
Directed Study - Buoys for Shark Recognition

Live Processing
of a Distributed Camera Network

Professor:
Kia TEYMOURIAN

Author:
Pierre MOREAU

Abstract:
The shark crisis in the island of La Reunion requires innovative
measures to secure sensible surfing and recreation shores. The
CRA research center is developing a detection algorithm able to
identify harmful sharks on underwater video images. This paper
studies the Information System’s architecture and implementation
to make this project possible.

Please note that this project will be continued, and this document
only wraps the part of this project supervised under the directed
study with professor Kia Teymourian.

Boston University
Le Centre de Ressources et d’Appui pour la
réduction du risque requin

September 15, 2019

Contents
1 Project Description 4

1.1 Motivation . 4
1.1.1 Limitations of existing work 5

1.2 Initial targets . 5
1.2.1 Computer Science Tasks . 5
1.2.2 Engineering the IoT device . 6

1.3 Timeline . 7
1.4 Funding . 7

2 Technical Requirements Specifications 8
2.1 Project presentation . 8
2.2 Functional Requirements . 8
2.3 Interface Requirements . 9

2.3.1 Hardware interfaces . 9
2.4 Environment . 9

2.4.1 Weather . 9
2.4.2 Terrain . 10
2.4.3 Connectivity . 10

2.5 Technical specs . 10
2.5.1 Standards and compatibility requirements 10
2.5.2 Buoy configuration and barrier length 10

2.6 Performance Requirements . 10
2.6.1 Speed requirements . 10
2.6.2 Reliability requirements . 10
2.6.3 Scalability requirements . 11

3 Architecture Research 12
3.1 Dumb vs Smart buoys . 12
3.2 Network bandwidth . 13

3.2.1 Goodput coefficient . 13

4 Development 15
4.1 Network technologies . 15

4.1.1 Equivalent number of connected cameras 15

1

Buoy For Shark Recognition Pierre Moreau

4.1.2 Comparison . 16
4.1.3 Results . 18

4.2 Architecture . 18
4.2.1 Kafka . 19
4.2.2 Our Kafka-centered design . 22
4.2.3 The fatal flaw . 25
4.2.4 NiFi . 25
4.2.5 Zabbix . 28
4.2.6 MXNet . 29
4.2.7 System Requirements . 29

5 Evaluation 32
5.1 First implementation tests and measures 32

5.1.1 Test : Video acquisition and compression 35
5.1.2 Test : Network communication speeds 35
5.1.3 Component list and necessary budget 36
5.1.4 Unfortunate turn of events . 36

5.2 NiFi implementation and simulations 37
5.2.1 NiFi Implementation . 37
5.2.2 NiFi Tests . 39
5.2.3 NiFi Test Results . 40

6 Future Work 43

7 Appendices 45

Bibliography 49

CONTENTS 2

List of Figures
4.1 Kafka Broker and Partition Architecture. An example with 3 nodes,

2 partitions, 2 consumer groups, and a replication factor of 3 20
4.2 Our overall architecture design . 24
4.3 the interface of NiFi’s software [5] . 26
4.4 the NiFi nodes inner workings [5] . 27

5.1 Pertinent selection from "Comparison of 125 Open Spec, Hacker Friendly
Single Board Computers", LinuxGizmos.com [12] 33

5.2 Illustration of the test subsection 5.1.1 35
5.3 Illustration of the test subsection 5.1.2 35
5.4 Hardware order list for first tests . 36
5.5 NiFi architecture for the tests . 37
5.6 NiFi Simulation Test Results . 41

7.1 NiFi flow on the buoys . 46
7.2 NiFi flow on the server . 47
7.3 NiFi alert and log flow on the server 48

List of Tables
3.1 Summary of "dumb" vs "smart" buoys 13

4.1 Wireless communication technologies and their bitrate in Mbps [9, 14,
23, 2] . 17

4.2 Wired communication technologies and their bitrate in Mbps [9, 14,
23, 3, 1] . 17

4.3 Arbitrary notation of some characteristics consequences ranging from
-5 (bad) to 5 (good) . 18

4.4 Minimum System Requirements with "dumb" buoys 30
4.6 Minimum System Requirements with "smart" buoys 31

5.1 Min and Max processing times between implementations 40

3

Chapter 1

Project Description

This chapter is a general introduction and presentation of this project.

