Exploring the Dynamic Coronawith Theory and Simulations

Big Unsolved Problems

- ♣ How is the corona heated?
- What is the magnetic structure in the regions that produce solar eruptions?
- How does cool plasma remain suspended in the hot corona in those regions?

Canonical View of Coronal Plasma

- ♣ Loops are magnetic flux tubes
- Plasma is confined and channeled by magnetic field
- Four types of solutions: static, steady, dynamic, and driven-dynamic

1D Hydrodynamic Equations

$$\begin{split} \frac{\partial \rho}{\partial t} + \frac{1}{A} \frac{\partial \left(A \rho v\right)}{\partial s} &= 0 \qquad \text{mass} \\ \frac{\partial (\rho v)}{\partial t} + \frac{1}{A} \frac{\partial \left(A \rho v^2\right)}{\partial s} + \frac{\partial P}{\partial s} &= \rho g_{\parallel} \quad \text{momentum} \\ \frac{\partial E}{\partial t} + \frac{1}{A} \frac{\partial \left[A(E+P)v\right]}{\partial s} &= \rho g_{\parallel} v + \frac{1}{A} \frac{\partial}{\partial s} \left(A \kappa_o T^{5/2} \frac{\partial T}{\partial s}\right) \\ \text{energy} & -n^2 \Lambda(T) + Q(s) \\ \text{ideal gas law: P=2nkT} \\ E &= \frac{1}{2} \rho v^2 + \frac{P}{\gamma - 1} \end{split}$$

"No meaningful inferences on the heating process can be obtained from static models." - Chiuderi et al. 1981

Static Energy Balance*

Uniform heating: Q

Conduction: $div(F_c) = \nabla \cdot (\kappa \nabla T) \sim T^{7/2} L^{-2}$

Radiation: $N^2 \Lambda(T) \approx C N^2 T^{-b} \rightarrow P^2 T^{-b-2}$

Corona: radiation + conduction vs heating

Transition Region: radiation vs conduction

Chromosphere: radiation vs heating

Static scaling laws: Q ~ T^{7/2} L⁻² ~ P² T^{-b-2}

Uniform Heating

 $N^2\Lambda(T)L \sim Q L$

Footpoint heating on 1 side

flows must occur to ensure force balance!

Footpoint heating on 1 side (con't).

+ Heating drives chromospheric evaporation

- increased radiation vs heat flux + enthalpy
- evaporated mass condenses onto far chromosphere
- new state with quasi-steady flow is reached
- not driven by a pressure difference between footpoints

+ T peaks near heating location

any offset toward apex due to enthalpy flux

+ Steady flow toward unheated leg

V_{max} set by enthalpy flux needed to redistribute energy

+ dT/ds steeper on heated side

- less plasma at T.R. temperatures on the heated side
- downflows brighter than upflows (looking down on loop)

Footpoint heating on 2 sides

Heat + enthalpy fluxes transport energy through corona

- → Heating drives evaporation from both footpoints
- ♣ Increased radiation vs heat + enthalpy fluxes

Footpoint heating on 2 sides

Loop length L < 8 λ (λ = heating scale), Asymmetric heating: higher max. T, ρ and quasi-steady flow toward less heated side

Footpoint heating on 2 sides

L < 8λ, asymmetric heating

What are Prominences?

Working definition: cool dense gas suspended in the hot corona, supported by the magnetic field

Reviews: Martin 1998, Labrosse et al. 2010, Mackay et al. 2010

Prominence in emission

Hinode/SOT Ca II from Okamoto et al. 2007

Prominence in absorption

TRACE EUV

Important Plasma Properties

- Covers 10-60% of PIL
- Spine and barbs
- + Knots and threads
- + Chromospheric T, ρ
- + HIGHLY DYNAMIC

SVST, courtesy of Y. Lin

SDO AIA 304Å

Our Magnetic Structure Model: Sheared Arcade

Our Magnetic Structure Model: Sheared Arcade

3D MHD simulation

Plasma Model Constraints

- Mass comes from chromosphere
- low β
- Mass generally traces magnetic structure (frozen in)
 - ionization fraction 0.2-0.9, neutrals not frozen in but collisionally coupled
- Field-aligned thermal conduction dominates $(\kappa_{||} >> \kappa_{||})$
- Pressure scale height Hg ~ 500 km
- NOT ALL STATIONARY

Origins of Thermal Instability

criterion for thermal stability (Parker 1953)

$$\left| \frac{\partial H}{\partial T} \le \frac{\partial \Lambda}{\partial T} \right|$$

where H=heating

If heating is not temperature dependent, then the plasma will be <u>unstable</u> if b > 0

Optically thin radiative loss function: $\Lambda(T) \sim N^2 T^{-b}$ (Klimchuk-Raymond)

Symmetric footpoint heating

from footpoint to T_{max} : $N^2\Lambda(T) \lambda \sim Q \lambda$ from T_{max} to apex: $N^2\Lambda(T) L \ge Q \lambda$

Symmetric footpoint heating

from T_{max} to apex: $N^2\Lambda(T) L >> Q \lambda$

Why does condensation form?

