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Questions about auroral drivers
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Questions about ionospheric response

“...no technology barriers that would prevent making temperature
and wind measurements of the neutral atmosphere well into the
thermosphere to 1000 km. This capability would open an entirely
new region of chemistry and atmospheric modeling..."

* Auroral-driven 1onosphere-
thermosphere responses

* Jon fountain, sawtooth
events, neutral upwelling,
charge exchange, Alfvenic
feedback, 1on outflow....

* Here: consider details of L'
responses to auroral drivers WK

L : A
Image by Tom Moore, GSFC
“Scifer Cleft ion fountain”



Questions about ionospheric
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Figure 1. Modeled response of the ionosphere to the
ionospheric feedback instability producing structured FAC in
the downward-current region.




Questions about ionospheric
structuring and dynamics
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Introduction: Questions

* How to make an in situ map of auroral
1onosphere?

* How to monitor response of a thermal plasma
to drivers?

* Challenged assumptions:
_ (I)sheath == kTe

— time and space variations
— flows



Introduction: Goals

Auroral zone: lower altitudes, lower energy
coupling

Conductivity gradients: source of current
Shears and density gradients: wave growth
Response of thermal ambient plasma:

— Sheaths, charging, wakes, flows

Multipoint array of sensorcraft:

— Building a time-space map of 1onospheric density
evolution and structure




Outline

Aurora
Ionosphere
Plasma
Processes
Instrumentation and measurements

Swarms

Jan Curtis



Outline

Aurora

— Morphology

— EandJ

— Upward/downward/Alfvenic
— Visible and f(v) types

— Driver

— Feedback

Ionosphere Jan Curtis
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Swarms







Auroral
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primer
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Currents down
Structure in time

Structure 1n space
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Simplest aurora picture
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Simplest aurora picture

e Simple precipitation
picture can be used for
large-scale mapping of
static structures



Simplest.auroraJ«ti(=

e and for zeroth-
order
understanding of
smaller
structures.

* until they start to
move...

Jan Curtis







Auroral currents

* A more complete auroral system picture builds
on the idea of field aligned current systems.

* Next we consider downward-current-region
aurora

e “Black” or “dark’ aurora



Aurora up and down

DOWNward current

Electrons up

Depleted 1onospheric

density N
Closed potentials :::

Divergent E-perp
Quasistatic (1s s)

Medium-scale (1s km) up
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Auroral Drivers

upward, downward, Alfvenic: each
have distinct distribution functions
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Auroral Drivers

* Finer details: shape
of the distribution
function for source
and acceleration
mechanism

Kaktovik ASC, 150kr
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Auroral Drivers

e Much observational

information: rockets, FAST,
DMSP

* [SSI/Fast picture: upward,
downward, Alfvenic

* Newell stats: energy input from
accelerated, diffuse, broadband

* Finer details: shape of the
distribution function for source
and acceleration mechanism



Auroral Drivers

* Newell stats: energy input from

accelerated, broadband, and diffuse (e-
and 10n)

. Emp1rlcal model based on DMSP
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Auroral Drivers

* Diffuse aurora 71-84% of energy flux (“the
least glamorous and arguably least studied form of
auroral precipitation is the most energetically important”)

* Monoenergetic more energy flux (10-15%)
than BB (6-13%)

* BB rises fastest with activity, and can be
highest number flux, especially of soft
electrons; highest energy flux below 1 keV

* So 1onospheric heating and outflow
significantly affected by BB

Newell, JGR, 2009



€ pur sl muove
(but 1t does move!)
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Different arcs move differently







Tall rays: Alfvenic oE and 0B
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What would it take...

To separate d/dx from d/dt
To measure shears

To quantify the changing aurora?

