Getting Started with SQLite

Copyright 2021 Boston University. All Rights Reserved.
Authored by Warren Mansur.

Table of Contents

TNEFOAUCTION ettt et e se e e e e s e sbessesaeeneeneas 3
SQLITE OVEIVIEW ...ttt ettt ettt et e et e e te e et e e eteeeabeeeteeeaseeeteesareenreesareenns 3
SUPPOrtEd PlatfOrmMSottt ettt anan 3
Downloading and Installing DB Browser for SQLIte ..o 4
Step 1: Downloading DB Browser for SQLIte.......cccoeieiiiiieieiseeeeeeee e 4
Step 2: Installing DB Browser for SQLItE.......ccocoveieiiiiicieceeeeee e, 5
Creating Your First Table......c. e 10
Step 1: Launching DB Browser for SQLItEccccoveivevieiieeeeceeee e 10
Step 2: Create a New Database ... 11
Step 3: AddiNg @ TabI@ ..o 16
Downloading the JDBC DIIVEL ...ttt 20
Connecting to your Database in ECliPSEc.ccoooecieieieiieeceeeeeeeeee e 22
Step 1: Creating @ NeW ProjJeCt ..ot 22
Step 2: Adding the JIDBC DIiVEr ...t 23
Step 3: INSErtiNng ROWS ..ottt et 29
Connecting to your Database in IntelliJ........ccoieee e 32
Step 1: Creating @ NEW ProjJeCEoovv ittt 32
Step 2: Adding the JIDBC DIiVEr ...ttt 35
Step 3: INSErtiNng ROWS ..ottt 38
ALY W= o 1= PRSPPI 41
AppPeNndixX A: SOUICE COAE ..ottt eneeneeneas 42

WWOTKS CIEEA. ..o e et e et e e e e e e e e e e e e eee e e eaaeeeeeeaseereeseeeeeeeenan 43

Introduction

This SQLite getting started guide is used by students enrolled in the Master of Science in Software Development and
other Computer Science Department programs in both on-campus and online programs. The document describes
SQLite, connecting to SQLite in Eclipse and IntelliJ, and working with your first table. Note that as new versions of
SQLite are released, some of the screens may look different than the screenshots in this document. Nevertheless,
this guide will help get you started quickly on any modern version of version of SQL Server Express.

Why is learning about databases important? Most serious applications have the need for durable storage, that is,
storing information for an extended period of time. While storing information in files satisfies the needs for some
applications, many require use of a database. Databases support four significant features not supported well by file
systems — efficient data access amongst large sets of data, extremely granular security, highly standardized, cross-
platform APIs, and structural independence. Databases support retrieving information quickly, oftentimes less than
a second, from vast amounts of data. Databases support security even down to individual fields in an extensible
manner. Databases have highly standardized APIs for cross-platform access. Lastly, applications that use databases
are not dependent upon any particular file system or file structure. Databases provide features needed by many
serious applications.

Relational databases are by far the most used databases in the world. Estimates put worldwide usage at about 77%
relational, and 23% NoSQL/Search (Solid IT). When data must be shared across many clients and/or servers of an
application, server-based databases are utilized, the most popular being Oracle, SQL Server, MySQL, and Postgres
(Solid IT). When data does not need to be shared or the need for sharing is very limited, embedded databases can
be utilized, the most popular by far being SQLite (Solid IT).

If you can’t determine how to proceed or something goes wrong, and web searches don’t help, ask your facilitator
or instructor for help. Good luck, and have fun!

SQLite Overview

SQLite is the most used, embedded (serverless) relational database in the world. It is open source and free to use.
Unlike server-based databases like Oracle and SQL Server, SQLite runs entirely in the application that uses it, and
stores all of its durable objects in a single disk file. SQLite can be used across all major platforms, which means the
database file can be freely copied and used across devices with difference architectures. SQLlite is ideal for
applications that would traditionally use files to store data, giving them access to the power of a relational database
without the expense and overhead of installing and maintaining a server-based database (SQLite).

Although SQLite is not a replacement for Oracle, SQL Server, or Postgres, the good news is, once you learn to access
and use any one modern relational database, you can use the others without much additional effort. All modern
relational databases utilize the Structured Query Language (SQL) for data access and manipulation. SQL is highly
standardized across databases. Although there are some differences, the significant aspects are the same across
databases. In addition, Java supports a standardized API, JDBC, for accessing any database. Connectivity from Java
does not differ much between databases. Thus SQLite is an excellent first database for Java developers, because the
intricacies of relational databases and connectivity can be learned without the overhead of database installation, yet
SQLite is used in serious applications worldwide.

Supported Platforms

SQLite supports all major platforms. If you are using Windows, a Mac, Linux, an Android phone, an iPhone, and some
other operating systems, you can use SQLite. For the sake of brevity, the examples and screenshots in this document
are for the Microsoft Windows family, including Windows 8 and Windows 10. However, please keep in mind you can
follow the same steps for other operating systems; your screens may look a little different, but almost all of the
steps are the same.

Page 3 of 43

Downloading and Installing DB Browser for SQL.ite

It is a best practice to manage your database’s structure with a SQL client. Typically, we use a SQL client to first add
the tables, indexes, and triggers (if needed), as well as any initial data. Then when our application executes, it will
add, modify, and remove data as needed, but not modify the structure of the tables and indexes. By separating
structure manipulation from data manipulation, we can carefully apply good database design principles, and avoid
embedding table structure in our application.

A popular SQL client for SQLite is DB Browser for SQLite. This section has you install the client and use it to create an
initial table.

Step 1: Downloading DB Browser for SQLite

Visit Website Go to https://sqlitebrowser.org/dl/ to get started downloading DB Browser for SQLite. The
website is regularly updated, so what you see may be different than the following.

