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Abstract
In this paper we present an approach to creating Bi-directional Decision Support System (DSS) as an intermediary between
an expert (U) and a machine learning (ML) system for choosing an optimal solution. As a first step, such DSS analyzes the
stability of expert decision and looks for critical values in data that support such a decision. If the expert’s decision and that
of a machine learning system continue to be different, the DSS makes an attempt to explain such a discrepancy. We discuss
a detailed description of this approach with examples. Three studies are included to illustrate some features of our approach.

Keywords Decision support system · Machine learning · Machine-user interaction

1 Introduction

With rapid progress across a broad range of machine learn-
ing applications in recent years, some implications of these
advances are also causing concern. One set of issues that
may arise as people increasingly rely on these systems is
that they diminish the users’ sense of responsibility for
decisions and outcomes. By reducing the need for human
expertise, the use of such systems could gradually lead to
a loss of human expertise as well as an accuracy of future
decisions. It is well known that a drop of accuracy of ML
system is caused by domain evolution, where the training
occurred on the original, old data and the current, new data
may significantly deviate. The rate of this domain evolution,
concept drift (Krawczyk et al. 2017), can be much higher
that the self re-training capabilities of the ML.
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Current approaches to addressing these issues focus on
improving the explainability of decisions generated by ML
algorithms and by requiring that humans confirm or approve
such ML decisions (Goodman and Flaxman 2017). How-
ever, many of the popular and effective methods widely
used in machine learning today, such as random forest,
neural networks, support vectors machines and many oth-
ers, do not explain their decision. The solution to this can
be consideration of the decision-making algorithm as a
black box and based on this, an explanation of the decision
is built. Recently, a considerable progress has been made
towards such explainability of decisions (Scott et al. 2019;
Baehrens et al. 2010; Bourneffouf et al. 2016; Ribeiro et al.
2016). In our opinion, this is an extremely important and
promising approach of interactive communication between
an expert and machine learning for understanding a machine
solutions (Cronin et al. 2008). However, the better ML sys-
tems become, the more likely will users stop putting more
effort into analyzing or critically evaluating the algorithms’
decisions, even if automated explanations are also provided.

The optimal human-machine interaction can be helped by
considering such interaction from a game theory perspective.

Game theory can be an efficient tool for the real-time
forecasting of decision-makers in an adversarial interaction
setting. Classical models from game theory allow for
qualitative characteristics of the outcomes of scenarios
associated with various forms of behavior of competitive
agent. These models can support the design of incentives for
driving the goals of these agents such as ML agents.

Multiagent learning is a key problem in AI, including
learning how to coordinate adversarial problem-solving
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agents. In the presence of multiple Nash equilibria, even
agents with non-conflicting interests may not be able
to learn an optimal coordination policy. The problem
becomes even more complex if the agents do not know
the game and independently receive noisy payoffs. So,
multiagent reinforcement learning involves two interrelated
problems: identifying the game and learning to play.
Xiaofeng and Tuomas (2002) presented an optimal adaptive
learning, the first algorithm that converges to an optimal
Nash equilibrium with probability 1 in any team Markov
game. Nash equilibria can be employed by the meta-agent
functionality to drive the adversarial environment of a user
and an ML.

Model-free learning for multi-agent stochastic adver-
sarial games is another important area of research. Rein-
forcement learning algorithms can be extended beyond
zero-sum games, and they can be employed in a real-world
state-action spaces. Casgrain et al. (2019) proposed a data
efficient Deep-Q-learning approach for model-free learn-
ing of Nash equilibria for general-sum stochastic games.
The algorithm uses a local linear-quadratic expansion of
the stochastic game, delivering analytically solvable optimal
actions. This expansion is parameterized by a neural net-
work to assure sufficient flexibility to acquire the features
the environment without exhaustive navigation through it.
In the case of the current study, such the stochastic game can
be a foundation of the meta-agent functionality to control
the interaction between a user and an ML.

Among the applications of game theory are energy and
power systems relying on game theoretic models in a
broad spectrum of applications. In particular, these types
of approaches have been implemented in the modeling of
various aspects of smart grid control.

The use of game theoretic models creates new opportu-
nities for modeling dynamic economic interactions between
utility providers and consumers inside a distributed elec-
tricity market (Ni et al. 2015). Another example study is
the investigation of crowdfunding as an incentive design
methodology for the construction of electric vehicle charg-
ing piles.

In the majority of the game theoretic modeling applica-
tions, results are generated purely by simulation without the
use of real data. Also, existing applications of game the-
ory do not propose any novel techniques for learning the
underlying utility functions that dynamically predict strate-
gic actions. Due to these limitations, one cannot reasonably
expect to learn (or estimate) user functions in a gaming set-
ting nor generalize results to broader scenarios. In real-life
applications, the game theoretic models are not known a pri-
ori; therefore, the developed methods should have some way
to account for data-driven learning techniques. explored
utility learning and incentive design as a coupled problem
both in theory and in practice under a Nash equilibrium

model (Ratliff Lillian et al. 2014). Ioannis et al. (2019)
present a general learning framework that leverages game
theoretic concepts for learning models of occupant deci-
sion making in a competitive setting and under a discrete
set of actions. The authors also presented their utility learn-
ing approaches in a platform-based design flow for smart
buildings.

