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Space Physics

The Center for Space Physics (CSP) was founded in 1988 to promote 
research and education in space science and space-related technologies.

Space Physics: the study of the outer atmospheres and plasma 
environments of solar system objects, including the sun. 
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Universal Themes
• Plasma luminescence reveals magnetic field structure.
• Explosive release of energy.
• Vorticity.
• Filamentation.
• Sensor Resolution (space, time wavelength).



CSP:  An Astronomy - Engineering Collaboratory
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Engineering

Business majors



Whos is the CSP?
Faculty (13):
John Clarke (CSP Director / Prof. AS)
Joshua Semeter (Assoc. Director / Assoc. Prof. ECE / Affil. AS)
Supriya Chakrabarti (Prof. AS / Affil. Prof. ECE)
Theodore Fritz (Prof. AS / Affil. Prof. ECE / Affil. Prof. ME)
Michael Mendillo (Prof. AS / Affil. Prof. ECE)
Merav Opher( Assoc. Prof. AS)
Andrew West (Asst. Prof. AS)
Paul Withers (Asst. Prof. AS)
William Oliver (Prof. ECE)
Michael Ruane (Prof. ECE)
W. Clem Karl (Prof. ECE)
Meers Oppenheim (Prof. AS)
Tom Bifano (Prof. ME, Director of Photonics Center)
George Siscoe (Res. Prof. AS)
Nancy Crooker (Res. Prof. AS)

Research Associates (9):
Jeffrey Baumgardner (Senior Research Associate)
Yakov Dimant (Senior Research Associate)
Carlos Martinis (Research Associate)
Luke Moore (Research Associate)
Steven Smith (Senior Research Associate)
Hanna Dahlgren (Research Associate)
Torbjorn Sundberg (Research Associate)

Technical Staff (9):
Erik Beiser (Project Manager, LCI)
Anton Mavretic (Project Engineer, LCI)
Joei Wroten, (Senior Staff Researcher)
Clara Narvaez (Staff Researcher)

Administrative Staff (3):
Despina Bokios, Asst. Director
Amanda Rochette, Proposal Development Administrator.
Alysson Savoie, Administrative Assistant

Plus ~30 graduate students (and ~20 undergraduates)

About 60 people at BU are affiliated with the CSP at any given time  



CSP Through Time

Source:  Journal Citation Index.  Complete list of 1042 CSP publications:   
http://heaviside.bu.edu/shared/csp_publications.pdf
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Current CSP Activities

Optical aeronomy
Space hardware

Heliophysics

Planetary Science
Plasma simulation

Radio Science



Heliophysics



Space Hardware



Planetary Astronomy



Terrestrial Aeronomy



Sondrestrom
Poker Flat

Millstone Hill

ESR

EISCAT

Arecibo

Resolute Bay

Jicamarca

Radio Science
Advanced Modular Incoherent Scatter Radar



Standard view of substorm onset



Volumetric imaging of substorm onsets

11x11 grid of beams
3 deg separation
Two pulse patterns:

13 Baud Barker code
480us uncoded pulse

14.6 s integration = 48 pulses/beam



F-region production 
(200-300 km)

Volumetric view

red = 3000K

TeNe



Volumetric view

F-region production 
(200-300 km, t-20min)

Moves to lower altitude 
(150-250km, t-5min)



Volumetric view

Substorm onset 
(100 km)

Moves to lower altitude 
(150-250km, t-5min)

F-region production 
(200-300 km, t-20min)



Volumetric view

Auroral ionization in two 
layers:
signature of broad 
(Alfvenic) energy distribution

Signature of Alfvenic 
(“broad band”) precipitation



09:23:01

09:10:37

09:16:49

Semeter et al., JGR 2012, in review

“Growth phase” arcs
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Plasma Simulation
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2.4 The Particle-in-Cell Method

The simulator uses a particle-in-cell (PIC) method for both the ions and electrons. This

accurately models all dynamics, including thermal effects, at the cost of substantial com-

puter time. The idea of the PIC method, described in detail in books by Birdsall and

Langdon (1985), Hockney and Eastwood (1988) or Tajima (1988), is simple: The code

simulates the motion of plasmas particles in continuous phase space, whereas moments of

the distribution such as densities and currents are computed on discrete points (or cells)

from the position and velocity of the particles. The macro-force acting on the particles is

calculated from the field equations. The name “Particle-in-Cell” comes from the way of

assigning macro-quantities to the simulation particles.

In general PIC codes solve the equation of motion of particles with the Newton-Lorentz

force

dxi

d t
= vi and

dvi

d t
=

qi

mi
(E(xi) + vi ×B(xi)) for i = 1, . . . , N (2.49)

and the Maxwell’s equations (Equations 2.4 and 2.7) together with the prescribed rule of

calculation of ρ and J

ρ = ρ(x1,v1, . . . ,xN ,vN ), (2.50)

J = J(x1,v1, . . . ,xN ,vN ). (2.51)

ρ and J are the charge and current density of the medium at certain iteration. A

simplified scheme of the PIC simulation is given in Figure 2·8.