F' Downloads - DB Browser for S0 X —+

& C & sqlitebrowser.org/dl/

About Download Blog Docs GitHub Gitter Slack Stats

lll)

Downloads

Windows

Our latest release (3.11.2) for Windows:

DB Browser for SQLite - Standard installer for 32-bit Windows &

DB Browser for SQLite - .zip (no installer) for 32-bit Windows &
DB Browser for SQLite - Standard installer for 64-bit Windows
DB Browser for SQLite - .zip (no installer) for 64-bit Windows

Download Click the “Standard installer for 64-bit Windows” under the Windows
downloads to start the download. If you are using a different operating
system, download the appropriate installer.

Page 4 of 43

Step 2: Installing DB Browser for SQLite

Execute Your browser will now give you the option to run the executable it
Installer downloaded. Go ahead and run it. You'll see a screen like the following.

o
jum)
Q
m
il
;]
m
el
m
3

80

Welcome to the DB Browser for SQLite
Setup Wizard

This Setup Wizard will install DB Browser for SQLite on your
computer.

If you have a previous version already installed, this
installation process will update it.

Accept After clicking the Next button, the installer will ask you to accept the license agreement.
License
Agreement

9 157 DB Browser for SOLite Setup - e

End-User License Agreement

Please read the following license agreement carefully

0B Browser for S0Lite is bi-licensed under the Mozilla Public License A
Wersion 2, as well as the GNU General Public License Version 3 or later.

You can modify or redistribute it under the conditions of these licenses.

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

[]1 accept the terms in the License Agreement

Print Back Cancel

Page 5 of 43

Select DB
Browser

Options

After clicking the Next button, you’ll be asked what you would like to install. Select both
the “Desktop” and “Program Menu” options under “DB Browser (SQLite)”.

1 DB Browser for SOLite Setup — -

Shortcuts
Select the shortouts for the application.

DB Browser for SOLite uses the latest version of SQLite, so you can enjoy all of its new
features and bug fixes, but it does not have encryption support.

Itis also built with SQLCipher as a separate application. SQLCipher is an open source
extension to 5QLite providing transparent 256-bit AES encryption of database files, but
uses a slightly older version of SQLite.

Both applications (with and without SQLCipher) are installed and can run concurrently,

This page allows you to choose the shortouts for each application and where to place

them.
DB Browser (S0Lite) DB Browser (SQLCipher)
Desktop [| Desktop
Program Menu []Program Menu

Page 6 of 43

Accept
Defaults

ﬁ DE Browser for S0Lite Setup

Custom Setup

Select the way you want features to be installed.

After clicking the Next button, you’ll be asked if you’d like to change any
install options. You don’t need to change anything on this screen.

Click the icons in the tree below to change the way features will be installed.

S DB Browser for SOLite The complete package
[=)- =0 = | 50Lite Extensions
FR— =i~ | Math
This feature requires 39MB on your
hard drive. Ithas 1of 1
subfeatures selected. The
subfeatures require 40KB on your
hard drive.
Location: C:VProgram Files\DB Browser for SQLitel, e
Reset Disk Usage Back Cancel

Page 7 of 43

Start the
Install

After clicking the Next button, you’ll be presented with a screen that asks
you to install. Go ahead and click the “Install” button.

ﬁ DB Browser for SOLite Setup - d

Ready to install DB Browser for SQLite

Click Install to begin the installation. Clid Back to review or change any of your
installation settings. Click Cancel to exit the wizard.

Back | B Install Cancel

You'll see a progress screen first.

ﬁ DB Browser for SOLite Setup - >

Installing DB Browser for SQLite

Please wait while the Setup Wizard installs DE Browser for SQLite.

Status: Removing backup files

Page 8 of 43

Then you’ll see a screen indicating the install was successful.

ﬁ DE Browser for 50Lite Setup — >

Completed the DB Browser for SQLite
Setup Wizard

Click the Finish button to exit the Setup Wizard.

»
-

Thank you for installing DB Browser for SOLite.

Go ahead and click the Finish button. Congratulations! DB Browser for SQLite is installed
on your machine.

Page 9 of 43

Creating Your First Table

To get you started, we’ll walk you through creating your first table in this section. The table will be named “Person”
and will store basic information about people. In a later section we’ll have you connect to your database and start
working with data in the table.

Step 1: Launching DB Browser for SQLite

Launch from You can launch DB Browser for SQLite from Windows, either from the Start Menu, or
Windows from the shortcut on the desktop, as shown in the below screenshots.

Start Menu

All Apps Documents Web More =

Best match

Desktop

Page 10 of 43

Step 2: Create a New Database

The first thing you need to do after launching the application is create a SQLite database, which will house the tables
and other objects you want to work with.

Click New To get started, click the “New Database” button in the top left, as shown below.
Database

-E DB Browser for SCLite
File Edit View Tools Help

i Mew Database g Open Database Write Changes L Revert Change

| Create a new database file
Database Struchire Browse Data Edit Pragmas Execute SOL

R e T A B A Tl ™ n —
y LLreate [able y Lredate Index ¥iodiTy 1able Lelete 1able

Mame Type Scherr
Determine Now you need to choose a folder and filename. It may be necessary to create a folder to
Path keep the database in a place you can remember.

In our example, we have created “C:\SQLite” as the folder, because it isa common
location that is easy to remember. Later when you’re developing within the context of
your application, you might choose to save your database as part of your Java project. In
the real world, the database is commonly saved in its own subdirectory in a source code
repository for the project.

We entered “GettingStarted.db” as the filename. The “GettingStarted” name helps us
know it’s for this getting started tutorial. The “.db” file extension is one of the accepted
extensions for SQLite files. There are a few other accepted extensions as well; however,
“.db” appears to be the most common.

Page 11 of 43

This is shown in the screenshot below.