Contents
2.1 Project presentation . 8
2.2 Functional Requirements . 8
2.3 Interface Requirements . 9

2.3.1 Hardware interfaces . 9
2.4 Environment . 9

2.4.1 Weather . 9
2.4.2 Terrain . 10
2.4.3 Connectivity . 10

2.5 Technical specs . 10
2.5.1 Standards and compatibility requirements 10
2.5.2 Buoy configuration and barrier length 10

2.6 Performance Requirements . 10
2.6.1 Speed requirements . 10
2.6.2 Reliability requirements 10
2.6.3 Scalability requirements 11

1.1 Motivation
The island of La Reunion is facing a huge shark attack crisis since 2016. With

an average of 2 attacks each year, half of them deadly. The last one in date only
happened a week ago, at Saint Leu, where a surfer was killed during a shark attack

4

Buoy For Shark Recognition Pierre Moreau

[10]. The consequences are not only horrible for the victims, but devastating for this
small island living on tourism, having an unemployment rate of 24% [18].

The Centre de Ressources et d’Appui pour la réduction du risque de requin
(CRA) [15] is leading a research initiative for underwater shark detection devices
based on cameras and Artificial Intelligence. Those cameras should detect sharks in
real time and send alerts to the nearby beaches and surf spots.

The machine learning algorithm is being developed by Etienne Meunier, also
part of his directed study here at Boston University. I would be in charge of designing
and prototyping a device to host underwater cameras, including the complete Infor-
mation Systems that deals with data acquisition, distributed computing, network
communications, and data analytics.

Such a device would not be used exclusively for this purpose but would also be
useful for a multitude of underwater marine studies based on image recognition.

1.1.1 Limitations of existing work
Intrusive methods like fishing sharks and safe nets or repulsive systems like

magnetic wave emitters are not proving good results [30]. Efforts are shifting towards
autonomous shark-finding technology. A sonar systems developed by SharkTec [32]
or Xblue [16] are showing promising results, but at too steep of a cost. A deployment
of 6 sonars have an estimated cost of about $15 000 [25]. To cover up for a large area,
the goal is to implement a cheaper scalable solution using regular cameras instead
of high-tech sonars.

1.2 Initial targets

1.2.1 Computer Science Tasks
Being able to integrate on a device:

� An array of sensors (cameras) and other input probes

– Data acquisition
– Video stream processing (OpenCV, Spark, Kafka..)
– Centralized or distributed computing

� Computing resources for the detection algorithm

– Develop information system to deal with the data pre-processing and input
of the algorithm

– Distributed/Mobile computing

CHAPTER 1. PROJECT DESCRIPTION 5

Buoy For Shark Recognition Pierre Moreau

– Information systems integration

� Network communications [7]

– Network design, architecture, components
– Mesh networking, cellular networking, IP and RF protocols
– Data compression and bandwidth, Network security, network management

[26]

Design and develop the overall Information Systems:

� Design and implement the Information System’s infrastructure

– Centralized systems management
– Database management (Centralized/distributed Database management

systems, Relational and non-relational models) [7]

� Design the network infrastructure to handle all input data from a network of
probes, and the communication strategies

� Implement the data analytics software

– Design the Data Analytics dashboards (Python, React, Tableau Software,
PyTorch..)

– Implement the alerting events and mechanisms (Python, Flink, Kafka ..)

1.2.2 Engineering the IoT device
Design and Prototype the device:

� Make the right hardware choices

– cameras, computer, communication devices and technologies [26]

� Design the device

– Buoy/underwater net/anchor [7]

� Implement a reliable power source for autonomous use

– Solar panel / Wave energy

� Test device in Charles River

CHAPTER 1. PROJECT DESCRIPTION 6

Buoy For Shark Recognition Pierre Moreau

1.3 Timeline
This project should be done over the course of 2 directed studies, in Summer 1

and Summer 2 2019.

