
Boston University Metropolitan College

CS 673 Software Engineering (F25)

Department of Computer Science

Metropolitan College

Boston University

Instructor Information

 Name: Yuting Zhang

Office: 1010 Commonwealth Ave., Room 322

Email: danazh at bu dot edu

URL: http://people.bu.edu/danazh

Office Hours:

Thursday 11am -12 pm or by appointment

Feel free to ask me any questions before or after class. You can always contact me

by email. Please always add “CS673 (or cs673)” in the subject of your email.

Course Information

Lecture Time & Place

Thursday 12:30-3:15 PM MET101

Prerequisites

At least two 500 level or above programming intensive courses. Or the instructor's consent.

(This course is not about programming. However, programming skill is the prerequisite. Students

should be familiar with OO concepts and proficient in at least one high-level programming

language before taking this course. This course is better taken as a capstone course towards

the end of your program study.)

Reference Books:

SE Textbooks:

● Eric Braude, Michael E. Bernstein. Software Engineering: Modern Approaches (2rd

Edition). Waveland Press, Inc. (ISDN:9781478632306)

http://www.merrimack.edu/yzhang
http://www.merrimack.edu/yzhang
http://www.merrimack.edu/yzhang

Boston University Metropolitan College

● Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices.

● Bernd Bruegge and Allen H. Dutoit. Object-Oriented Software Engineering: Using UML,

Patterns and Java.

● Shari Lawrence Pfleeger, Joanne M. Atlee. Software Engineering: Theory and Practice

● Roger S. Pressman. Software Engineering: A Practitioner’s Approach.

● Hans Van Vliet. Software Engineering: Principles and Practice.

● Ian Sommerville. Software Engineering

● Ian Sommerville. Engineering Software Products: An Introduction to Modern Software

Engineering

● Dave Farlay, Modern Software Engineering: Doing What works to Build Better Software

Faster.

Other Great and Classic Books for Software Engineers

● Frederick P. Brooks, Jr. The Mythical Man Month.

● Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra. Head First Design

Patterns.

● Martin Fowler, Kent Beck, Don Roberts. Refactoring: Improving the Design of Existing

Code.

● Steve McConnell. Code Complete: A Practical Handbook of Software Construction.

● Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.

● David Thomas, Andrew Hunt. The Pragmatic Programmer: Your Journey to Mastery,

● Titus Winters, Tom Manshreck, Hyrum Wright. Software Engineering at Google:

Lessons Learned from Programming Over Time.

● Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation

● Gene Kim, Kevin Behr, George Spafford, Chris Ruen. The Phoenix Project: A Novel

about IT, DevOps, and Helping Your Business Win

● Nicole Forgren, Jez Humble, Gene Kim. Accelerate: The Science of Lean Software and

DevOps: Building and Scaling High Performance Organizations.

● Gene Kim, Jez Humble, Patrick Debois, John Willis, Nicole Forgren. The DevOps

Handbook: How to Create World-Class Agility, Reliability, & Security in Technology

Organizations.

● David Farley. Continuous Delivery Pipelines: How to Build Better Software Faster