_5 Choose a filename to save under x
= v A « Windows (C:) » 50Lite v | Search 50Lite 2
Organize - Mew folder == o
I Desktop & Mame Date m{
E] Documents .
Mo items match your search.
* Downloads
J‘) Music
W >
File name: v
Save as type: | 50Lite database files (*.db *.sglite *.sqlite3 *.db3) w
Hide Folders Cancel
Close Table Immediately after clicking the “Save” button to create the database, a window pops up
Definition that lets us define tables using a wizard.
Screen
[Edit table definition
Table
[
W Advanced
Fields
E& Add field |_d Remove field s« Move field up Move field ¢
Mame Type MM PK
<
1 %CREATE TABLE "" {
2
3 [

Simply close this window, as we will be typing in SQL directly.

Page 12 of 43

Select We want to type the CREATE TABLE command in SQL, so we need to click on the

Execute SQL “Execute SQL” tab first, as shown below.
Tab

_?; DB Browser for 5CLite - CASOLite\GettingStarted.db
File Edit View Tocls Help

& New Database gt Open Database | Write Changes L Revert Changes
Database Structure Browse Data Edit Pragmas Execute SCOL
e o . T I
s BB & » M . &) B
soL 1B

1

Create Table Next, we type the command to create the table. Type this command exactly:

CREATE TABLE Person (

person_id INTEGER PRIMARY KEY AUTOINCREMENT,
first name VARCHAR (64) NOT NULL,

last name VARCHAR (64) NOT NULL,

birth_date DATE NOT NULL) ;

This is shown below.

saL 1B

1 CEEATE TABLE Perscon

2 person_id INTEGER FRIMARY EEY AUTOINCEEMENT,
3 first nams VARCHAR (c4) NOT NULL,

4 last_names VARCHAR (£4) NOT NULL,

5 birth_date DATE NOT NULL);

= I

This command creates a table named “Person” with a person_id autoincrementing field,

first and last name fields, and a birth date field.

Page 13 of 43

Save Changes

Next click the “Execute all/selected SQL” button, which looks like V. After you have done

so, a message will appear stating that the table has been created. This is all shown
below.

SBR8 » W E 8%

saL1 B | Execute all/selected SOL [F3, Ctrl+Return, Ctrl+R] h

EATE TABLE Person |
person_id INTEGER PRIMARY EEY AUTOINCREMENT,
first_name VARCHAR (64) NOT NULL,

last_name VARCHAR(64) NOT NULL,
lbirth date DATE WOT NULL) ;

Besult: query executed successfully. Took 2ms
At lins 1:

CEEATE TABLE Perscon |

person_id INTEGER FRIMARY KEY AUTOINCREMENT,
first_name VARCHAR (64} NOT NULL,

last _name VARCHAR(g4) NOT NULL,

birth date DATE NOT NULL);

You can see that your person table was successfully created!

In order to save the changes to the database file, you need to click the “Write Changes”
button, as shown below.

iy New Database & Open Database [Write Changes | Revert Changes N

Database Structure Browse Data Edit Pragmas | Write changes to the database file h
=2 BB & » W E & %
saL 1B

S NCREATE TABLE Person |

Page 14 of 43

Once you have done so, the button will gray out, indicating there is nothing more to
save.

i New Database £+ Open Database | Write Changes L Revert Changes
Diatabase Structure Browse Data Edit Pragmas Execute SQL
e o i Ll
e B B & » M L & By
soL1 B3

1 |_':_| AEATE TAELE Person |

You can determine if any changes need to be saved by looking at these buttons to see if
they are clickable, or grayed out.

Database Congratulations! You’'ve created a SQLite database and added a table to it. The database
Ready for is now ready for an application to connect to it and work with person data, which we’ll
Application do in the next section.

Page 15 of 43

Step 3: Adding a Table

Close Table Immediately after clicking the “Save” button to create the database, a window pops up

Definition that lets us define tables using a wizard.
Screen

/| Edit table definition

Table

W Advanced

Fields

L_a. Add field Remove field Maove field up Move field ¢

Mame Type MM PK

—

%CRERTE TABLE "" {

3 i

Simply close this window, as we will be typing in SQL directly.

Select We want to type the CREATE TABLE command in SQL, so we need to click on the

Execute SQL “Execute SQL” tab first, as shown below.
Tab

__ﬂ, DB Browser for 5CLite - CASOLite\GettingStarted.db
File Edit View Tocls Help

& New Database gt Open Database | Write Changes L Revert Changes
Database Structure Browse Data Edit Pragmas Execute SCOL
P ~
s BB & » M . &) B
soL 1B

1

Page 16 of 43

Create Table Next, we type the command to create the table. Type this command exactly:

CREATE TABLE Person (

person_id INTEGER PRIMARY KEY AUTOINCREMENT,
first name VARCHAR(64) NOT NULL,

last name VARCHAR (64) NOT NULL,

birth date DATE NOT NULL) ;

This is shown below.

soL1 B

1 CREATE TABLE Perscn |

2 perscon_id INTEGER PRIMARY EEY AUTOINCREMENT,
3 first nams VARCHAR (c4) NOT NULL,

=5 last_nams VARCHAR (£4) NOT NULL,

5 birth_date DATE NOT NOULL);

= I

This command creates a table named “Person” with a person_id autoincrementing field,
first and last name fields, and a birth date field.

Page 17 of 43

Next click the “Execute all/selected SQL” button, which looks like V. After you have done
so, a message will appear stating that the table has been created. This is all shown

below.
saL1 B | Execute all/selected SOL [F3, Ctrl+Return, Ctrl+R] h

EATE TABLE Person |
person_id INTEGER PRIMARY EEY AUTOINCREMENT,
first_name VARCHAR (64) NOT NULL,

last_name VARCHAR(64) NOT NULL,
lbirth date DATE WOT NULL) ;

Besult: query executed successfully. Took 2ms
At lins 1:

CEEATE TABLE Perscon |

person_id INTEGER FRIMARY KEY AUTOINCREMENT,
first_name VARCHAR (64} NOT NULL,

last _name VARCHAR(g4) NOT NULL,

birth date DATE NOT NULL);

You can see that your person table was successfully created!