We are currently pursuing research to build intelligent
human-machine interactions by introduce a bi-directional
adversarial meta-agent or decision support system (DSS)
between the user and the ML algorithm (Galitsky and
Goldberg 2019; Goldberg et al. 2019). This adversarial
decision support process supports and testing conflicting
one-way positions taken by the OD and the expert, as a
contribution to the conflict resolution situation. This DSS
restructures the interaction between a user and the ML, in
particular, in order to mitigate the potential loss of expertise
and restore a fuller sense of responsibility to users.

Central to this is the requirement that a user makes a
first unassisted decision (Goldberg et al. 2019). This initial
decision is provided as an input to the algorithm before
the algorithm generates its own automated decision. The
DSS is trying to find weaknesses in the decision of the
user, which may be, in particular, be a result of the user’s
cognitive bias (Plous 1993). If the user’s decision continues
to differ from the decision of the ML, the DSS helps the user
identify the reasons for this discrepancy. In our opinion, the
proposed architecture could form the basis for successful
modeling of expert behavior in the presence of abnormal
machine decisions. This issue was examined in detail
in Illankoon et al. (2019) including the model proposed
there.

In traditional Machine Learning setting, a user specifies
a set of input parameters. The ML algorithms uses a training
set of “similar” inputs to derive its decision. The user does
not know that that a slight change in any of these inputs
could result in a different result (Fig. 1).

By contrast, when using Decision Support Systems, not
only is the user given a ML decision but this decision is
explained and the DSS finds the values of input parameters
that will force it to change its decision. Informing the user
of these critical values is important as it alerts the user to
pay more attention to these parameters.

2 Example of a decision support system

We present a classification problem for three animals: a
wolf, a greyhound and a coyote, relying on the following
parameters: animal length, skin color, height, speed, tail
length and tail direction (Table 1).

Imagine a Zoo CRM environment where a human visitor
saw an animal at a distance and wants to know whether
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Fig. 1 Standard incorporating of ML algorithm in decision making

it is a wolf, a greyhound or a coyote. Image recognition
algorithms are unlikely to be helpful for Zoo CRM in this
case since dogs, wolves and coyotes are similar, especially
when seen from far away in a cage. Imagine the user
can enter key features such as size and fur color into
the CRM DSS and iteratively converge to a solution. In
total, there are 6 features describing the animal (length,
color, height, speed, tail length and tail direction. In our
example, 4 features (length, color, speed and tail length) are
numerical and the other 2 features (color and tail direction)
are categorical.

Human agent and DSS have different models of a
phenomenon such as an animal. They cannot exchange
model parameters but instead they can encourage each other
to pay attention to particular parameters they think are
important for recognition.

As a start, given some input values, the user makes an
initial decision that the animal is a wolf. Let us assume
that this decision was based on length, color, height, tail
direction and that these features are most important for
our expert. The DSS may agree with such a decision.
However, a small change in these parameters (at the level of
measurement errors) could cause the ML system to change
its decision.

The DSS would then look for the most critical parameters
that would determine such a change. In our example, such a
parameter could be speed or tail direction. The DSS would

Table 1 Classification features

Feature(s) Wolf Coyote Greyhound

Length, sm 100–160 75–100 100–120

Height, sm 80–85 45–55 68–76

Color Gray Light gray Any

Speed, km/h Up to 60 Up to 70 70

Tail length, sm Long Average Long

Tail direction Down Down Not down

then ask the user as to how reliable are these parameters.
As long as the user and ML decisions are different, the DSS
would be trying to explain why ML decision is different
from of an expert. An expert may agree or disagree with
such an explanation and makes the final decision.

We now present this session more precisely on a step-by-
step basis:

Step 1 A human expert takes a sample and attempts to
solve a problem. Let us imagine the following parameters as
identified by her:

Length = 115 cm with the range of possible errors [100−
130]

Color = ‘light grey’ with the range [white . . . grey]
Height = 70 cm with the range [55 − 85]
Speed = 40 km/h with the range [35 − 45]
Tail.length = long with the range [average]
Tail.direction = down with range [straight]

Step 2 Expert decides that it is a wolf, since
Length = 115
Color = light grey
Height = 70 cm
Tail.direction = down

Step 3 Selected features are Length, Color, Height,
Tail.direction

Step 4 DSS: If turn length = 115 cm into 100 cm and height
= 70 cm into 55 �→ coyote

If Tail.direction = straight �→ dog
If without correction �→ wolf
DSS is asking human about the tail:
Tail.direction = straight and Tail.length = average,

nevertheless �→ wolf.
Now the new set of feature values:
Tail.length = average with the range [short . . . long]
Tail.direction = straight with range [down . . . up]



Hum.-Intell. Syst. Integr.