May • Determine the camera positions geometry and device properties
June • Make the network choices, Implement the Information System’s

infrastructure
July • building the prototype & tests

August • memoir writing

1.4 Funding
Such a project requires a lot of hardware parts and even cloud resources, for

which the CRA research center will be validating and paying the budget. I would,
however, need to have access to the tinkerLab and maker spaces available at BU.

CHAPTER 1. PROJECT DESCRIPTION 7

Chapter 2

Technical Requirements
Specifications

The purpose of this part is to specify the system we will design in complete and
technical details. It should identify the set of functions the system must provides
and constraints and performances it must conform to.

Contents
3.1 Dumb vs Smart buoys . 12
3.2 Network bandwidth . 13

3.2.1 Goodput coefficient . 13

2.1 Project presentation
As it was presented in the introduction of this document, the project is com-

posed of underwater cameras connected to an artificial intelligence algorithm that
analyses the videos in real time and send alerts when it detects sharks.

2.2 Functional Requirements
1. The system records underwater images of the shores

2. The videos are analysed in real time to detect sharks

3. The system saves some of the footage for the archives

4. The system should be easy to deploy and setup

8

Buoy For Shark Recognition Pierre Moreau

5. When deployed, the system should be able to work in the day for 8h straight.
It is not needed for the system to be totally autonomous several days in a row

6. Camera videos should be stabilized

7. The cost of the buoys should be kept low, so that the system is cost effectively
scalable.

2.3 Interface Requirements

2.3.1 Hardware interfaces
1. The cameras should be encapsulated in watertight compartments, attached or

inside a buoy floating at the surface of the see. Electronics should be well
protected from the elements, but also easily accessible to service them.

2. The camera windows should be easily cleanable, and batteries easily recharge-
able if any.

3. All hardware should be rugged to withstand the sea weather conditions and
vigorous handling.

4. As the buoys will likely be working in chain, they should be easily swapped
should any buoy fail, to allow fast maintenance and lower downtime.

5. The elements present in the water should be of high visibility.

2.4 Environment
The project is planned to be used at the island of La Reunion, to secure beach

areas from sharks.

2.4.1 Weather
The island benefits from a tropical climate softened by the breezes of the Indian

Ocean. It is always summer in La Reunion with temperatures ranging from 20°C to
well over 30°C by the coast. The water temperature in the lagoon varies from 20°C
to 25°C. Rain showers come in short, but heavy patches [13].

The sunrise goes from 5:30 AM in december to 7 AM in winter. It sets between
7 PM and 5:50 PM, giving around 12h of daylight. Clouds tend to form in the
mountains during the day.

However, the sea conditions will likely have lots of currents and waves, as it
will be used around surfing competitions.

CHAPTER 2. TECHNICAL REQUIREMENTS SPECIFICATIONS 9

Buoy For Shark Recognition Pierre Moreau

2.4.2 Terrain
The island is a volcanic island, and the sea shores are made mostly of black

and white volcanic sand. The depths at which the devices will operate are shallower
than 15m, mostly around 5 to 10m. At those depth, it may also be sufficient to keep
the cameras at sea level.

2.4.3 Connectivity
The island has a good mobile data connectivity with bands ranging up to 4G.

2.5 Technical specs

2.5.1 Standards and compatibility requirements
No standards or technologies to be compatible with have been identify up to

the moment of publication of this report 1.

2.5.2 Buoy configuration and barrier length
The virtual barrier sould be able to scale up and down between 50m and 1km

in length.

2.6 Performance Requirements

2.6.1 Speed requirements
1. The system should allow a 1 min advance from the moment it notifies of the

presence of a shark, and the moment the shark could approach.

2.6.2 Reliability requirements
1. The system should be highly reliable

(a) If a shark has been detected, the notification should guaranteed delivered
(b) The system should keep working even though parts of it degrades
(c) If parts of the system fails, it should be detected and the users should be

notified
1This usually concerns enterprise databases and tools to interface with.