Save Changes In order to save the changes to the database file, you need to click the “Write Changes”
button, as shown below.

gy New Database .2+ Open Database [Write Changes | Revert Changes B

Database Structure Browse Data Edit Pragmas | Write changes to the database file i
= BE & » M EFE & %
soL1 B

SO CREATE TABLE Person |

Page 18 of 43

Once you have done so, the button will gray out, indicating there is nothing more to
save.

i New Database £+ Open Database | Write Changes L Revert Changes
Diatabase Structure Browse Data Edit Pragmas Execute SQL
e o i Ll
e B B & » M L & By
soL1 B3

1 |_':_| AEATE TAELE Person |

You can determine if any changes need to be saved by looking at these buttons to see if
they are clickable, or grayed out.

Database Congratulations! You’'ve created a SQLite database and added a table to it. The database
Ready for is now ready for an application to connect to it and work with person data, which we’ll
Application do in the next section.

Page 19 of 43

Downloading the JDBC Driver

With your database setup, the next step is to download the SQLite JDBC driver so that it can be imported into your
Eclipse, IntelliJ, or other IDE project. Java requires the JDBC driver to access the database.

Visit the
Website

To get started, visit https://github.com/xerial/sqlite-jdbc/releases. You will see a list of drivers
there, similar to the below screenshot.

O Releases - xerial/sqlite-jdbe - Git

X

+

& > (C & github.com/xerial/sglite-jdbc/releases

Q Why GitHub? Team Enterprise Explore Marketplace Pricing

& xerial / sqlite-jdbc

<> Code Issues 160

‘ Latest release':'

© 3.34.0
-0~ 8727cel

Verified

Compare =

& Watch

Pull requests 18 Discussions Actions Projects Security Int

3.34.0

’ xerial released this on Dec 10, 2020 - 3 commits to master since this release

¢ Upgraded to SQLite 3.34.0
* |mproved the performance of reading String columns
& Support URI file names (file://...) in backup/restore commands https://sqlite.crg/uri.html

* Show SQL strings in PreparedStatements.toString()

+ Assets 2

[§] Source code (zip)

[?) source code (tar.gz)

Page 20 of 43

Download To start the download, click on the link for the Jar file for the most recent version available. You
Driver don’t need the source files, just the jar file. An example Jar file link is shown below.

©s33232 33339

=0~ @b789de
xerial released this on Sep 8, 2020 - 25 commits to master since this release
Verified ’ P ¥ ¥ “
3.32.3.2 release
Compare v

» Assets 3

e Msqlite-jdbe-3.32.3.2 ja
E] Source code (zip)

[?) source code (tar.gz)

Once clicked, your browser will ask you where you’d like to save the file. Make sure to save the
driver in a directory you can remember, because in a later section we will browse to the
directory to use the driver in our IDE.

In the example below, it is saved into the C:\SQLite\Driver directory, one subdirectory below
where the database itself is stored.

€ Savehs x
u » This PC » Windows (C:) » SOLite » Driver v | Search Driver yel
Organize « Mew folder == - 0
P
‘ Downloads ~ MName Date modified Type
J’& Music
Mo items match your search.
&= Pictures
m Videos
. Windows (C:) b RS >
Nl s glite-jdbc-3.30.1.jar v
Save as type: | Executable Jar File (% jar) ~

» Hide Folders Cancel

Once downloaded, you are set to import it into Eclipse, IntelliJ, or your other IDE, and may
continue with the next section that applies to you.

Page 21 of 43

Connecting to your Database in Eclipse

With the database setup and the JDBC driver downloaded, the next step is to use the database in your Java code. To
get you started with SQLite, we will explore connecting to your database, adding data into the already created
Person table, and querying the Person table.

This section illustrates how to do so in Eclipse. If you are using IntelliJ, you may skip this section and proceed with
the next section titled “Connecting to your Database in Intelli)”.

Step 1: Creating a New Project

Identify You can create a new Java project which will be used to test your database connection. Or, if
Project you already have a project, you can use that and skip to Step 2. The first step is to initiate
creation with File/New/Java Project, as shown below.

& eclipse-workspace - Eclipse IDE
File = Edit Source Refactor Mavigate Search Project Run Window Help

Mew Alt+Shift+M » 1:3 Java Project
Open File... | F'rl Create a Java project
) Open Projects from File System... BF Package

Name Project We name our project “Database” since we will be testing out using our database.

& Mew Java Project O bt

Create a Java Project

Create a Java project in the workspace or in an external location. /

Project name: | Database |

[Use default location

My Drive\BUNFacilitation and Course Development\C5622\Course Runningsh2020 1 Instructorieclipse-work Browse...
JRE
(®) Use an execution environment JRE: JavaSE-1.8 ~
I/?j' < Back Next Cancel

Once the name is given, click the “Finish” button.

Page 22 of 43

Now our project shows up under Package Explorer.

[# Package Explorer

w '[;_—,‘f- Database
B\ JRE Systemn
(R sre

&3

Library [JavaSE-1.8]

Step 2: Adding the JDBC Driver

Add JDBC
Driver Jar

Right click on your project in Package Explorer, then click on Build Path/Add Libraries...

[Package Fxplorer i3

L-_'—LJ- Database
=2 HelloWarle
=2 ModulelLi
1= Modulelli
&= Moduledli
L= Moduledli
Y = TestExcept
B\ JRE Syst
B src

X G

C. F

B S

Mew

Go Into

Open in Mew Window
Open Type Hierarchy

Show In

Copy
Copy CQualified Mame

Paste
Delete

Remove from Context
Build Path
Source

Refactor

Import...
Export...

==

§ = 0
*
F4
Alt+Shift+ W »
Ctrl+C
Ctrl+V
Delete

Ctrl+Alt+ Shift+Down
>
Alt+5hift+5 »
Alt+Shift+T >

=

i

R
%

Link Source...

Mew Source Folder...

Usze as Source Folder

Add External Archives...

Add Libraries...

Page 23 of 43

Select “User Library” and click Next.