Step 5 DSS �→ dog since (Step 6)
Tail.direction = straight
Speed = 40 km/h
(Explanation only for dog vs. wolf)
Expert: what if Tail.direction = down?
DSS: still dog since can only be wolf, not coyote
Speed = 40 km/h
Tail.length = average
Expert: What if both Tail.direction = down and speed =

35 km/h?
DSS: then it becomes wolf
Expert: What if Tail.direction = down and tail.length =

long?
DSS: wolf

Step 6 Now the human expert can do the final judgment.

3 Example in amedical domain

We now consider a special “case” of CRM such as medical.
A physician (“expert user”) needs to make a diagnosis for a
patient and has to differentiate between cold, flu and allergy
as shown in Table 2 (NIH News in Health 2014):

Let us assume that this physician describes patient
symptoms to the ML, provides his preliminary diagnosis
as flu and notes that this decision was made based on
“high” temperature of 100.6 ◦F, “a strong headache” and “a
strong chest discomfort”. The DSS asks to confirm “strong
chest discomfort” and additional symptoms of “stuffy”
and “sore” throat. Now imagine the physician revises the
symptom from “strong chest discomfort” to “mild chest
discomfort” and leaves the other two symptoms, “stuffy
and sore throat” unchanged, and does not change the initial
diagnosis. The DSS outputs the decision cold and reports
that for the diagnosis “flu” it lacks “high” temperature like

101.5 ◦F. The physician now decides that such the revision is
insignificant and maintains the initial diagnosis, or accepts
this argument and changes the diagnosis to “cold”.

4 Computing decisions with explanations

Let x = (x1, . . . , xn) be a vector of the n input parame-
ters to the algorithm. xi can be continuous (numerical) or
categorical (Boolean) variable. Let X be a set of x. Let
v = (v1, . . . , vn) be the particular input values entered by
the user. Let us represent the example from the previous
section as v = (temperature) 100.6 ◦F, headache(strong),
stuffy nose(strong), sore throat(“moderate”), chest discom-
fort(“strong”)). Let D = {αj }, j = 1, . . . , k be the set
of k possible decisions or output classes. Let αU ∈ D

be the initial unassisted decision of the user. Additionally
we allow the user to mark a subset of input parameters
(v1, . . . , vm), m ≤ n as being particularly important to
their decision aU (Fig. 2).

We define the decision function f which maps an input
vector v and a class α ∈ D to confidence c ∈ [0, 1]:
f (α, x) : α, x �→ [0, 1].

Let αml be the algorithm decision based on the user-
provided input values v

f (αml, v) = max f (α, x) for all α ∈ D

For any parameter of x, its value xi may have bias or
error. Therefore, we define Ω(xi) such that

Ω(xi)
− < Ω(xi) < Ω(xi)

+

as the set of values which are considered within the error
bounds for xi . The bias includes the uncertainty of an
object and uncertainty of the assessor. When there is an
uncertainty in assessing a feature, we have the phenomena

Table 2 Medical domain
Symptoms Cold Flu Airborne

allergy

Fever Rare Usual, high (100 ◦F–102 ◦F)
sometimes higher Never

especially in young children

lasts 3–4 days

Headache Uncommon Common Uncommon

General aches, pain Slight Usual, often severe Never

Fatigue, weakness Sometimes Usual, can last up to 3 weeks Sometimes

Extreme exhaustion Never Usual, at the beginning Never

of the illness

Stuffy running nose Common Sometimes Common

Sneezing Usual Sometimes Usual
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Fig. 2 Proposed user interaction flow

of “confirmation bias” and “selective perception” (Galitsky
and Shpitsberg 2016; Lee et al. 2013).

We introduce a feature normalization xnew
i for each

ith dimension, set based on the following four thresholds:
a0i , a1i , a2i , a3i (Goldberg 2007; Shklovsky-Kordi et al.
2005):

xi < a0i : strong deviation: xnew
i = 0 + xi/a0i

a1i < xi < a2i : abnormal: xnew
i = 1

+(xi − a1i/(a2i − a1i )

a2i < xi < a3i : normal: xnew
i = 2

+(xii − a2j )/(a3i − a2i )

a3i < xi < a4i : abnormal: xnew
i = 3

+(xi − a3j )/a4i − a3i )

a4i < xi : strong deviation: xnew
i = 3 + xi/(a4i )

Thus, normalized parameters will belong to five inter-
vals: [0, 1], [1, 2], [2, 3] and [3, 4], [4, ∞].

Based on this definition, we computeX ⇐⇒ Xnew. Now
we define the similarity between the object x and y as a
vector distance ||x − y||.

Division of the measured value by the accepted aver-
age value accomplishes the normalization. The calcula-
tion is executed separately for normal, abnormal and
strong deviation value. To define a range of sub-normal
values, a team of experts empirically established the score
of acceptable parameters. They are determined for certain
combination of features and certain objects. If a parameter
stays within the defined abnormal or normal range, no spe-
cial action is required. The strong deviation range covers all
the zone of possible values beyond the abnormal values.

