝐴) −𝑉 (1, 𝐴))
𝛿 + 1

.

Proof. Suppose 𝐸 has sold in Period 1. In Period 2, user gets

𝑈 =


𝑣𝐸 +𝑉 (𝜆, 𝑆) − 𝜎2 − 𝑝2

𝐸
if use 𝐸

𝑣𝐼 +𝑉 (𝑛𝜆, 𝑆) − 𝜎2 − 𝑝2
𝐼

if use 𝐼

Therefore 𝐸 can therefore make a profit of at most

𝑝𝐸2 = Δ −𝑉 (𝑛𝜆, 𝑆) +𝑉 (𝜆, 𝑆) .

Suppose 𝐼 has sold in Period 1. In Period 2, user gets

𝑈 =


𝑣𝐸 − 𝜎2 − 𝑝2

𝐸
if use 𝐸

𝑣𝐼 +𝑉 ((𝑛 + 1)𝜆, 𝑆)) − 𝜎2 − 𝑝2
𝐼

if use 𝐼

𝐼 can therefore make a profit of

𝑝𝐼2 = 𝑉 ((𝑛 + 1)𝜆, 𝑆) − Δ.

In period 1, the minimal price 𝑋 ∈ {𝐼 , 𝐸} is willing to charge is

¯
𝑝𝑋1 + 𝛿𝑝𝑋2 = 0 ⇐⇒

¯
𝑝𝑋1 = −𝛿𝑝𝑋2

What is the maximum price 𝐸 can charge in Period 1 to win over consumers if 𝐼 charges

its minimal price
¯
{𝑝}𝐼1? Consumers get

𝑈 =


𝑣𝐸 − 𝜎2 − 𝑝1

𝐸
if buy from 𝐸

𝑣𝐼 +𝑉 (𝑛𝜆, 𝑆) − 𝜎2 − 𝑝1
𝐼

if buy from 𝐼

𝑝𝐸1 ≡ Δ −𝑉 (𝑛𝜆, 𝑆) +
¯
𝑝𝐼1.

Therefore 𝐸 will enter the market if and only if
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𝑝𝐸1 ≥
¯
{𝑝}𝐸1 ⇐⇒ Δ −𝑉 (𝑛𝜆, 𝑆) ≥ 𝛿

(
𝑝𝐼2 − 𝑝𝐸2

)
= 𝛿 (𝑉 ((𝑛 + 1)𝜆, 𝑆) − 2Δ +𝑉 (𝑛𝜆, 𝑆) −𝑉 (𝜆, 𝑆))

Δ ≥ Δ∗(𝛿, 𝑛, 𝜆, 𝑆) ≡ 𝑉 (𝑛𝜆, 𝑆) + 𝛿 (𝑉 ((𝑛 + 1)𝜆, 𝑆) +𝑉 (𝑛𝜆, 𝑆) −𝑉 (𝜆, 𝑆))
1 + 2𝛿

If 𝐸 wins the price in Period 1 will be the highest price 𝐸 can charge whilst assuring 𝐼

will not be active

𝑝∗1 = 𝑝𝐸1 = Δ −𝑉 (𝑛;𝑘) +
¯
𝑝𝐼1 = Δ −𝑉 (𝑛;𝑘) − 𝑉 (𝑛 + 1;𝑘) − Δ

1
𝛿
− 1

< 0

𝑝∗2 = 𝑝𝐸2 = Δ −𝑉 (𝑛;𝑘) +𝑉 (1;𝑘)

And

𝐶𝑆 𝐼1 =

(
𝑣𝐼 +𝑉 (𝑛;𝑘) − 𝜎2 + 𝑉 (𝑛 + 1;𝑘) − Δ

1
𝛿
− 1

)
𝛿

𝐶𝑆𝐸2 =
(
𝑣𝐼 +𝑉 (𝑛;𝑘) − 𝜎2) (1 − 𝛿)

So surplus if 𝐸 wins,

𝐶𝑆𝐸 =

(
𝑉 (𝑛 + 1;𝑘) − Δ

1
𝛿
− 1

)
𝛿 + 𝑣𝐼 +𝑉 (𝑛;𝑘) − 𝜎2

What is the maximum price 𝐼 can charge in Period 1 to win over consumers if 𝐸 charges

its minimal price
¯
𝑝𝐸1 (i.e. deterring 𝐸’s entry)?

𝑝𝐼1 ≡ 𝑉 (𝑛;𝑘) − Δ +
¯
𝑝𝐸1 =

𝑉 (𝑛, 𝑘) − Δ + 𝛿𝑉 (1, 𝑘)
1 − 𝛿 .

Hence if 𝐼 wins
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𝑝∗1 =
¯
𝑝𝐼1 = −𝑉 (𝑛 + 1;𝑘) − Δ

1
𝛿
− 1

< 0

𝑝∗2 = 𝑝𝐼2 = 𝑉 (𝑛 + 1;𝑘) − Δ > 0

And

𝐶𝑆 𝐼1 =

(
𝑣𝐼 − 𝜎2 +𝑉 (𝑛;𝑘) + 𝑉 (𝑛 + 1;𝑘) − Δ

1
𝛿
− 1

)
𝛿

𝐶𝑆 𝐼2 =
(
𝑣𝐸 − 𝜎2) (1 − 𝛿)

Suppose 𝐼 wins the competition,

𝐶𝑆𝐼 =

(
𝑣𝐼 +𝑉 (𝑛;𝑘) + 𝑉 (𝑛 + 1;𝑘) − Δ

1
𝛿
− 1

)
𝛿 + 𝑣𝐸 (1 − 𝛿) − 𝜎2

□
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