& Add Library O et
Add Library

Select the library type to add. ﬂj

JRE Systemn Library
JUnit

Maven Manaied Deiendencies

@

Click the “User Libraries...” button.

S Add Library O >
User Library —
Select a library to add to the classpath. all,l

User libraries:

Llser Libraries...

Page 24 of 43

Click “New...”.

& Preferences (Filtered) | >
| type filter text *x | User Libraries M v
w lava

User libraries can be added to a Java Build path and bundle a number of external

v Build Path archives, Systemn libraries will be added to the boot class path when launched,

eaga Defined user libraries
Mew...

Edit...

Add JARs...

Remove

Up

Down

Add External JARs...

Import...

Give it a name. Here we use the name “Database”.

& Mew User Library it

User library name:

| Database |

[System library (added to the boot class path)

©

Page 25 of 43

Click “Add External Jar...”.

& Preferences (Filtered) | X
| type filter text x User Libraries ~ v 8
v Java . . .
. User libraries can be added to a Java Build path and bundle a number of external
~ Build Path

archives, System libraries will be added to the boot class path when launched,

il = Defined user libraries:

=, Database Mew...

Edit...
Add JARs...

Add External JARs...

Browse to the location of the Jar file you extracted and select the file. We had put it into
C:\SQLite\Driver below.

& JAR Selection

>
ui « Windows (C:) » SQLite » Driver w Search Driver o
Organize Mew folder ==~ W @
- Marme Date modified Typ
Quick access
4| sglite-jdbec-3.30.1.jar 3/31/2020 11:46 AM Exe
[Desktop (&) sqlite} !
-‘ Downloads
|Z= Documents
== Dirtirac S v
File name: | sqlite-jdbe-3.30.1.jar v‘ *jar*.zip w

Once you've selected the Jar, you should see something like this, showing that the SQLite
JDBC jar has been added to the library.

Page 26 of 43

& Preferences (Filtered) O *

| type filter text X | User Libraries M v 3
v Java _ .
. User libraries can be added to a Java Build path and bundle a number of external
» Build Path archives. System libraries will be added to the boot class path when launched.
User Libraries : s
Defined user libraries:
+~ = Databasze Mew...
w (oa sqlite-jdbe-3.30.1.jar - CASQLite\Driver
[z Source attachment: (None) Edit...
{@] Javadoc location: (Mone) Add JARs

e External annotations: (None)

@' Is not modular - non modifiable Add External J&Rs...
£ Mative library location: (Nene)
s Access rules: (Mo restrictions)
EF Visible only for test sources: Mo

Remove

U B

Down

Import..

Export...

'i?:' IQ. =3 @ Apply and Close Cancel

Click “Apply and Close” to apply what you have done.

On the next screen, make sure the “Database” user library is selected, and click the
“Finish” button.

Page 27 of 43

& Add Library O et
User Library

Select a library to add to the classpath. %1 |

Uzer libraries:

B Databasze Uzer Libraries...

':?;' < Back Mext = Cancel

In Package Explorer, you will now see that the SQLite jar has been added to your project.

[# Package Explorer i3 =

vIg‘J Databasze
B\ JRE System Library [JavaSE-1.2
w =, Database
fmy sqglite-jdbe-3.30.1.jar - T S0LEEDriver
(B sre

e

Note that in this process we added an “External” jar because the jar resided in a
directory outside of our project directory. You could also copy the Jar into your project if
you’d like and use it as an internal jar. It will work either way.

In real-world situations, some organizations have a common Jar directory checked into a
repository that can be shared by many projects, just like we have done here with the
C:\SQLite\Driver directory. Some organizations put the Jars into each project. Yet other
organizations use a robust Jar management tool such as lvy, which stores the Jars on a
server, and are retrieved dynamically by the build process. The important takeaway here
is that the SQLite jar must be included in your project, wherever it may be located.

Page 28 of 43

Step 3: Inserting Rows

Create Class Now you create a Java class that connects to your database, inserts two rows, then queries those
rows, outputting the results to the screen. The entire class is below.

package database;

2 import java.sql.*;
3
4 public class UseDatabase [f
5= private static wvoid insert(Connecticn conn) throws SQLException {
6 String sql = "INSERT INTO Person(first_name, last_name, birth_date) VALUES (7, 7, *)";
7 try (PreparedStatement pstmt = conn.prepareStatement(sql)) {
8 pstmt.setString(l, "Bob");
9 pstmt.setString(2, "Smith");
1@ pstmt.setDate(3, Date.valuedf("1976-1-13"));
11 pstmt.executelpdate();
12
13 pstmt.setString(l, “"Jane");
14 pstmt.setString(2, "Elizabeth™);
15 pstmt.setDate(3, Date.valuwedf("1979-3-15"));
16 pstmt.executeUpdate();
17 }
18}
9

5

= private static void query({Connection conn) throws SQLException {
string sql = "SELECT perscn_id, first_name, last_name, birth_date FROM Person”;

2 try (Statement stmt = conn.createStatement();

3 ResultSet rs = stmt.executeQuery(sql)) {

2 while (rs.next()) {

5 system.out.printf("¥d\t¥-1es\t¥-10s\t¥E0%n",

6 rs.getInt{l), rs.getString(2), rs.getString(3), rs.getDate(4));
7 ¥

8 ¥

9 ¥

[=x]

1= public static woid main(String[] args) throws SQLException {
String url = "jdbe:sglite:C:/SQLite/Gettingstarted.db”;
try (Connection conn = DriverManager.getConnection(url)) {
insert(conn);
guery(conn);

L ld Ll gl Ll Ld L R R R R RS BRI R R R R
I I R o I R MR L

[ea]
L

First, let’s start with a high-level summary. The main method opens a connection, and passes it to
an insert method and query method, respectively. The insert method inserts two rows into the
Person table. The query method retrieves those rows and prints them out in a tabular format.

Although there are many lines, we explain each line in turn. Note that we do not describe the
lines sequentially; rather, we describe them in terms of program flow (which starts in the main

method).
Line 1 We put this class into a “database” package.
Line 2 We import the java.sqgl package because we make use of many of its classes.
Line 32 We start the main method by defining the connection string for our database.