PIC codes usually are classified depending on dimensionality of the code and on the

set of Maxwell’s equations used. The codes solving a whole set of Maxwell’s equations are

called electromagnetic codes; electrostatic ones solve just the Poisson equation.

Specifically the code used in this work can perform two and three dimensional simu-
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When the plasma is warm, which means that the thermal velocity of the particles is

important, it can be described as previously with a force-balance motion equation but this

time with a term that accounts for the thermal velocity of the particles, a pressure term

(γpTj∇nj). Thus, the equation becomes

mjnj
∂v
∂t

= qjnj(E + v×B)− γpTj∇nj , (2.2)

where γp is a proportionality constant and Tj the temperature of the species j.

Even though the main modes present in a warm plasma can be obtained with Equation

2.2, part of the physics of those modes is lost in the over simplification of the motion

equation. When the temperature of a plasma is finite and the thermal velocity of the

particles is comparable to the phase velocity of the propagating wave, the interaction of

the particles and the wave becomes important. Some of the typical interactions are Landau

damping and microinstabilities. Those phenomena can be explained only through a motion

equation that takes into account the space-velocity distribution of the particles forming the

plasma. This equation is the Boltzman equation, which becomes Vlasov equation (Equation

2.3) in absence of collisions.

Landau damping and microinstabilities are important in determining the shape of the

incoherent scatter radar spectrum at high latitudes, therefore a kinetic approach, which

uses a Vlasov equation as motion equation, has to be used. The system of equations formed

by Equations 2.3 to 2.9, which includes the Vlasov equation plus Maxwell’s equations, has

to be solved self-consistently to obtain the wave modes propagating along the plasma.

∂fj(t,x,v)
∂t

+ v · ∂fj(t,x,v)
∂x

+
qj

mj
(E + v×B) · ∂fj(t,x,v)

∂v
= 0 (2.3)

∇×E =
−∂B
∂t

(2.4)

∇×B = µ0J +
1
c2

∂E
∂t

(2.5)
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∇ · E =
ρ

�0
(2.6)

∇ · B = 0 (2.7)

Coupling is complete via charge and current densities.

ρ =
�

j

qj nj =
�

j

qj

�
fj d3v (2.8)

J =
�

j

qj nj vj =
�

j

qj

�
fj v d3v, (2.9)

where fj(x,v) represents the space-velocity distribution function of the species j, �0 and

µ0 are the permitivity and permeability of the air respectively, and c is the speed of light.

The complexity of this system of equations is evident and the quasi-linear approach is

used to obtain an approximated solution. The traditional development of the quasi-linear

theory of waves in plasmas follows a well established procedure (Krall, 1974; Nicholson,

1983): First, electromagnetic fields, and in the case of warm plasmas the space-velocity

distribution of the particles, are linearized; then the linear Vlasov equation is subjected

to a Fourier/Laplace analysis in space/time, yielding fluctuating particles distributions

which are used to settle the current density (J) and electric field (E) relation. Usually

the conductivity tensor (σ) is obtained from this relation; Fourier analyzed in both space

and time, Faraday’s and Ampere’s equations are combined to yield a dispersion equation.

The solution of this dispersion equation relates frequency ω and wavevector k and thereby

determines the normal modes of the plasma; thus the final step is to insert the conductivity

tensor (which brings the plasma properties) into the dispersion relation (which states waves

main features) to obtain the plasma waves. This is the path that is followed in this section.

Following this path, the linearization of the fields and space-velocity distribution func-

tion comes first and is used together with a Fourier/Laplace space/time transform of the
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Particle-in-cell (PIC):

Simple rules yield 
complex behavior

Fourier Transform in 
space and time  N(k,ω) 

Langmuir (“Plasma Line”)

Ion-acoustic (“Ion Line”)
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(a)

(b)

(c) (d)

Figure 4·5: Simulated incoherent scatter spectrum (for periodic boundary
conditions), obtained integrating 120 angular independent spectra,(a) as a
function of the frequency and the wavenumber. (b) As a function of fre-
quency for the wavenumber k ∼54 m−1(or radar frequency of ∼ 1300 MHz),
which is similar to the wavenumber of Sondrestrom. (c) and (d) are close
ups of the negative and positive Langmuir modes, respectively.
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Plasma Simulation

Electrons

Ions

Electric 
Field

Diaz et al., Ann. Geophys. 2011

Once threshold electric field is achieved (blued line in top panel), 
parametric decay to ion acoustic mode occurs 



Beam destabilized plasma

Diaz et al., JGRA 2011

Parametric decay of Langmuir waves produces enhancement in 
ion-acoustic waves
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PFISR non-thermal echoes at onset
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Semeter et al., JGR 2009, Akbari et al., GRL 2012
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Undergraduate Education

Over 70 undergraduates in ECE, ME, and AS have been involved in the small 
satellite project BUSAT led by Professor Ted Fritz.  

Several undergraduates have also worked on the RockSat sounding rocket 
project. 

The interest from undergraduates in space science and space technology 
has led to the introduction of a new junior ECE elective on “Sensors in 
Space” which will be offered by Fritz for the first time in Spring 2011. 