Additional Reading Materials

● Microsoft Security Development Lifecycle: https://www.microsoft.com/en-us/sdl/

● OWASP

○ SAMM project: https://www.owasp.org/index.php/OWASP_SAMM_Project

○ TOP 10: https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

https://www.google.com/search?sca_esv=baeeb5fc63242882&cs=0&q=the+pragmatic+programmer:+your+journey+to+mastery,+20th+anniversary+edition&stick=H4sIAAAAAAAAAH2RzUrDQBSFrUSpVREqin-UoWuhTdqmiUuliEjdGBBXJT_T6cTOTDozSRNfQVc-gk9Q6Av4FkL3CuYRujLdNMWFm8s9h3PhO9yiWi3U54XTLvMgp0CwvhzbHAJIEaYQckzRfL3Y69xZN9Zjb6IUUmWvtFtDNVUdtM3EEERNlZ1SqUZqdb1nmj7NAwjx1rjZJ8uARuVTW-QBEhtqEKt-7rhqQKhvaLnjtEem5o96uRPoTXPktPhKZuw24sY4u6qWgTWA4P5vDQGuQ-xBh7GnVT5HGElkpspR-fAyxEMvawu62OVMQB5hF2asB-X9K0YlpiELBfDgEEeQJ3lnrxWJxlI2k5FmZKzbpa2FNFGk11PlrHyyJPKgwIgCJwGd2CbBEOY8fsvsG06M3jduZVYi4DYitsRutjHEbUIgvwAJCznws0FhAiQDxBYyAzoHWl0OgE3pgk_YPAHQwxIzOts8Xnv5em08V9SP74qltbs_D_okmunTz-lb8b_H_wINWx3CHAIAAA&sa=X&ved=2ahUKEwio9oT18tGHAxV-FVkFHbCRBh0Q7fAIegUIABC4AQ
https://www.microsoft.com/en-us/sdl/
https://www.microsoft.com/en-us/sdl/
https://www.microsoft.com/en-us/sdl/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Boston University Metropolitan College

○ Developer Guide:

https://www.owasp.org/index.php/Category:OWASP_Guide_Project

○ Testing Guide:

https://www.owasp.org/index.php/Category:OWASP_Testing_Project

Description (from Catalog)

A comprehensive overview of the entire software development lifecycle, emphasizing modern

software architectures, methodologies, practices and tools. Key topics include agile principles

and methodologies such as Scrum and XP, DevOps concepts and practices, CI/CD pipeline,

modern software architectures including microservices, REST and MVC, design patterns,

refactoring, software testing, secure software development, and software project management.

This course features a semester-long group project where students will design, develop, build

and deploy a real world software system, applying Agile methodology, DevOps pipeline and

various software tools. Students will also develop AI skills by integrating AI tools into SE

lifecycle activities and by developing AI-empowered software systems.

Learning Outcomes

At the end of the semester, students are expected to

1. Explain and compare major software-process models and activities in the software

process

2. Explain various architectural patterns and design principles and apply these to design

robust, scalable, and maintainable software systems

3. Explain methodology and techniques, such as Agile methodology and DevOps, and apply

these in a real-world, team-based project to develop a high-quality software system on

time

4. Identify security risks in the software project and apply various techniques to enhance the

software security

5. Proficiently use various SE tools including the UML tool, the project management

tool,programming tools, testing tools, the version control tool, etc.

6. Integrate AI tools into the software development lifecycle, from code generation to

testing and deployment.

7. Demonstrate AI skills in prompt engineering, tool orchestration in building an AI-

empowered software system.

8. Communicate effectively with team members and customers

9. Clearly present the software project in both the oral and written form

10. Adhere to professional standards and practices in software engineering and AI

Learning Outcomes Assessment

https://www.owasp.org/index.php/Category:OWASP_Guide_Project
https://www.owasp.org/index.php/Category:OWASP_Guide_Project
https://www.owasp.org/index.php/Category:OWASP_Guide_Project
https://www.owasp.org/index.php/Category:OWASP_Testing_Project

Boston University Metropolitan College

● Class participation

● Reading and study

● 3 Labs

○ Lab1: Set up Git (LO2, LO4)

○ Lab2: Requirement Analysis and docker (LO2, LO4)

○ Lab3: Refactoring, Testing and github actions (LO2, LO4)

● Semester-long project: (All LOs)

● 3 Quizzes (LO1, LO2, LO3, LO4)

● The Final Exam (LO1, LO2, LO3, LO4)

This course is featured with a semester-long team-based project. Each team should have

about 4-6 students. Every member of the team is expected to contribute a roughly equal

share to the project.

Course Policies

Grading Policy

The grade that a student receives in this class will be based on the class participation, in-class

exercises or quizzes, the project and the final exam. The grade is broken down as below. All

percentages are approximate and the instructor reserves the right to make necessary changes.

● 5% on class participation

● 9% on lab assignments (3 small labs)

● 6% on quizzes (3 quizzes)

● 50% on the semester-long project

● 30% on the final exam

Letter grade/numerical grade conversion is shown below:

A (95-100) A- (90-94)

B+ (85-89) B (80-84) B- (79-77)

C+ (74-76) C (70-73) C- (65-70)

D (60-65) F (0 – 59)

Assignment Submission

All labs should be submitted directly on blackboard. The project assignments are mostly done on

the github and the google drive. A summary should be submitted on blackboard.