The “jdbc:sglite” portion instructs the JDBC API to use the SQLite driver we
included in our project, as opposed to some other driver such as Oracle or SQL
Server, the “C:/SQLite/GettingStarted.db” portion instructs the SQLite JDBC
driver as to what file to open. Since we had saved our database file to

Page 29 of 43

Line 33

Line 35
Line 6

Line 7

Lines 8-10

Line 11

Lines 13-16

Line 35

Line 21

Lines 22-23

Line 24

C:\SQLite\GettingStarted.db, we specify that in the connection string. Although
the string may look terse, the information in it is easily understandable.

This opens the connection to our database, inside of a try/with block which will
automatically close it. In order to work with the database in our application, a
connection must be open to the database.

This invokes our insert method which will insert the rows into our database.

Inside the insert method, this is an example of SQL embedded into our
application. This INSERT INTO command is used as the instruction to insert a row
into the Person table. The “(first_name, last_name, birth_date)” portion
describes which columns we are inserting into, and the order which we specify
them. In this case, we are inserting into the first_name, last_name, and
birth_date columns, respectively. Note that because person_id is an
autoincrementing field, we don’t specify that here. The database will
automatically assign it a value. The “VALUES (?, ?, ?)” portion indicates that we
are inserting parameterized values, as opposed to hardcoding values. We use the
“?” to indicate that we are not hardcoding any value, but can change the value at
runtime.

We instantiate a PreparedStatement, which is needed to execute the
parameterized SQL. By passing the SQL string as an argument, we have told the
JDBC driver which SQL command we want it to execute. We put this instantiation
inside of try/with block so that it will be closed automatically.

Here we define what the parameters (defined by the “?” in the SQL string) are in
turn. The first parameter is “Bob” corresponding to the first_name column, the
second parameter is “Smith”, corresponding to the last_name column, and the
third parameter is 1/13/1976, corresponding to the birth_date column.

This instructs the JDBC driver to execute the prepared statement with the given
parameters. With the parameters set, it will be executing this command (but still
using parameters behind the scenes):

INSERT INTO Person (first name, last name, birth date)

VALUES (‘Bob’, ‘Smith’, ‘1/13/1976")

Following similar logic to lines 8-11, these lines insert a new row with first_name
= “Jane”, last_name = “Elizabeth”, and birth_date = “3/15/1979”.

This invokes our query method which will retrieve and display the rows we have
inserted.

Inside the query method, this SQL string is to select all four columns from the
Person table, in this order — person_id, first_name, last_name, birth_date.

A statement is created on line 22 with the conn.createStatement() method, and
on line 23 the query (previously defined on line 21) is executed with the
stmt.executeQuery() method. This returns an object of type ResultSet, which has
all rows and columns from the results. These are created within a try/with block
so that they are automatically closed.

This while loop uses the rs.next() method to iterate through each row. As long as
there is another row in the result set, the next() method will return true.

Page 30 of 43

Run Class

Lines 25-26 This prints out the results of the query in a tabular format. Note that the

ResultSet class provides methods such as getString(), getDate(), and getint(), to
retrieve the specific fields in a row. The correct method must be used for the
correct datatype. For example, getint() must be used for person_id since it is an
integer, and getDate() must be used for birth_date since it is a date. The first
argument of these methods is the column number. For example, the getint() call

specifies “1” as the column number since person_id is queried first. The

getDate() call specifies “4” as the column number is birth_date is queried last.

NOTE: The source code is available in Appendix A so that you may copy and paste as needed.

With the class defined, we can now run it with the Run/Run menu command.

wa - Eclipse IDE
Run Window Help
» 2 Run Ctrl+F11
i 1%, Debug F11
=, Coverage Ctrl+Shift+F11

After the class executes, you see the output as below.

& Console 3
<terminated> UseDatabase [Java Application] C:\Program FilesJava'jre’
1 Bob Smith 81/13/76
2 Jane Elizabeth @3/15/79

Notice that the person_id autoincrement column starts at 1 and increments upwards by 1.
Further notice that Bob Smith born on 1/13/1976 is listed first, followed by Jane Elizabeth born on

3/15/1979.

Page 31 of 43

Connecting to your Database in IntelliJ

With the database setup and the JDBC driver downloaded, the next step is to use the database in your Java code. To
get you started with SQLite, we will explore connecting to your database, adding data into the already created
Person table, and querying the Person table.

This section illustrates how to do so in IntelliJ. If you are using Eclipse, you may skip this section and proceed with
the prior section titled “Connecting to your Database in Eclipse”.

Step 1: Creating a New Project

Create a Click the “Create New Project” option to get started creating your project.
Project

Bl Welcome to Intellil IDEA -

IntelliJ IDEA

+ Create New Project
1 Import Project
&= Open

¥’ Get from Version Control

LI Configure ¥ Get Help =

Page 32 of 43

Choose Your next step is to choose the “Java” project type. There are other types of projects you can
Project Type create, but a typical project is a Java project which allows you type Java code and execute it.
The Java project type is selected by default, so just click the Next button to continue.

Bl new Project X
Java FX
Additional Libraries and Frameworks:
Android

[]'& Groovy

Intelli) Platform Plugin
O Kotlin/ym

Maven
Gradle
& Groovy
[Kotlin
Empty Project
Use library: | [No library selected]
Next Cancel Help
Accept Next, the screen prompts you to decide whether you're creating your project from a
Template template or not. We are creating a project from scratch (which is typical), so leave the
Defaults “Create from project template” checkbox unchecked and click the Next button.
Mew Project x
[] Create project from template
Command Line App
Previous MNext Cancel Help

Page 33 of 43

Name Project We name our project “Database” since we will be testing out using our database.

MNew Project x

Project name: Database

Project location: | Ch\Users\warre\ldeaProjects' Database

¥ More Settings

Brevious Cancel Help

Once the name is given, click the “Finish” button.

