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1. SETTING THE SCENE:
THE ENERGY CRISIS AT THE GIANT PLANETS
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SOLAR ENERGY DEPOSITION IN THE UPPER ATMOSPHERE
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IS THE SUN THE MAIN ENERGY SOURCE OF PLANERATY THERMOSPHERES?
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ENERGY CRISIS AT THE GIANT PLANETS
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ENERGY BUDGET OF THE THERMOSPHERE

€ HEATING SOURCES

» Solar heating through excitation/dissociation/ionization +
exothermic chemical reactions

» Auroral particle heating via collisions + chemistry
[Grodent et al., 2001]

» “lonospheric Joule heating” via auroral electrical currents
and ion-drag heating [Vasyliiinas and Song, 2005]

» Dissipation of upward, propagating waves (such as gravity
waves, ...)

- Solar EUV/FUV heating*: 0.5 TW (Earth), 0.8 TW (Jupiter), 0.2 TW (Saturn)
- Auroral part./Joule heating*: 0.08 TW (Earth), 100 TW (Jupiter), 5-10 TW (Saturn)

[*: Strobel, 2002]



2. THERMOSPHERE-IONOSPHERE-MAGNETOSPHERE
COUPLING




MAGNETOSPHERE-IONOSPHERE-THERMOSPHERE COUPLING
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MAGNETOSPHERE-IONOSPHERE-THERMOSPHERE COUPLING

* Overall, at high latitudes:

the magnetosphere extracts angular
momentum from the upper atmosphere
through the magnetic field-aligned
currents [e.g., Hill, 1979]

—2>The magnetosphere “swims” on
the ionosphere.




MAGNETOSPHERE-IONOSPHERE-THERMOSPHERE COUPLING
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TIM coupling through current system
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MAGNETOSPHERE-IONOSPHERE-THERMOSPHERE COUPLING

% E
-
A

« 4 Energy redistribution
‘ towards lower

latitudes?

ATMO 7’

MAGNETOSPHERE



lon drag fridge mechanism
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Polar sub-corotation due to auroral forcing (westward ion velocities
due to ambient E fields) drives equator-to-pole circulation




Does the ion drag fridge mechanism

rule out auroral energy in solving the
global energy crisis at Giant Planets?




3. MODELING THE THERMOSPHERE/IONOSPHERE SYSTEM




COUPLED FLUID/KINETIC STIM MODEL

> * Full ion-neutral dynamical coupling

g Thermospheric densities h
(Nn), winds, & temp. Nn
[Miiller-Wodarg et al., Icarus,

Beer-Lambert Law
applied to the solar flux

\ 2006] y
}* )
a lonospheric (

Boltzmann Equation

densities (Ne, Ni), drifts, & applied to suprathermal

temperatures (Te, Ti)

electrons
\ [Moore et al., JGR, 2008] \_
which allows us and assess the effect of

it on ionospheric/thermospheric quantities, such as Ne, 2, Tn.




STIM RESULT 1: lonospheric conductances in auroral regions
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-Pedersen conductivities peak at the homopause = conductances peak near 2.5 keV
- At low energies, conductances are driven by the solar source

[Galand et al., 2011]



STIM RESULT 1: lonospheric conductances in auroral regions
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STIM RESULT 1: lonospheric Conductances in auroral regions

Auroral electron Earth Saturn Jupiter
mean energy & | [Fuller-Rowell and | [Galand et al., [Millward et al.,
energy flux Evans, 1987] 2011] 2002]
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(1) Bunce et al. [2003]; (2) Cowley et al. [2004]; (3) Galand et al. [2011]




STIM RESULT 2: sensitivity to vibrationally excited H, rate

Charge exchange reaction H* + H,(v24) =» H,*+H (1)

controls the abundance of H;* as it is quickly followed by:
H,*+H, & H;*+H

Reaction rate k,* = k, [H,(v=4)]/[H,]

— Low k,* means less charge exchange reaction and increase in
ionospheric densities

» k, =10°cm? s [Huestis, 2008]

> At low- and mid-latitudes: Moore et al. (2010) found best match
between model and Cassini RSS data for a reduction of ([H,(v>4)]/
[H,]) from Moses and Bass [2000]

» In the auroral regions, expected to be larger: Galand et al. (2011)
assumed 2 x ([H,(v>4)]/[H,]) from Moses and Bass [2000]

* How does this affect thermospheric circulation?



STIM RESULT 2: sensitivity to vibrationally excited H, rate
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4. OBSERVATIONS OF THE THERMOSPHERE/IONOSPHERE SYSTEM




Implication for exospheric temperatures
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Sample of relevant observations: Earth-based + space missions

Which observations can help constrained the problem?

Type of Radio H,* IR uv Radio
observat. | occultations emissions emissions emissions

Physical Electron Effective H;*  Auroral e- Auroral e-
quantities density column energy flux  energy flux
density, temp, & energy and energy

and velocity  (generating (within accele

vector aurora) region)
UV occultations In situ measurements
(particle, fields)
Atmosph. densities, Down/upgoing auroral
Texospheric particles (if conditions allows),

Magnetic field strength/
direction, Electric currents

[e.g., Melin,

v’ Combine as many as possible to better constrain the problem talk]



ALFVEN WAVES
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JUNO observations through the magnetic field lines connected to the
auroral ionosphere, close/within the acceleration region (expected to be
2-3 RJ from center [Ray et al., 2009]):

- Electric currents along magnetic field lines

- Plasma/radio waves revealing processing responsible for particle
acceleration [see Hess, tutorial]

- Energetic particles precipitating into atmosphere creating aurora

- Ultraviolet/IR auroral emissions regarding the morphology of the aurora



Outstanding questions

* Can the enerqy crisis be solved via auroral forcing alone as

proposed here?

— |Is the mechanism proposed efficient at Jupiter, Uranus (seasonal
asymmetry [Melin et al., 2011 + poster]), and Neptune?

— At Saturn, beside the solar contribution which is dominant [Moore et al.,
2010], are they additional energy sources at low- and mid-latitudes?
[e.g., break-down in co-rotation of the ions in the ionosphere [Stallard et al.,
2010; Tao, poster; Ray, talk], molecular neutral torus of Saturn through charge-
exchange (ENA) [e.g., Jurak & Johnson, 2001], wave heating (super-rotat#IR)]

— Further constraints on ionospheric densities at different LT [dawn/dusk
RSS, Max Ne SEDs, ground-based IR in H;* (noon!)]

 What drive the hemispheric differences observed at Saturn in the

magnetosphere and auroral, ionospheric regions?
— Asymmetry in B field? Hemispheric (seasonal) differences in the
atmosphere? If the latter, should reverse now as going out of equinox?

* Is the variable rotation rate observed in the magnetosphere linked
to atmospheric dynamics? [e.g., Jia/Kivelson talk] (two-way MI coupling)