Assignment Late Policy

Boston University Metropolitan College

Each assignment has a deadline. For all individual assignments, the late assignments will be

penalized within three days with a penalty. No assignments will be accepted three days after the

deadline.

All project deadlines are firm. A deadline miss means zero for the grade of that phase.

It is the students' responsibility to keep secure backups of all assignments.

Academic Integrity

Academic conduct in general and MET College rule in particular require that all references and

uses of the work of others must be clearly cited. All instances of plagiarism must be reported to

the College for action. For the full text of the academic conduct code, please check

http://www.bu.edu/met/for-students/met-policies-procedures-resources/academic-conduct-code/.

Course Outline

This course is organized into six modules of about 2 or 3 lectures each.

Module 1

Topics:

1. Introduction to Software Engineering & Software Process: SE is difficult, SE Concepts

and Terminology, SE Ethics, Software Process including Waterfall, Spiral Model,

Unified Process, and Agile.

2. Agile Methodology & Software Project Management: Manifesto, Agile Principles,

eXtreme Programming, Scrum.

3. DevOps & DevSecOps: concepts, CI/CD Pipeline

4. AI in Software engineering

5. Software Quality, Software Configuration Management, Risk Management, Project

Management

Reading: Online Lecture Notes. Related chapters in any reference books you have. Additional

reading material will be provided.

Assignments: Lab1, Project Assignment 1 (Proposal)

Module 2

Topics:

1. Scrum Requirement Analysis and Management using User Stories: Gather requirements,

User Stories, The INVEST Principle, Acceptance Tests, User Story Management,

Product Backlog, Velocity and Story Points, Epics and themes, Scope Creep, Technical

Debt, User Story Management Tool, Use cases

2. Requirement to Design using UML diagrams. Requirement verification and shift-left

Testing. Testing Environment Setup and

http://www.bu.edu/met/for-students/met-policies-procedures-resources/academic-conduct-code/
http://www.bu.edu/met/for-students/met-policies-procedures-resources/academic-conduct-code/
http://www.bu.edu/met/for-students/met-policies-procedures-resources/academic-conduct-code/

Boston University Metropolitan College

Reading: Online Lecture Notes. Related chapters in any reference books you have. Additional

reading material will be provided.

Assignments: Lab2, Project Assignment 2 (Iteration 1), Quiz 1

Module 3

Topics:

1. Software Quality and High Level Design, Design Goals, Software Architectures.

Microservices, REST, APIs, AI agents

2. Design Principles, Design Patterns, Class diagrams, sequence diagrams,

Reading: Online Lecture Notes. Related chapters in any reference books you have. Additional

reading material will be provided.

Assignments: Project Assignment 2 (Iteration 1 Due)

Module 4

Topics:

1. Implementation: Programming languages and Frameworks, Coding Standards, Code

Smells, Refactoring Techniques, Infrastructure as Code

2. DevSecOps principles and pipeline, CI/CD, Test-driven development,

Reading: Online Lecture Notes. Related chapters in any reference books you have. Additional

reading material will be provided.

Assignments: Lab 3, Project Assignment 3 (Iteration 2) , Quiz 2

Module 5

Topics:

1. Testing Techniques: White box Testing, Testing Coverage, Blackbox Testing, Domain

Testing, Integration Testing

2. Cloud-base web services and Deployment

Reading: Online Lecture Notes. Related chapters in any reference books you have. Additional

reading material will be provided.

Assignments: Project Assignment 3 (Iteration 2 Due)

Module 6

Topics:

1. Secure Software Development Process and DevSecOPs: CIA and IAAA, Software

Security, Seven Touchpoints, Microsoft SDL, OWASP SAMM

Boston University Metropolitan College

2. Software Security Practices: Security requirements, Architecture Risk Analysis,

Microsoft STRIDE, Code Review, Secure Coding Standards, Security Testing, SAST,

DAST, IAST, RSP, Top Vulnerability Lists

Reading: Online Lecture Notes. Related chapters in any reference books you have. Additional

reading material will be provided.