Now our project shows up in the Project window.

= Database
g Project = B - o — |
E Database C'Users\warre\ldeaProjects\Database
:I Il External Libraries

O Scratches and Consoles

Page 34 of 43

Step 2: Adding the JDBC Driver

Add JDBC Start by accessing the File/Project Structure menu option.
Driver Jar

{15 Edit Wiew Mavigate Code Analyze

Mew H
&= Open..
Open Recent)

Close Project
& Settings... Ctrl+ Alt+5

Project Structure... Ctrl+ Alt+5Shift+5
Other Settings)

On the new window that appears, click on the Module option, then the Dependencies
tab, as shown below.

Project Structure it
+ - [E
< = Mame: | Database
.) - Database
Project Settings
Project Sources Paths Dependencies
Madules Module SDK: | ' Project SDK (1.7 ~ || New. Edit
Libraries
Facets Export scope w7
Artifacts 1.8 (java version "1.8.0_241")
Platform Setting <Medule source=
SDKs 4
Global Libraries
Problems
Dependencies storage format: | Intelli) IDEA Ciml) S
® Cance

Page 35 of 43

Then click on the plus sign, +, then click on “JARs or directories”, as shown below.

2 Library... *
3

= 2 Module Dependency...

From there, select the driver that was downloaded in the C:\SQLite\Driver directory, and
click the OK button.

Select Path b4

Ok k X G Hide path
CAS50Litel Driver\sglite-jdbec-3.30.1,jar
LG
Brother
? Documents and Settings
GoogleDrive
PerflLogs
Program Files
Program Files (x26)
5CLite

Drriver

sqlite-jdbe-3.30.1,jar

Temp
tmp
Users

Windows

You'll now see the jar file included. Click the OK button to close out of the Project
Structure window.

Page 36 of 43

Project Structure *
« + — B

Mame: | Database

. . - Database
Project Settings _
Project Sources Paths Dependencies
Modules Module SDK: | [Project SDK (1. v || New.. Edit
Libraries
Facets Export Scope *
Artifacts = 1.8 (java version "1.8.0_241") -
Platform Setting <Module source>
SDKs H sqlite-jdbc-3.30.1,jar (C:ASQLite\Driver)
Global Libraries 7
Problems

Dependencies storage format: | Intelli) IDEA Giml) =

o

Under the External Libraries on the Project window, you’ll see the jar as well.

= Database

T Project = B = O —
g @ Database C:\Users\warrehldeaProjects\Database
Ml Extemal Libraries

sqlite-jdbe-3.30.1,jar library root
= < 1.8 > C\Program Files'Java'jdk1.8.0_241

o Scratches and Consoles

Note that in this process we added an “External” jar because the jar resided in a
directory outside of our project directory. You could also copy the Jar into your project if
you'd like and use it as an internal jar. It will work either way.

In real-world situations, some organizations have a common Jar directory checked into a
repository that can be shared by many projects, just like we have done here with the
C:\SQLite\Driver directory. Some organizations put the Jars into each project. Yet other
organizations use a robust Jar management tool such as lvy, which stores the Jars on a
server, and are retrieved dynamically by the build process. The important takeaway here
is that the SQLite jar must be included in your project, wherever it may be located.

Page 37 of 43

Step 3: Inserting Rows

Create Class Now you create a Java class that connects to your database, inserts two rows, then queries those
rows, outputting the results to the screen. The entire class is below.

backage database;
import java.sgl.*®;

» public class UseDatabase {
@ private static void insert(Connection conn) throws SQLException {
string sgql = "INSERT INTO Person(first_name, last_name, birth_date) VALUES (2, ?, ?)";
try (PreparedStatement pstmt = conn.prepareStatement(sql)) {
pstmt.setString(parameterindex: 1, x: "Bob"});
pstmt.setString(parameterindex: 2, x "Smith");
pstmt.setDate(parameterindex: 3, Date.valueQf("1976-1-13"));
pstmt.executeUpdate();

pstmt.setString(parameterindex: 1, x: "Jane™);
pstmt.setString(parameterindex: 2, x: "Elizabeth™});
pstmt.setDate(parameterindex: 3, Date.valueOf("1979-3-15"));
pstmt.executeUpdate();

private static woid query(Connecticn conn) throws SQLException {
string sql = "SELECT person_id, first_name, last_name, birth_date FROM Person”;
try (Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql)) {
while (rs.next()) {
System.out.printf("Xd\t¥-10s\t¥-10s\t¥tD¥n", rs.getInt(columnindex: 1}, rs.getString(columnindex: 2},

rs.getSstring(columnindex: 3), rs.getDate(columnindex: 4));

}
h
}

» public static wvoid main(String[] args) throws SQLException {
string url = "jdbc:sqlite:C:/sQLite/GettingStarted.db”™;
try (Connection conn = DriverManager.getConnection(url)) {

insert{conn);
query(conn);
}
}

First, let’s start with a high-level summary. The main method opens a connection, and passes it to
an insert method and query method, respectively. The insert method inserts two rows into the
Person table. The query method retrieves those rows and prints them out in a tabular format.

Although there are many lines, we explain each line in turn. Note that we do not describe the lines
sequentially; rather, we describe them in terms of program flow (which starts in the main method).

Line 1 We put this class into a “database” package.
Line 2 We import the java.sqgl package because we make use of many of its classes.
Line 32 We start the main method by defining the connection string for our database.

The “jdbc:sglite” portion instructs the JDBC API to use the SQLite driver we
included in our project, as opposed to some other driver such as Oracle or SQL
Server, the “C:/SQLite/GettingStarted.db” portion instructs the SQLite JDBC

Page 38 of 43

Line 33

Line 35
Line 6

Line 7

Lines 8-10

Line 11

Lines 13-16

Line 35

Line 21

Lines 22-23

driver as to what file to open. Since we had saved our database file to
C:\SQLite\GettingStarted.db, we specify that in the connection string. Although
the string may look terse, the information in it is easily understandable.

