MET CS 789 Cryptography

Course Overview

This course covers the main concepts and principles of Cryptography with the main
emphasis on Public Key Cryptography. It begins with the review of integers and a
thorough coverage of the Group Theory fundamentals followed by the RSA and ElGamal
ciphers, Oblivious Transfer Protocols, Zero Knowledge Proofs, Cryptographically Secure
Hash Functions, Digital Signatures, Message Authentication, Integrity, Confidentiality,
Nonrepudiation, Distribution of Secret session Keys, Pseudorandom Numbers and
Random Number Generators along with various factorization attacks will also be
covered. There will be programming assignments to code the Euclidean Algorithm, the
Fast Exponentiation Algorithm, the Primitive Root Search Algorithm, the Baby-step
Giant-step Algorithm, the Index Calculus Algorithm, the Miller- Rabin Test, the Noar-
Reingold Random Number Generator, the Blum-Blum-Shub Random Number Generator
and the Pollard’s p-1 method.

Prerequisites
MET CS 248 Discrete Mathematics and CS 566 Analysis of Algorithms

Learning Objectives

By the end of this course, the student will learn:
1. Asymmetric ciphers, the RSA and ElGamal as well as Diffie-Helman key
exchange protocol and key management system
Algorithms to compute the Discrete Logarithm in cyclic groups, the Baby-step
Giant-step Algorithm and the Index Calculus Algorithm.
Oblivious transfer protocols
Cryptographically secure hash functions
Digital signatures
Message authentication, integrity, confidentiality, nonrepudiation
Key management
Various random number generators
Probabilistic algorithms to check the primality of numbers
0. Factorization attacks: Pollard’s Rho Method, Pollard’s p-1 Method, Dixon
Algorithm, Non-Sieving Quadratic Sieve

N

=0 RN U AW

Method of Instruction
This is a lecture-based course with several programming assignments

Evaluation and Grading

There will be a midterm exam and a final project. If any grading criteria event is missed it will be
the responsibility of the student to arrange with the professor a mutually agreeable schedule for
completion of work.



Grades will be based on:
e Class participation 10%
e Midterm 50%
e Final Project 40%

ACADEMIC HONESTY

The course is governed by the Academic Conduct Committee policies regarding plagiarism (any
attempt to represent the work of another person as one’s own). This includes copying (even with
modifications) of a program or segment of code. You can discuss general ideas with other
students, but the work you submit must be your own.

Instructor Information

Anatoly Temkin, Ph.D.

Department of Computer Science
Boston University Metropolitan College
1010 Commonwealth Avenue, 3d floor
Boston, MA 02215

Office: 617-353-2566

Cell: 617-953-8378

Email: temkin@bu.edu

Office Hours: Monday 5-6pm

Classes are scheduled at CGS, Room 515

Schedule
Date Topic Reference
9/8 Integers (Divisibility, Unique Factorization, Chapter 7

Euclidean Algorithm, Multiplicative Inverses,
Equivalence Relations, Integers mod 7 )

9/15  Groups (Definition of Groups and Subgroups, Chapter 17
Lagrange’s Theorem, Index of a Subgroup,
Cyclic Subgroups, Euler's Theorem)

9/22  Fields, Generators in Groups, EIGamal Cipher, Chapters 22, 27, 28
Exponentiation Algorithm

9/29  The Diffie-Helman Key Exchange Protocol, Chapters 10, 27
Primitive Root Search Algorithm,
Baby-step Giant-step Algorithm,
The Index Calculus Algorithm


mailto:temkin@bu.edu

10/6 Communication in Networks, Key Management,
Electronic Key Management System, The RSA Cipher Chapter 10

10/14 Substitute Monday Schedule of Classes

10/20 Chinese Remainder Theorem, n-th roots, Euler Criterion, Chapter 13
Principal Square Roots

10/27 Oblivious Transfer Protocol (Factorization and Chapter 18
Discrete Log Based), The Digital Signature Algorithm,
Zero Knowledge Proofs

11/3  Cryptographically Secure Hash Functions, Digital Signatures,

RSA, ElGamal digital signatures protocols, Schnorr digital signature algorithm,
Blind digital signature

11/10 Midterm Exam

11/17 Message Authentication, Integrity, Confidentiality, Non-repudiation, Symmetric Key
Distribution by the Key Distribution Center.

11/24 Pseudorandom Numbers, Fermat, Euler and Chapter 16
Strong Pseudoprime numbers, Solovay-Strassen and
Miller-Rabin Tests, Blum-Blum-Shub and Naor-Reingold
Random Number Generators.

12/1 Factorization Attacks (Pollard’s Rho Method, Pollard’s Chapters 24, 25
p —1 Method, Dixon Algorithm, Non-Sieving Quadratic Sieve)

12/8 Course review

12/15 Final Project

Required Book
Paul Garrett: Making, Breaking Codes: An Introduction to Cryptology, Prentice Hall,
ISBN#:0-13-030369-0

Recommended Book



Behrouz Forouzan: Cryptography and Network Security, McGraw Hill,
ISBN#: 978-0-07-287022-0

Homework assignments

p.111,#7,8,9,11,14,16

p.118,#1,2,3,4,5,6

p.121, #1,8,9

p.123,# 110 10; p.126, # 1

p.135, #1,2,3,4,9,10,14,15

Write a C++, Java, or Python code for the Euclidean Algorithm

Write a C++, Java, or Python code that finds two integers, x and y , for given integers m and

n , such that xm+ yn yields the smallest positive integer.

p.267,#1,3,4,5,6
p.268, #3,4,5,6,7
p.271, #2,3
p.275, #1,2,10

12.5.01, 12.5.06
Write a C++, Java, or Python code for the Exponentiation Algorithm

Write a C++, Java, or Python code for a Primitive Root Search Algorithm

Write a C++, Java, or Python code for a Baby-step Giant-step Algorithm
Have an example of the Diffie-Hellman Key Exchange Protocol, assuming it takes place in Z; ,

where p = 9511
10.2.02, 10.2.03, 10.2.06,10.2.08

13.1.01, 13.2.02, 13.2.03, 13.3.01, 13.3.07, 13.8.01, 12.6.01, 12.6.07, 12.6.03, 12.7.01, 12.7.02,
12.7.03 and an additional exercise: Solve x* = —1mod13-17-29

Have an example of the Oblivious Transfer Protocol (factorization based), where p =31 and
q =103
Have an example of the Oblivious Transfer Protocol (discrete log based), where p =103

16.2.01, 16.6.01, 16.6.02

Write a C++, Java, or Python code for the Miller- Rabin Test

P. 335, #21.3.02, 21.3.03, 21.3.04;

P. 336, # 21.4.01, 21.4.03

Write a C++, Java, or Python code for the Noar-Reingold Random Number Generator
Write a C++, Java, or Python code for the Blum-Blum-Shub Random Number Generator

24.1.01,24.1.02, 24.1.03
24.2.02,24.2.03



Write a C++, Java, or Python code for the Pollard’s p —1 method