Given this motion and structure

What controls 1t?
Magnetospheric driver?

lonospheric control? ..some examples:
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MICA rocket: study of ionospheric
modulation by dark aurora

(A) MICA Trajectory (B) Small-Scale Waves
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Model: Anatoly Streltsov, Dartmouth



H(f)AARP: modification of
lonospheric conductivity

06:05:15

V ; (ZPEJ_) — —]H Streltsov et al., JGR, 2010; GRL 2010
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Aurora
lonosphere
— Structure, composition
— Altitude profiles
— Hall and Pedersen
— Collisions and perpendicular J
— Response questions Jan Curtis
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Altitude profiles of these interactions

2004/01/22 90100 2004/01/22 9:05:00 2004/01/22 91

* Radar shows the plasma
profiles

* Cameras show the input
drivers

2:00

e Lidar to see the neutrals...
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Ionosphere-thermosphere response to

auroral drivers A,. v - | |‘r'“|
 Conductance from | il

precipitation, empirical (Reiff, . .
1984) A®

* Downward current region
1onospheric electron

evacuation (Markilund, 2001)

* Transport models for
inversions of camera profiles
(Lummerzheim, Transcar)

Lynch, Zettergren, B
AnnGeo, 2007



Ionosphere-thermosphere response to
auroral drivers

Neutral upwelling and ion "5 7577

outflow R

CHAMP (Luhr 2004), RENU s

studies of cusp upwelling:
accelerometer signatures 1n cusp

Difficult in-situ measurement:
high voltages at low altitudes

Drag studies
Chipsats
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lonosphere-thermosphere response to
auroral drivers

* Can we quantify
this?

* Rocket observations
turning to study of
effects rather than
drivers

Movie by Mark Conde, UAF/GI
MICA rocket, FPI, PFISR, ASC



Outline

* Aurora
* Jonosphere

e Plasma

— Characteristics of ionospheric plasma
— Sheaths and float potentials
— Thick sheaths and floating instruments

* Processes
* Instrumentation and measurements
e Swarms

Jan Curtis



Low Temperature Plasmas
A= (g,T./e’n )12

Ay~L sheaths

n,~n collisions

system

neutral






"Typically” Studied Plasmas

Lab experiments: fusion applications

Reconnection modelling: no solid surfaces

MHD and PIC codes: rarely consider A
dominated rgions



Low Temperature Plasmas

From NRC Plasma 2010 study:

Future designs for microelectronics .
devices require fabrication of intricate et —
structures such as this trigate transistor
fabricated in silicon having dimensions of
only tens of nanometers.

Source: M. Mayberry, Intel Corp

Non-invasive diagnostics provide insights to
complex phenomena occurring in plasmas. Here
electric fields above the electrodes of a

semiconductor processing plasma are measured using

laser-induced fluorescence.



Low Temperature Plasmas

Planetary formation and rings
Medical physics

Industrial plasmas

Dusty plasmas

Ionospheric plasmas

Threaded by common theme of interactions
with neutrals and surfaces
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Sheaths and charging

Cold, dark 1onosphere: payload potential from current
balance of thermal fluxes:

D = “few” kT,

sc

“few” = In (sqrt(my/m,))
Since
je(q)sc) T Jl(q)sc) =0

ne V‘[he CXp(C(I)SC/ kTe) - ni Vthi =0 (OI’ Vbohm or Vram

And, auroral precipitation can enhance ®_ by contributing
to electron current collection

Typically 2-4 V negative where T, T. < 1eV; a significant
perturbation to the observation



Sheaths and charging

How then to measure the thermal plasma density?

Not with the electrons

— Even a positive probe can be surrounded by a negative payload
sheath (MacDonald, JGR 2006; Frederick-Frost, PoP 2007)

— This effect may be mitigated by photoelectron emission but not
in lower dark 1onosphere

— T, easier (Frederick-Frost, JGR 2007)
Moen MNP: density in the sheath (Jacobsen IOP 2010)

Sheath problems:
— Perturbations (Montgomery); Wakes (Hutchinson)

Thermal 1ons? Core, but sheath effects
RPA nicely low-resource: no high voltage!
Where put steps on I-V curve if @,. dominant and varying?



Charging models: complications

Photoemission: charge positive, density
dependent

Secondary emission: more positive or
more negative

Area ratios: how big 1s your biased probe?
how flat 1s your surface?