- Chromospheric evaporation increases density throughout corona → increased radiative losses
- T is highest within distance ~ λ from site of maximum energy deposition (i.e., near base)
- when L > 8 λ, conduction + local heating cannot balance radiation at apex
- Rapid cooling → local pressure deficit, pulling more plasma into the condensation
- a <u>new chromosphere</u> is formed at apex, reducing radiative losses (compared with T.R.)

1D Hydrodynamic Equations

$$\begin{split} \frac{\partial \rho}{\partial t} + \frac{1}{A} \frac{\partial \left(A \rho v\right)}{\partial s} &= 0 \qquad \text{mass} \\ \frac{\partial (\rho v)}{\partial t} + \frac{1}{A} \frac{\partial \left(A \rho v^2\right)}{\partial s} + \frac{\partial P}{\partial s} &= \rho g_{\parallel} \quad \text{momentum} \\ \frac{\partial E}{\partial t} + \frac{1}{A} \frac{\partial \left[A(E+P)v\right]}{\partial s} &= \rho g_{\parallel} v + \frac{1}{A} \frac{\partial}{\partial s} \left(A \kappa_o T^{5/2} \frac{\partial T}{\partial s}\right) \\ \text{energy} & -n^2 \Lambda(T) + Q(s) \\ \text{ideal gas law: P=2nkT} \\ E &= \frac{1}{2} \rho v^2 + \frac{P}{\gamma - 1} \end{split}$$

"No meaningful inferences on the heating process can be obtained from static models." - Chiuderi et al. 1981

Numerical Approach

- ♣ Coupled nonlinear time-dependent equations
- ♣ Derivatives converted to finite differences
- ♣ Potential problems:
 - unstable solutions (e.g., Δt too big)
 - inaccurate solutions (e.g., Δx too big)
 - non-monotonic solutions (e.g., oscillations at discontinuities)
 - inappropriate boundary conditions
 - excessive memory and/or time requirements

Our Hydrodynamic Simulations

- Plasma evolution governed by 1D hydrodynamic equations:
 - Low β plasma \rightarrow motion along rigid flux tube
 - Conductivity κ along magnetic field >> perpendicular κ
- Plasma evolved in time and space with our 1D Adaptively Refined Godunov Solver (ARGOS):
 - Solar gravity and flux tube cross-sectional area (~1/B)
 - Ideal ionized hydrogen gas
 - Energetics: coronal heating localized at footpoints, collisional thermal conductivity, and optically thin radiative losses
 - Adaptive mesh refinement: puts smallest cells where selected gradient is steepest. Cannot solve this problem without it!

Time and Space, Discretized

- + Timestep limiting: smallest of
 - convective timestep = CFL condition $(\sim f\Delta s/v_{signal})$
 - radiative timestep (~ T/n∧[T])
 - conductive timestep (~Δs²/T^{5/2})
- Spatial discretization
 - Cells have center and face
 - Fluxes calculated at faces
 - Divergences at centers
 - Adaptive mesh puts smallest cells at steepest density gradients

Asymmetric footpoint heating

Loop length L > 8 λ: NO STATIONARY EQUILIBRIUM!

- thermal nonequilibrium occurs but condensation forms toward less heated side
- + cycle of condensation formation, motion, and destruction by falling onto nearer ftpt
- process applies to a wide range of loop geometries (shallowly dipped to arched)
- ♣ for loop heights > Hg, cycle is chaotic

Why is asymmetric case unstable?

Constraints: $P_1 = P_2$, $L_1 + L_2 = L >> \lambda$

Dynamic scaling laws yield: P ~ E^{(11+2b)/14} L ^{(2b-3)/14}

$$+ e.g.$$
, for b = 1, P ~ E^{13/14} L^{-1/14}

Equilibrium position: $L_1/L_2 = (E_1/E_2)^{(11+2b)/(3-2b)}$

$$+$$
 for b = 1, $L_1 / L_2 = (E_1 / E_2)^{13} !!$

+ for b \geq 3/2, no equilibrium possible

Initial and Boundary Conditions

- ★ Loop properties: L_{cor}=220 Mm, T_{cor}~ 3-4 MK
- ★ Field geometry represented by gravity variation as a function of distance along loop.
- ★ T_{min} = 30,000 K (no radiative transfer)
- ♣ No flow through boundaries
- ♣ Deep chromospheres (remote boundaries)
- + Steady Heating at both footpoints:

Q = Q_o + f Q exp[(s-s_o)/ λ], where Q_o = 10⁻⁵ erg cm⁻³ s⁻¹, Q=10⁻² erg cm⁻³ s⁻¹, λ =10 Mm, s_o is base of corona, and f = 0 -1 at each footpoint

TNE in Moderately Arched Loop

TNE in Highly Arched Loop

- looks like observed coronal rain
- steady heating can produce very dynamic evolution