For example, in medicine, the standard scale for fever is
as follows: if the body temperature is less than 95.0 ◦F, then
it is a strong deviation. If it is in the range 95.0 ◦F to 96.8 ◦F,
then it is considered abnormal. If it is in the range 96.9 ◦F to
99.5 ◦F, then it is normal. If the range is 99.6◦oF to 101.3 ◦F,
then it is abnormal, and if it is greater than 101.3 ◦F, then it
is a strong deviation. However, the norm for a flu is 100 ◦F
to 102 ◦F, the norm for a cold is 99.6 ◦F to 101.3 ◦F, the

norm for allergy is 96.9 ◦F to 99.5 ◦F and any higher fever
is a strong deviation. This is illustrated in Fig. 3.

The normalization can be defined for categorical
parameters also. For example, for allergy any general aches,
pain is abnormal (xnew

i = 3) and only No General
Aches, pains is normal (xnew

i = 2). We expect that, when
implementing a DSS based on this approach, the thresholds
is provided by domain experts using empirically established
knowledge of what values of the input parameters are
normal or abnormal for a given decision class.

Based on this definition, we can define a mapping
between the input parameters X and the normalized
parameters Xnorm: X �→ Xnorm and Xnorm �→ X.
Using this normalization, we substitute [x1, . . . , xn] for
[xnorm

1 , . . . , xnorm
n ]. Now we can define the distance

between strings x and y in a standard way as

||x − y|| =
√

(x1 − y1)2 + · · · + (xn − yn)2

5 An overall step-by-step DS

Here is the user interaction flow (Fig. . . . ):

Step 1 Expert user input : v = [v1, . . . , vn] ∈ X

Step 2 Initial unassisted decision αU of the user. For
example, flu.

Step 3 Expert user indicates m out of n input values
[v1, . . . , vm] as being particularly important to his decision
αU . For example, (Fever = 38.1 , strong Headache, strong
Chest Discomfort)

Step 4 Now DSS verified the decisions of user αU without
sharing αml . In order to determine how stable αU is
relatively to perturbations of v within error bounds Ω , we
compute αml by means of Stability Assessment Algorithm.
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Fig. 3 Normal/abnormal ranges

If αml does not match αU go to Step 5. If αml matches
αU then αU is selected as a preliminary solution, and we
proceed to Step 6.

Example if we have (Fever = 100.6 ◦F, strong Headache,
strong Chest Discomfort Fever, strong Stuffy, moderate
Sore Throat 100.6 ◦F, as user noted, αml = flu, but if we have
(moderate Headache, moderate Chest Discomfort, strong
Stuffy, strong Sore Throat) as obtain from Ω(v) then αml =
cold).

Step 5 Since αU 
= αml we iteratively work with the user
to see if we can converge on a stable decision. We apply
Discovering Abnormal Parameters Algorithm.

We could, at this point, just show αml to the user, but
we specifically avoid doing this in order to prevent the user
from unthinkingly changing their decision to αml . Instead
we use a more nuanced, indirect approach where we try to
find the parameter whose value vi from the ones indicated
by the user to be in the set proving αU , vi is such that its
possible deviation affects αU in the highest degree.

After finding this parameter, we report to the user that
the value they provided for this parameter is to some degree
inconsistent with αU . We then give the user the option to
change their initial αU .

If the user maintains the same decision αU , then αU is set
as a preliminary decision and we proceed go to Step 6.

If user changes their decision, go to Step 2 (unless this
point is reached a third time, in which case go to Step 6 to
avoid putting too much pressure on the user (Goldberg et al.
2010)).

Step 6 Compute decision αml based on unchanged input
values f (αml, V ). αml is set as a decision of DSS and is
shown to the human expert along with the set of key features
which has yielded αml instead of αU . Explainability of DSS
algorithm is in use here.

Step 7 The human expert can modify v and observe
respective decisions of DSS. DSS can in turn change
its decision, and provide an updated explanation. Once
the human expert obtained DSS decision for all cases of
interest, she obtains the final decision.

Hence in the 3rd step, the human expert explains her
decision, and in the 6th step the ML explains its decision.
In the 5th step, DSS assesses the stability of human experts’
decision with respect to selected features. In the 7th step,
the human expert does the same with DSS decisions. So the
6th step is inverse to the 3rd and the 7th is inverse to the
5th.

For a DSS to handle explainable decision support,
explanation format should be simple and have a natural
representation, as well as match the intuition of a human
expert. Also, it should be easy to assess DSS explanation
stability with respect to deviation of decision features. It
is worth mentioning that the available methods such as
Baehrens et al. (2010) where DSS is a black box, similar to
the current setting, do not obey all of these requirements.

We show the overall architecture of bi-directional
explainable DSS in Fig. 4:

6 Three bi-directional DSS algorithms

Algorithm for step 4: Stability assessment In this step the
DSS checks whether αml is stable when the input parameters
are perturbed within the error bounds [Ωlower (vi :
Ωupper (vi]. If, when entering the input values, the user
also marked a subset of input parameters (v1, . . . , vm) as
particularly important to their decision αU , then the DSS
only adds noise to this subset. This is because, given the user
expert’s focus on these parameters, they are the ones more
likely to contain user bias.