Assignments: Project Assignment 4 (Iteration 3 Due) , Quiz 3

Project Assignments:

The project assignments are mostly done through google drive and github. To help both students

and the instructor keep track of the assignments, we also create a checkpoint for each assignment

on the blackboard. Make sure to submit checkpoints on the blackboard.

There are two types of project assignments:

1. Individual assignments: each student should complete his/her own assignment through

google drive and blackboard.

a. Weekly report: fill a row in your own sheet each week in the group weekly report

on google doc. After you are done, submit the check question assignment on the

blackboard.

b. Midterm and Final self and peer review: fill the review survey form on google

form.

2. Group assignments: each group only needs to submit one copy of the whole group work

on github and blackboard. Students will work on the group documents collaboratively on

google doc. At each iteration release, the group leader or the configuration leader or some

designated member will archive the documents on the github, together with the source

code to create a release. After it is done, the group leader (or the designated member)

should submit the checkpoints on the blackboard.

a. Iteration 0 Release including

i. Readme.md

ii. Doc/ProjX_SPPP

iii. Doc/ProjX_meetingminutes

iv. Doc/ProjX_progressreport

v. Doc/ProjX_presentation_iter0

b. Iteration 1 Release including

i. README.md (updated)

ii. Doc/ProjX_SPPP (updated)

iii. Doc/ProjX_meetingminutes (updated)

iv. Doc/ProjX_progressreport (updated)

Boston University Metropolitan College

v. Doc/ProjX_SDD

vi. Doc/ProjX_Presentation_iter1

vii. Code/… : runnable source

c. Iteration 2 Release including

i. README.md (updated)

ii. Doc/ProjX_SPPP (updated)

iii. Doc/ProjX_meetingminutes (updated)

iv. Doc/ProjX_progressreport (updated)

v. Doc/Proj1_SDD (updated)

vi. Doc/ProjX_STD

vii. Doc/ProjX_Presentation_iter2

viii. Code/… : runnable source

d. Iteration 3 Release (from the master branch) including

i. README.md (updated)

ii. Doc/ProjX_SPPP (updated)

iii. Doc/ProjX_meetingminutes (updated)

iv. Doc/ProjX_progressreport (updated)

v. Doc/ProjX_userstories (updated)

vi. Doc/Proj1_SDD (updated)

vii. Doc/ProjX_STD (updated)

viii. Doc/ProjX_Deployment (if applied)

ix. Doc/Proj1_Presentation_final

x. Code/… : runnable source code

Course Schedule

Please check the semester date on the BU calendar page, particularly the drop dates

https://www.bu.edu/reg/calendars/semester/

(This is a tentative schedule. It is subject to change based on the class progress and students’

feedback)

Both the lecture and the project use iterative approaches. The lecture includes two iterations. The

project includes an initial planning and then three mini-project iterations.

Week #

Date

Module # Course

Assignments

Project Assignments

Week 1 Module 1 Lab1 Iteration 0 Starts

https://www.bu.edu/reg/calendars/semester/

Boston University Metropolitan College

09/04 (due: 09/18)

Week 2

09/11

Module1

Week 3

09/18

Module 1

Week 4

09/25

Module 2 Lab 2
(due: 10/09)

Iteration 0 Presentation
Iteration 1 Starts

Week 5

10/02

Module 2 Quiz 1

Week 6

10/09

Module 3

Week 7

10/16

Module 3 Iteration 1 Presentation
Iteration 2 Starts

Week 8

10/23

Module 4 Lab3
Due: 10/30

Week 9

10/30

Module 4

Week 10

11/06

Module 5 Quiz 2

Iteration 2 Presentation
Iteration 3 Starts

Week 11

11/13

Module5

Week 12

11/20

Module 6 Quiz3

Week 13

11/27

Thanksgiving Break (No Class)

Week 14

12/04

Final Project

Representation

 Final Presentation

Week 15

12/11

Study Period (No Class)

Boston University Metropolitan College

Week 16 Final Exam (time : TBD)