Flux Tube with Nonuniform Area and Asymmetric Heating

$$Q_{right} > Q_{left}$$

$$Q_{right} > Q_{left}$$

$$Q_{left} > Q_{right}$$

$$Q_{left} > Q_{right}$$

Summary of Single Flux Tube Results

- ★ Dynamic condensations are produced by <u>normal</u> coronal heating at base of long flux tubes
- * Shallowly dipped flux tubes have longest condensations
- Don't need time-varying heating to get a wide range of dynamic and stationary features; just need different geometry and heating asymmetry
- Episodic heating produces condensations if sufficiently frequent (pulse interval & duration < radiative cooling time)
- With same heating, some flux tubes (too short, too high, or too deeply dipped) do not produce features consistent with prominence observations
- * Changing heating after formation moves condensation

Next Step: 3D Prominence Model

Magnetic structure assumed to be a *sheared* arcade formed by merger of 2 adjacent arcades

For selected flux tubes from 3D MHD simulation:

- ★ Derive geometry (height and area as functions of distance s along flux tube). Note area comes from flux conservation (~ 1/B)
- * Simulate plasma response to footpoint heating to obtain T(s,t) and $\rho(s,t)$ in flux tubes
- ★ Use IDL postprocessing routines to predict emission in selected spectral lines from the ensemble of flux tubes, for different points of view

Magnetic Structure: Sheared 3D Arcade

- Basic framework: Inner bundle of long, low-lying field lines + overlying arcade (Priest 1989, Martin 1998).
- Selected 125 flux tubes, with lengths between 80 and 450 Mm.
- Study is focused on the prominence so the cavity is undersampled
- Same heating function and scale as in single-tube studies, but heating asymmetry is randomly distributed

Predicting Emissions

SDO/AIA temperature responses

- We visualize the plasma evolution in these three EUV channels with peak temperatures ~0.5 MK, 0.8 MK, and 1.8 MK.
- Temperature-based proxy shows where Hα emission should appear: assume all plasma below 35,000 K emits Hα

Simulated Ha Observations

End view:

 Threads form core, surrounded by blobs and coronal rain (except at base)

Side view:

- Threads move horizontally before settling down
- Blobs form and fall frequently = counterstreaming?

Simulated SDO/AIA Observations

End view:

Bright core

Side view:

- Condensations appear as gaps with bright edges
- Extremely dynamic

Emission from EUV Channels

End view Side view

Saturation values: , 24 DN/pix/s, and 10 DN/pix/s
Maximum values: , 5-19 DN/pix/s, and 143-233 DN/pix/s

Two Populations of Condensations

Threads: ♦

- Oscillating then stationary
- Steady growth

Blobs: 🔆

- Dynamic
- Cycles of creation/destruction
- · Small mass, length

If tube radius ~ 100 km at one footpoint, total mass $M \sim 0.1-2 \times 10^{15}$ g at end of run

Threads Oscillate during Formation

- each condensation = pendulum
- damped initially by increasing mass, later by some non-adiabatic process (e.g., radiation)
- average radius of curvature measured for each dip

- Excellent fit to very simple model!
- New diagnostic for prominence thread properties (mass, dip curvature, B_{min})

Summary of our 3D Prominence Model

Condensations are ubiquitous

- Threads: stationary and growing (for steady heating)
- Blobs: transient and highly dynamic
- Coronal rain in overlying arcade (same as blobs)

Model generally consistent with observations

- Bright core in coronal spectral lines = chewy nougat?
- Counterstreaming and flows
- "Horns" in cavity above prominence
- Sudden appearance in corona
- Cool thread between bright edges in coronal lines
- Oscillations

SDO/AIA instrument

Best spatial resolution ~ 0.6" Temporal cadence ~ 10 s

Channel name	Primary ion(s)	Region of atmosphere*	Char. log(T)	
304Å	He II	chromosphere, transition region	4.7	
1600Å	C IV+cont.	transition region + upper photosphere	5.0	
171Å	Fe IX	quiet corona, upper transition region	5.8	
193Å	Fe XII, XXIV	corona and hot flare plasma	6.1, 7.3	
211Å	Fe XIV	active-region corona	6.3	
335Å	Fe XVI	active-region corona	6.4	
94Å	Fe XVIII	flaring regions	6.8	
131Å	Fe VIII, XX, XXIII	flaring regions	5.6, 7.0, 7.2	

EUV Temperature range: 0.5 MK to 2 MK

Symmetric footpoint heating

Loop length $L > 8 \lambda$ ($\lambda = heating scale$)

Apex height < gravitational scale height

Results:

- ♣ Small heating increase → new static solution with higher T,ρ at apex
- Larger heating increase → steady solution with T_{min} at apex (growing condensation)

Thermal Nonequilibrium (con't.)

For L > 8 λ , enthalpy flux must sustain conduction + radiation far from heat source

Dynamic Scaling Laws:

```
E \lambda \sim PV

PV ~ T^{7/2}L^{-1} \sim P^2LT^{-b-2}

where b = 1 for T > 0.1 MK

-3 for T < 0.1 MK
```