Let us consider a n-dimensional space (Ω(v1), . . . ,

Ω(vm), vm+1, . . . , vn). In the dimensions 1 to m it is a
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Fig. 4 Bi-directional explainable DSS

parallelepiped, and in dimension m + 1, . . . , n it is a
plane.

Let Ω(v) be a set of points where for each dimension
Ω(vi)

− < Ω(vi) < Ω(vi)
+ for dimensions i < m + 1

and vi for dimensions i > m. Let α be the decision of DSS
where f (α, x) − f (αU , x) > 0 with x ∈ Ω(v) and α ∈ D.
Out of these pairs, let us select the pair (αml, y) which relies
on a minimum number of important dimensions 1, . . . , m.

In our example, the precise specification of initial
parameters gives the same result by the expert and by
the ML. However, in the vicinity of these parameters,
it is possible to find both cold and allergy diagnoses.
However, for the cold diagnosis it may be enough to just
lower temperature or not severe headache or strong chest
discomfort, whereas for allergy we would need changes
in at least 5 parameters. Therefore, the machine learning
diagnosis αm; is chosen to be cold.

7 Algorithm for step 5

Discovering suspicion parameters and a deviations in
parameters for αU The DSS asks the expert to reconsider
the input values of the input parameters for which v′ devi-
ates from v. The expert user may then realize that these input
values imply a different αU and change their initial αU to a
different α′

U . Alternatively, if the input values have a sub-
jective component or contain errors or bias, the user may
adjust the input values. In either case, if changes are made,
the DSS goes back to Step 4 with the new values but does
this no more than 3 times to avoid endless iteration.

Let us imagine an expert is presented with a “suspicious”
parameter for αU to support her/his decision.

From the explanation of an expert (i.e., the point at which
we have the minimum)

min f (αU , [v′
j ]), j = 1, . . . m, v′

i ∈ Ω(vi)

And the most important parameter for αmlinΩ(vi)where
we have the maximum

max f (αML, [v′
j ]), j = 1, . . . n, v′

i ∈ Ω(vi)

If αU = αml at point v , but αU 
= αml in Ω(v) and
we would like to indicate more important parameters whose
change would lead to decision αml . To that end, we need to
look for the direction where the distance from v to αml is
minimal (Fig. 5).

In this case, there is no need to get an explanation from an
expert for decision αU . However, our task in the 5th step of
the algorithm also consists in creating a conflict between the
choice of an expert and the ML. Our experiments showed
that this usually creates the prerequisites for the expert
to make the optimal decision. Therefore, the choice of a
clarifying question as shown above, taking into account the
expert’s explanation of his decision, seems to be a preferred
way.

The user expert is then suggested to consult parameter
i delivering maximum value |ynew

i − vnew
i |, i =

1, . . . , m. Here yi is the ith dimension of vector y when
feature normalization procedure is fixed. If human decision
deviates from the DSS decision in initial data, meta-agent
needs to focus on a single parameter value from {v1, . . . , vn}
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Fig. 5 DSS is finding a closer
point in the normalized
n-dimensional space from
vnormalized in the area where αU

turns into αml

that would direct the human expert towards the DSS
decision. This is how to find this feature.

What is the worst feature dimension for a human
decision? To find it we first identify the best feature value
(we call it typical) for αU for all i:

v
typ
i (αU ) = max

j
f (αU , [v1, . . . , vi−1, vi, vi+1, . . . vn])

over all values xi of ith dimension. For example, x1=
“white”, x2= “light grey”, x3 = “grey”, x4= “dark grey”, x5=
“black”, j = 1. . . . , 5. vi|typ(αU

: color = ‘grey’ when αU =
“wolf”.

We do it for all dimensions i. Now we proceed to the
dimension i best for the DSS decision

max
i

(f (αml, [v1, . . . , vi−1, , vi, vi+1, . . . , vn])
−f (αml, [v1, . . . , vi−1, v

typ
i , vi+1, . . . , vn])

Here, the feature could be as follows vi : color = ‘light
grey’, vtyp

i (αU ): color =‘grey’ when αU = ‘wolf’.

8 Algorithm for Step 6: Explainability of ML

This algorithm attempts to explain the DSS decision for
human expert in the same way as has been done by humans.
DSS delivers most important features for its decision.

If at this point the user’s decision still differs from the
ML’s decision, the DSS attempts to explain the difference
between the ML decision αml and the user decision αU in a
way that is intuitive for a human user rather than a way that
is based on the ML’s internal representation. To do this, the
DSS determines what input parameters were most important
for the ML’s decision. This can be done by finding the input

vector z which is closest to the expert’s input values v and
which leads the ML to change its decision from αml to
αU . A crucial part of this step is that the distance between
points v and z′ is computed in normalized parameter
space (Xnorm(αml)). The DSS can use a grid search in
normalized parameter space to find points on the boundary
between αml and αU as shown in Fig. 6. For example, we
can use Covariance Matrix Adaptation Evolution Strategy
(CMAES) method (Hansen 2006). However, we consider a
computationally simple and, in our opinion, more intuitive
method described below. Once z is found, the parameters
that have the largest one-dimensional distance between z′
and v are taken as the parameters that are most important to
explaining the difference between αml and αU .

