

Version 1.2

Syllabus and Course Information

BU MET CS-521 Online

Information Structures with Python

Welcome to CS-521!!!

This course presents an effective approach to learn Python. With extensive

use of graphical illustrations, it will build understanding of Python and its

capabilities by learning through many simple examples and analogies. The

class will involve active student participation, discussions, and

programming exercises. This approach will help build a strong foundation in

Python programming that can be used effectively in real-job situations and

future courses.

Instructor: Professor Eugene Pinsky
Computer Science Department,
Metropolitan College, Boston University
1010 Commonwealth Avenue Room 327
Boston, MA 02215
email: epinsky@bu.edu

Course Times: Tue 6-7:30, Sun 10-11:30
Facilitators: TBA

Prerequisites

Familiarity with at least one programming language. Understanding of key

language constructs and methods. Ability to formulate quantitative

information symbolically and numerically.

Version 1.2

Course Learning Outcomes

1. learn to use Python programming language constructs to implement a

variety of analytical and computational methods (searching and

sorting)

2. understand trade-offs of different Python methods and data structures

in computation

3. apply acquired skills in diverse settings by completing a course

project on a topic chosen by a student

4. present both symbolic and visual results on the project

5. learn advantages and limitations of using Python

To accomplish this goal, course materials are divided into a set of mini-

modules corresponding to particular topic(s). These mini-modules will

typically include the following:

(1) course material with many examples

(2) self-test questions

(3) sample programming problems including typical Python job interview

questions (collected from various sources in the internet)

HUB Learning Outcomes

I. Quantitative Reasoning II

1. The focus of this course is to learn a range of analytical and
computational method using Python to be able to frame and formulate
quantitative problems using Python.

2. Students apply quantitative tools using many of the Python built-in
objects and methods.

3. Students test arguments by learning unit testing and extensive
visualization.

4. Students express quantitative information using user-created objects and
methods tailored for specific tasks

Version 1.2

5. Students engage in quantitative reasoning and in problem solving
through readings, tutorials and exercises, lab work, and project-based
learning (for example, implementing text editor using different Python
objects to understand the trade-offs and limitations both in terms of
resource utilization and complexity of implementation.

II. Creativity/Innovation

1. promote creativity by showing the use of Python in both technical and
non-technical setting.

2.in-class discussion on multiple strategies to common algorithms

III. Critical Thinking

1. learn to formulate formal algorithm description in Python

2.in-class discussion on different algorithms for problem solving

Course Materials:

(1) Required Textbook: The Practice of Computing Using Python, by W.
Punch and R. Enbody, 3-rd edition, Pearson Publishing, ISBN 978-0-
13-437976-0

(2) Course notes (from the course website)
(3) Pre-recorded mini-module
(4) Python Programming Environment – we will be using Spyder IDE

(Integrated Development Environment) and Anaconda Python
Distribution. We have these installed in our virtual lab. MET Virtual
Labs (VLAB) provide students with all required software. Most of the
examples presented in class will be run in this environment. You can
familiarize yourself with the virtual labs with the information from our
website: http://www.bu.edu/metit/services/#vlab-target

(5)

Version 1.2

Additional Resources:

There are many on-line resources available. This is a partial list:

1. http://www.pythontutor.com/visualize.html - this website is very useful

and allows to run simple Python programs and visualize the

execution. Many of the illustrations in the course notes were

generated using this website.

2. https://docs.python.org/2/tutorial - an official Python tutorial

3. https://www.tutorialspoint.com/python - a detailed tutorial with many

simple examples

4. https://www.learnpython.org - free, interactive tutorial

5. https://www.python.org/community/sigs/current/edu-sig/ - contains

links to learning resources, including free books

Teaching Approach and Goals

I am a strong believer in learning by using many illustrated examples.

These examples will help us build the fundamental understanding of

Python and how to use it to solve real problems. Many exercises presented

in the course will help you develop skills that are needed to use Python

effectively in your workplace and more advanced courses.

Homework, Grading and Exams:

Final 30%
Project 20%
Homework 35%
Quizzes 15%

There are six 30 minute quizzes. The final is 120 minutes. All exams are

multiple choice and will be done in the blackboard.

This is a programming class and it is essential that students have practice.

Most homework assignments will consist both programming problems from

the textbook.

Quizzes and the final are closed book and will consist of typical Python

questions that one can expect at a job interview

Version 1.2

The project is open ended and the topics can be chosen by students. In

this project, students will frame and solve problems using quantitative

capabilities of Python. Students will present their projects on the last day of

the course.

The goal of the course to learn Python programming and understand its

limitations and capabilities. This will be accomplished by many illustrated

examples, active student participation and discussion.

Course Outline:

The course consists of 6 modules. Each module is one week and consists

of a related set of topics (mini-modules). All mini-modules are pre-recorded

and available in the blackboard. All (weekly) exercises are from the

textbook. Due dates for the homework will be indicated explicitly. No late

homework will be accepted.

Week 1

Topics: introduction to computing, program structure, programming

environment, input/output, variable scopes and modules

readings: Chapter 1 (pp. 37-53), Chapter 9 (pp. 456-463), Appendix A

Week 2

Topics: data types, expressions, types and type casting, numerical data

types, arithmetic, logical, assignment and relational operators, Boolean

expressions, operator precedence, hashing, mutability, Python ranges,

object copying in Python.

readings: Chapter 1 (pp.49-73), Chapter 2 (pp.109-122), Chapter 9

(pp.456-463), chapter 16 (709-722)

Version 1.2

Week 3

Topics: strings and text manipulation, indexing and slicing, collections,

control flow, iterations, files and files manipulation.

readings: chapter 2 (pp. 122-140), chapter 4, chapter 6 (pp.271-276),

chapter 14 (645-665)

Week 4

Topics: collections: lists, tuples, sets, dictionaries, comprehension,

indexing and slicing, comprehension in mutable collections, applications

(stacks, ques and linked lists), searching and sorting

readings: chapter 7, chapter 9

Week 5

Topics: exception handling, functions, parameter passing, recursive

functions, lambda function and functional programming

readings: chapter 6 (pp. 282-285), chapter 14 (pp.667-672), chapter 5,

chapter 8, chapter 15, chapter 16 (pp. 724-736)

Week 6

Topics: objects and classes, class constructors, attributes and methods,

instance and static variables, data encapsulation, overloading, inheritance

and polymorphism, abstract classes

readings: chapters 11, 12 and 13

Module 7

Project presentations and review

Version 1.2

About the Instructor:

Eugene Pinsky received his B.A. in Mathematics from Harvard University
and his Ph.D. in Computer Science from Columbia University. He has
taught extensively both in academia and industry. His research interests
are in performance analysis and computational algorithms in data science
and machine learning with emphasis on computational finance and
programmatic advertising.