This opens the connection to our database, inside of a try/with block which will
automatically close it. In order to work with the database in our application, a
connection must be open to the database.

This invokes our insert method which will insert the rows into our database.

Inside the insert method, this is an example of SQL embedded into our
application. This INSERT INTO command is used as the instruction to insert a row
into the Person table. The “(first_name, last_name, birth_date)” portion
describes which columns we are inserting into, and the order which we specify
them. In this case, we are inserting into the first_name, last_name, and
birth_date columns, respectively. Note that because person_id is an
autoincrementing field, we don’t specify that here. The database will
automatically assign it a value. The “VALUES (?, ?, ?)” portion indicates that we
are inserting parameterized values, as opposed to hardcoding values. We use the
“?” to indicate that we are not hardcoding any value, but can change the value at
runtime.

We instantiate a PreparedStatement, which is needed to execute the
parameterized SQL. By passing the SQL string as an argument, we have told the
JDBC driver which SQL command we want it to execute. We put this instantiation
inside of try/with block so that it will be closed automatically.

Here we define what the parameters (defined by the “?” in the SQL string) are in
turn. The first parameter is “Bob” corresponding to the first_name column, the
second parameter is “Smith”, corresponding to the last_name column, and the
third parameter is 1/13/1976, corresponding to the birth_date column.

This instructs the JDBC driver to execute the prepared statement with the given
parameters. With the parameters set, it will be executing this command (but still
using parameters behind the scenes):

INSERT INTO Person (first name, last name, birth date)

VALUES (‘Bob’, ‘Smith’, ‘1/13/1976")

Following similar logic to lines 8-11, these lines insert a new row with first_name
= “Jane”, last_name = “Elizabeth”, and birth_date = “3/15/1979".

This invokes our query method which will retrieve and display the rows we have
inserted.

Inside the query method, this SQL string is to select all four columns from the
Person table, in this order — person_id, first_name, last_name, birth_date.

A statement is created on line 22 with the conn.createStatement() method, and
on line 23 the query (previously defined on line 21) is executed with the
stmt.executeQuery() method. This returns an object of type ResultSet, which has
all rows and columns from the results. These are created within a try/with block
so that they are automatically closed.

Page 39 of 43

Line 24 This while loop uses the rs.next() method to iterate through each row. As long as
there is another row in the result set, the next() method will return true.

Lines 25-26 This prints out the results of the query in a tabular format. Note that the
ResultSet class provides methods such as getString(), getDate(), and getInt(), to
retrieve the specific fields in a row. The correct method must be used for the
correct datatype. For example, getint() must be used for person_id since it is an
integer, and getDate() must be used for birth_date since it is a date. The first
argument of these methods is the column number. For example, the getint() call
specifies “1” as the column number since person_id is queried first. The
getDate() call specifies “4” as the column number is birth_date is queried last.

NOTE: The source code is available in Appendix A so that you may copy and paste as needed.

Run Class With the class defined, we can now run it with the Run/Run menu command.

MIDDIS VCS Window Help Database [Ch\Users\warreh,

Run Shift+F10

Debug Shift+F9

Run with Coverage

Run... Alt+Shift+F10
Debug... Alt+Shift+Fo

Select the UseDatabase class to execute.

Run

0.#" Edit Configurations...

After the class executes, you see the output as below.

Run; UzeDatabaze
[“C:\Program Files\Java\jdkli.8.@ 241\bin\java.exe" ...
1 Bob smith 81/13/76
2 Jane Elizabeth @83/15/79
s+ Process finished with exit code @

Notice that the person_id autoincrement column starts at 1 and increments upwards by 1. Further
notice that Bob Smith born on 1/13/1976 is listed first, followed by Jane Elizabeth born on
3/15/1979.

Page 40 of 43

Next Steps

Congratulations! You are now well on your way to working with SQLite. You have used a SQL client, DB Browser for
SQLite, to create a database as well as a table. You have used the SQLite JDBC driver to add data to the table and
retrieved the data in Java. Your instructor may ask you to use other SQL commands and JDBC features, and you now
have a framework from which to do so. Don’t worry. If you can create one database, you can create many. If you can
execute one SQL command in Java, you can execute many. You are well on your way.

Page 41 of 43

Appendix A: Source Code

The source code for the UseDatabase class is available below so that you can copy and paste it as needed.

package database;

import java.

sql.*;

public class UseDatabase {
private static void insert(Connection conn) throws SQLException {

String sql = "INSERT INTO Person(first_name, last_name, birth_date) VALUES (?, ?, ?)";

try (PreparedStatement pstmt = conn.prepareStatement(sql)) {

pstmt.
pstmt.
pstmt.
.executeUpdate();

pstmt

pstmt.
pstmt.
pstmt.
pstmt.

}
}

setString(1, "Bob");
setString(2, "Smith");
setDate(3, Date.valueOf("1976-1-13"));

setString(1, "Jane");

setString(2, "Elizabeth");

setDate(3, Date.valueOf("1979-3-15"));
executeUpdate();

private static void query(Connection conn) throws SQLException {

String sql = "SELECT person_id, first_name, last_name, birth_date FROM Person";

try (Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql)) {

while

(rs.next()) {

System.out.printf("%d\t%-10s\t%-10s\t%tD%n",

}
}
}

rs.getInt(1), rs.getString(2), rs.getString(3), rs.getDate(4));

public static void main(String[] args) throws SQLException {
String url = "jdbc:sqlite:C:/SQLite/GettingStarted.db";
try (Connection conn = DriverManager.getConnection(url)) {
insert(conn);
query(conn);

Page 42 of 43

Works Cited

Solid IT (March 2020). DB-Engines Ranking. Retrieved March 23, 2020, from https://db-engines.com/en/ranking

SQLite (March 2020). About SQLite. Retrieved March 27, 2020, from https://www.sglite.org/about.html.

Page 43 of 43