Let us use a random generator with vnew as average value
and (1 . . . , 1) vector as standard deviation to select in new,
where

−ε < f (αml, x) − f (αU , x) < 0

Then we take a point z delivering the minimum ||znew −
vnew||. Then in the cube, we randomly select a point z′
around z in where

−ε < f (αml, x) − f (αU , x) < 0

such that z′ gives us a minimum of ||z′new − vnew||. We
iteratively set z = z′ and do the above iteratively till the
distance ||z′new − vnew|| stops decreasing (Fig. 6).

The features i which do not belong to Ω(z′
i ) are

important for decision making of DSS to obtain the decision
αml that is different from αU .Most important features i are
those where (znew

i − vnew
i ) ≥ 1.

As shown, the normalization normal vs abnormal is
performed according to the opinion of an expert. If we
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Fig. 6 DSS is finding a closer
point in the normalized space

have a few points v′norm where machine decision coincides
with that of the expert and is equally close to our point
v′norm, then from these points we choose closest point under
normalization. It is possible that during the search for such
minimal points, the decision of an expert coincides with
the decision of a machine but the point itself my not exist
in reality. This is possible. We assume that an expert can
specify conditions for the search to avoid such a situation.

We will now present three studies to illustrate our approach.

9 Study 1: Evaluation with human experts

The influence of initial expert decision on the final decision
by the user was evaluated in a series of experiments. In these
experiments we analyzed how humans revise their initial
decisions when they are presented by a machine decision.
The participants were college students. They were asked
to make judgments in the area in which they had some
relevant knowledge. Specifically, they were presented with
10-sec fragments of songs of popular music groups and
were asked to identify the group associated with that song
(from a set of four options, each representing a different
music group). After participants made their decision (initial
choice), they were presented with the machine’s decision
about the same song (machine choice). They were told that
the machine is not always accurate but were not given any
specific information about the machine’s accuracy. After
being presented with the machine choice, participants were
asked to make a final decision from the same set of options
(“final choice”).

Prior to the study, a survey was conducted to identify
music groups with which the college students were rela-
tively familiar. Four music groups identified in the survey as
most popular and familiar to participants were selected for
the present study.

Each participant took part in several test sessions. In each
session, they were presented with 10–12 test items (song
fragments) so that none of the items included the same
song fragment. The key difference across the test sessions
was the base accuracy of the machine choice, which was
predetermined by us. For example, in one of the sessions,
the machine was making a correct choice in 75% of items,
whereas in another session it was making a correct choice
90% of times.

As seen from these results, the difference in decisions
by an expert and a machine could have a positive influence
on the final decision. In particular, this would happen when
an expert has doubts about her/his initial decision as as that
of a machine. As a rule, an expert either retains her/his
original decision, or can change it to a machine decision
when their decisions do not match. This occurs in 39.9%
of all such conflict situations. However, in 76 cases (2.8%
of all cases), the final expert opinion was different from the
preliminary choice and the machine choice. This happened
in 45 (6.6%) when the ML was wrong, and in 31 (1.5%)
when the ML was right (p < 0.0001). Moreover, in 40
(88.9%) cases out of 45, when the machine was not right, the
expert indicated the correct solution (p < 0.0001 compared
to 50% of random assumptions). Even the doubts about the
correctness of the initial decision had a positive impact on
the final decision of the examination.
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The question was as follows: Is it possible that your final
decision was different from your initial decision and the
decision of the machine? (check all that apply). A survey of
67 students produced the following results:

1. This never happened: (40.3%);
2. I was not sure of my initial decision and did not agree

with the machine solution, so I chose the third option
(59.7%)*;

3. Random selection of remaining opportunities (10.5%);
4. I thought about the most likely solution and chose the

third option without a machine solution (42.1%);
5. I tried to understand why the computer chose such a

solution, and based on this, I chose the third option
(63.2%);

2 students did not indicate reasons (3)–(5) and some of
the 38 others used more than one reason.

The next experiments were conducted to measure the
effect of preliminary decision on the final result.

Two groups were tested on the influence of initial
solution in the following sequences:

1. Sequence 1: students would listen to the song. They
will be told of a computer decision and were asked to
put their choice

2. Sequence 2: students would listen to the song and
put their initial decision. They would then be told of
a computer decision. The students will put their final
decision.

We considered 12 songs from 4 artists. These songs were
presented in groups of 3 songs and the experiments were run
as follows:

For the first group of 21 students, we considered:

Sequence 1, Sequence 2, Sequence 1, Sequence 2 For the
second group of 21 students the same 12 songs were
presented in the reverse order:

Sequence 2, Sequence 1, Sequence 2, Sequence 1 We used
such a complicated design of experiments to remove
influence of different knowledge level of students on
identifying the authors of the songs.