Upshot: hidden or poorly measured
populations



Tonospheric parameters

Dark 1onospheric plasma: spacecraft charge
a few kT, negative:

Jiot = -€ 0, Vi eXp(-ephr/kT,) + e nvy; = 0
Solve for e ph1 = -kT_ In[v, /vy:] ~ few kKT,
In sunlight or aurora, varies (-5V to +2V)

n, a few 10° or 10%/cc; Aya few to 10 cm



And another thing...®. In arcs

Thermal 1on measurements sensitive to P,
d_ sensitive to T, (“S kT.”)

T, strongly raised in soft precipitation
Thermal current balance:

— Jy(e-) + Jy,(tons) =0

Thermal current balance plus auroral e-:

- Jth(e') T Jth(iOIlS) - Jaur(e') T Jsecondary =0
Jsecondary dominates J, . ..;, SO less negative

d_. more negative 1n arc, but less than it would be
from thermal current balance
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lonospheric
ELEPHANT

T ALl tow Hemaissheni

e | 007 | thermal plasma
it facility
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Facility and diagnostics
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Ionospheric experiment

Iy
‘l'\hlﬂ
A
FED ‘I’"-.n

Sounding rocket payload analogy: payload floats
negative and detector biased upward.



Lab experiment
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lonospheric thermal plasma facility

Mapping and
understanding the
plasma flow

Using the flow to quantity
the PIP response

Trying a modified ESA

for comparison

How 1s the 1on

distribution perturbed by
the sensor and sheath?

Put whole RocketCube
in the flow!
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Possible experiments

* Time-dependent sheath studies

* Sheaths with and without booms of varying lengths

* k-spectrum of density irregularities over AMISR:
many subpayloads from a rocket

— Requires small spacecraft development
— Density, mag, GPS
— Balloon test flight this summer, JPL rocket proposal



Outline

e Aurora
* Jonosphere
e Plasma

* Processes
— JTAR and other feedback
— Heating and thermal response Jan Curtis
— Gradients and response times
— Collisional complications

Instrumentation and measurements

Swarms




MICA rocket: study of ionospheric
modulation by dark aurora

(A) MICA Trajectory (B) Small-Scale Waves
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Probe physics:

Anything non-homogeneous, non-1sotropic,
non-time-stationary will cause a sheath

to launch 1on-acoustic-like waves
| Montgomery, 1971]

Drag a biased probe/payload across a
density irregularity and get waves
generated by the sheath?
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interpretation of BBELF also
s density holes
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Instrumentation and measurements

— Heritage plasma instruments
— Low resource PIP

— Arduino controllers
— Commercially available technologies
Swarms

-~

’ ’\
f 'l‘
)=
vd

-

=
"‘-—‘s
74

55-‘;;

—



Question

What interesting questions can
be addressed with truly low-
resource spacecraft?



Miniaturization and low resources:

Challenge: what can you do with really low resources?
EDI can’t go there...geometry factor if nothing else
Dust detector 1 was bigger than the CubeSat!

Some things can be miniaturized

Receivers

Thermal fluxes

Arrays of payloads
Multipoint measurements



GreenCube, RocketCube, RocketProbe
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* GreenCube: undergraduate
balloon-borne CubeSat

program sponsored by JPL-
SURP

* Instrumented telemetered
sensorcraft for atmospheric
and astronomical science

e Student-driven, student-run

* 8 students, 2-3 balloons per
year

* GPS, Mag, sensors, radios



GreenQube, RocketCube, RocketProbe







Sheaths and charging

Ion RPA which does not reject e- current:
payload ground = net zero current

Full ion distribution has access for ¢, <0

Collimated for direction
sensitivity

Subsonic vs supersonic

Dartmouth Petite Thermal lon RPA Probe (PIP)

S K B
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Outline

e Aurora
* Jonosphere
e Plasma

* Processes

 Instrumentation and measurements Jan Curtis
e Swarms
— Put it all together:

* Auroral ionosphere orbits

* Low resource spacecraft

* Gradients and dynamics: multipoint measurements
* Swarms of Cubesat-class spacecraft
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wiww.dartmouth.edu/~aurora