Results with the machine accuracy of 66.7%, the accuracy
for sequence 1 was 74.2%, accuracy for sequence 1 was
77.8% vs. 79.8% accuracy for sequence 2 (p = 0.351)

We then considered two other groups of students. The
initial accuracy of correctly identifying artists for 12
songs without machine decision was 65.6% and 65.6%
respectively. First group (16 students) would have 2 tests of
sequence 2, whereas the second group (26 students) would

have 2 tests of sequence 1. Each test was administered once
a week and after each test the students were told of authors
of the songs.

For the 3rd test, the students were given 24 songs from
tests 1 and 2. Recall that for these songs the students were
given the answers after listening to that music. The accuracy
for the first group was 84.4% whereas for the second group
the accuracy was 78.1% with a p-value p = 0.015.

10 Study 2: Interactive communication
with user for data correction

Refinement by the DSS of initial data based on preliminary
decision were implemented in the integrate system “Dinar-
2” which assisted physicians in establishing the pathology
and severity of cases when triaging emergency calls at the
Center for Child Air-Ambulance Services in Yekaterinburg,
Russia (Goldberg et al. 1991; Goldberg 1997). One of the
goals of this Center was to provide remote consultation to
regional medical centers and doctors involved in treating
seriously ill children, and thereby reduce the need to airlift
children to larger or more specialized hospitals.

The Center has served the large geographic area, so for
its air-ambulance services it would often take a long time
to reach regional centers. Given the volume and complexity
of requests for consultation and air-ambulance services, a
computerized decision support system has been key to the
efficient operation of the Center. Dinar-2 was developed to
fill this need. This system provides assistance in diagnosing
the type of pathology (8 distinct classes of pathology),
and in determining its severity (between 3 and 5 levels of
severity - depending on the class). It also assists in selecting
the best course of action, and in selecting the health care
center that is best suited for treating a given patient.

The Dinar-2 decision support algorithm consists of 3
stages:

1. Identification of informative patterns and groups of
symptoms

2. Determination of the likely pathology based on 1
3. Determination of severity

These steps were implemented using rule-based machine
learning algorithms.

Besides objective measurements and test results, the
system had to take into account a significant amount of
subjective information about the patient’s condition. This
made the decision support task more complicated because
the subjective information was susceptible to conscious and
subconscious biases on the part of the reporting physicians.
Specifically, these biases tended to skew the provided
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information toward making a patient’s condition appear
either more or less severe than it actually was.

Due to this, the Dinar-2 decision support system assigned
an a-priori confidence interval to every input parameter
that was based on subjective information. Then, the system
perturbed the inputs within the bounds of these confidence
intervals and checked whether it’s computed diagnosis was
consistent with the diagnosis initially proposed by the user
(in this case a physician at the Center, in consultation with
the regional doctor). If, under these perturbations, Dinar-2’s
diagnosis of the pathology or severity did not match that of
the user, Dinar-2 would follow the proposed interaction flow
(described in Section 2 above) to clarify the diagnosis.

A long history of the DINAR-2 relevance appears
to be a valid confirmation of the effectiveness of this
approach. After the initial deployment in 1989, Dinar-
2 was soon accepted by 39 emergency medical centers
throughout Russia, Kazakhstan and Belarus and has since
been continuously used. So, even in 2017, according to
the report of Neonatology Department of Sverdlovsk State
Children Hospital, Russia, 2018 (Report of Neonatology
2018), it was shown that during this year, the DINAR-
2 system helped assess 537 cases. In 131 of these cases
(24%), effective remote diagnosis and consultation proved
sufficient for resolving the patient’s crisis, and the need to
dispatch an air-ambulance was avoided.

11 Study 3: Neural ML:explainable ML
adversarial question answering

In Galitsky (2020), an adversarial game between explain-
able, inductive learning-based Question Answering (Q/A)
system and a Deep Learning based Q/A was examined.
Both systems are applied to large-scale real world datasets.
A hundred-dimensional GloVe word embedding is usually
used in the neural Q/A.

A human search session from the adversarial standpoint
is shown in Fig. 7. A search for the correct answer occurs
as an interaction between an explainable Q/A, neural Q/A
and a human. The capabilities and interaction modes of
each agent are indicated in frames, and their inputs and
outputs—without frames.

As neural Q/A does the heavy lifting of answering a high
percentage of an arbitrary-phrased questions, a determin-
istic DSS AMR can lay the last-mile toward answering all
user questions. Firstly, a technique for navigating a seman-
tic graph, organized by AMR, can verify the correctness of
a D neural Q/A answer, involving syntactic and NER tags as
well as semantic role information. Secondly, when the neu-
ral Q/A answer is determined to be incorrect, AMR employs
answer-finding means complementary to that of neural Q/A
and identifies the correct answer within the answer text
(context).

Fig. 7 Adversarial structure of interaction between explainable Q/A, neural Q/Q and a human user
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Error identification and answer selection scenario of a
adversarial neural and explainable Q/A system is shown in
Fig. 7. It is implemented as a meta-agent.

Both the question and text from which an answer is to be
extracted is subject to both syntactic and semantic parsing.
Additionally, other tagging pipelines are applied including
named entities, sentiment, emotion and others (Manning
et al. 2014). At the next step, all available representation for
questions are aligned with each other, and all representation
for answer text (context) are aligned with each other as
well. Finally, a search of the answer is an alignment of a
hybrid (aligned) representation for the question against that
of the answer. An answer fragment is a result of a maximal
common subgraph between the aligned question and the
aligned answer.

Interactions between the neural and explainable module
works as follows (see Fig. 8). Firstly, the neural module
works and obtains an answer. Then the meta-agent of the

explainable Q/A components comes into play verifying that
the answer is linguistically and semantically fit. To do that,
it substitutes it into the question and performs syntactic and
semantic matching with the answer text (context). Further
details on a hybrid Q/A system are available in Galitsky
(2020).

As a result when the neural Q/A was applied and
delivered the correct answer in almost 90% of cases,
this error-correction scenario boosted the state-of-the-art
performance of a neural MRC by at least 4%.

12 Discussion

There are several benefits and opportunities afforded by
the proposed approach. Requiring the user to first reach
their own decision serves to counteract the loss of users’
expertise and sense of responsibility that often occurs when

Fig. 8 Q/A architecture to support adversarial setting



Hum.-Intell. Syst. Integr.

users delegate decisions to a ML. It prevents the user
from becoming complacent and motivates them to give
more thought to their initial decision. It provides continued
opportunity for user to revisit and refresh their domain
knowledge. When the user and the algorithm don’t agree,
it forces the user to reconsider their decision in light of
parameters highlighted by the algorithm. In the end, it
makes it more likely that the user will critically evaluate the
machine’s decision. In applications where the algorithm is
more accurate than human users, this even allows the user
to challenge themselves to anticipate the algorithm’s answer
– either on their own, or explicitly, by adding game-playing
elements to the interaction.

Explaining an ML classifier’s decision while treating the
classifier as a black box has been proposed before, for
example (Baehrens et al. 2010; Bourneffouf et al. 2016).
However, the fundamental point in our approach is that
we did not consider the abstract question: Why αml? but
much more specifically question: Why αml and not αU? In
medicine, this approach is called Differential Diagnostics
(Siegenthaler 2011; Henderson et al. 2012).

Since our question is addressed to a machine, its
formulation can be more detailed: what minimal changes
are needed for the inputs to change the machine decision
from a to b? An answer to such a question would not only
give the standard answer I understand why and I agree
or disagree with the machine decision but also suggest a
correction in inputs. If changes in inputs are sufficient to
change decisions and are within the measurement error,
then the machine decision agrees with that of an expert.
To adequately explain the machine decision, we need an
adequate concept of minimal changes. Therefore, the overall
data analysis is done in normed spaces. As shown, this
normal-abnormal normalization is made from the point of
view of solutions chosen by an expert.

We hope this try is relevant of the European Union’s
new General Data Protection Regulation which controls
the applicability of machine learning (https://eugdpr.org/).
These regulations restrict automated individual decision-
making (that is, algorithms that make decisions based on
user-level predictors) which significantly affect users. The
law effectively creates a right to explanation, whereby a
human user can request an explanation of an algorithmic
decision that was made about them.

The DSS elements presented here may be used sepa-
rately. Approach to explaining the ML decision and the
algorithm for evaluating the users initial decision αU can be
used independently from each other.

Thus, the preliminary decision by an expert allows one
to explain the machine decision as why would the machine
arrive at a decision different from that of an expert?. This
explanation could be given even in the presence of many

potential decisions and prior to an interactive interaction as
suggested in Molnar (2019).

On the other hand, the modification of subjective
information becomes the main problem in accepting the
correct decision as shown in our example with medical
diagnosis above

Finally, we would like to mention a few words about the
description of error ranges. It is clear that our errors are
not simply 0/1 values but possess a statistical distribution
with some mean. In our paper, however, we considered a
simplified 0/1 description for simplicity of presentation.

Can we consider the results of our experiments to be a
proof of suitability of an initial solution? No, we cannot.
We understand the limitations of our experiments. We need
to continue experiments with more objects and different
experts under different conditions of accepting decisions,
especially under direct or administrative interest of a correct
solution.

Our approach has several limitations. The user’s interac-
tion with the DSS requires time which may be unavailable,
or example in a system that assists with time-sensitive tasks
such as operating machinery or driving a car. In applications
when machine learning decisions are more accurate than
an expert, the preliminary decision becomes a formality. In
these circumstances, we believe that the expert ambitions
could, in fact, result in worse decisions compared with that
of a machine.

We continue to conduct experiments on the influence of
initial expert’s decision before machine assisted decision
on the final decision. We are proposing to build such
an automated system of explainable ML decisions with
treatment of oncology patients at Mass General Hospital.

13 Conclusion

There are several advantages to structuring decision support
systems in such a way that a user offers her/his own
decision to the decision support system as a first step. This
makes it possible to introduce a Bi-directional Adversarial
Agent between the user (expert) and a machine learning
system. Such an agent brings the positions of the expert
and the ML closer in the event of a conflict between
their respective decisions. We expect this approach to be
implemented in practice with the goal of improving the
accuracy and explainability of the final solution. This would
serve to maintain, and possibly even improve, the domain
knowledge of experienced users.
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