CHAPTER 2. TECHNICAL REQUIREMENTS SPECIFICATIONS 10

Buoy For Shark Recognition Pierre Moreau

2.6.3 Scalability requirements
1. The network, processing servers, and storage should be easily and cheaply

scalable up to being able to handle the real-time treatment between 50 and
400 cameras 2 .

2Based on the fact that underwater cameras have a sight between 5 to 10 meters, and we can
expect each buoy to include 3 or 4 cameras at different orientations, buoys should be placed every
10 meters. For a barrier of 500m, this makes a chain of 200 cameras. Some research is still needed
here to validate those results.

CHAPTER 2. TECHNICAL REQUIREMENTS SPECIFICATIONS 11

Chapter 3

Architecture Research

This chapter focuses on evaluating the best technologies to use for this project,
and how their implementations impacts performance and usability.

Contents
4.1 Network technologies . 15

4.1.1 Equivalent number of connected cameras 15
4.1.2 Comparison . 16
4.1.3 Results . 18

4.2 Architecture . 18
4.2.1 Kafka . 19
4.2.2 Our Kafka-centered design 22
4.2.3 The fatal flaw . 25
4.2.4 NiFi . 25
4.2.5 Zabbix . 28
4.2.6 MXNet . 29
4.2.7 System Requirements . 29

3.1 Dumb vs Smart buoys
We are presented with the choice of making either "dumb" buoys, that uploads

the images to be analysed on the network. Those buoys are cheap, but require
expensive and complex infrastructure.

On the other hand, we can use "smart" buoys, that runs the AI algorithm
directly in the buoy, so that they only have to send small amounts of data (alerts,
monitoring data, pings, some images in case of a positive detection). The buoys needs

12

Buoy For Shark Recognition Pierre Moreau

to be powerful enough to run the AI inference on all its cameras, so that makes it
a lot more expensive. However, the overall infrastructure complexity and costs are
a lot better. Moreover, we can expect the price of the computer to be relatively
a small portion of the buoys total costs, as long as it’s power consumption don’t
become hard to handle.

"dumb" buoys "smart" buoys

Description inference done in a heavy pro-
cessing cluster on the network

inference done localy in each
buoy for its own cameras

Network Bandwidth
per camera enormous : 2 fps tiny : pings, rarely an image

Scalability hard but cheap easy but expensive
System’s Useability complexe easy

Table 3.1: Summary of "dumb" vs "smart" buoys

3.2 Network bandwidth
The maximum rate that can be sustained on a link are limited by the Shannon-

Hartley channel capacity for these communication systems, which is dependent on
the bandwidth in hertz and the noise on the channel. Each networking communica-
tion technologies has it’s limitations regarding the amount of information that can
be transferred on the network. This first section surveys the existing networking
technologies to find the best alternatives for this project.

3.2.1 Goodput coefficient
The useful information throughput that goes through a channel is always lower

than the physical bitrate. Protocols, encryption, noise, medium instability adds up
overheads and re-transmissions, which takes up bandwidth usage. For instance, the
usual TCP protocol used in internet communications requires a 3-way handshake at
each transaction, which adds up overhead. When packets are lost or corrupted, it
also reduces the useful bandwidth, even more if they need to be sent again.

For instance, the Wifi technologies using the 5Ghz bands only have a short
range of sight. This basically means that each buoy should be having a Wifi repeater
in order to bounce the signal up and down the chain. However when acting as a
repeater, a Wifi equipment divides its bitrate by 2 since the information is travelling
twice on its channel, from the source node and then to the next buoy.

For estimation purposes, we define the goodput coefficient to be a percentage
of the physical bitrate approximating the Effective Bitrate that we could leverage.
This coefficient is mostly highly dependent on the physical conditions, distances, and

CHAPTER 3. ARCHITECTURE RESEARCH 13

Buoy For Shark Recognition Pierre Moreau

protocols used, so we tried our best to replicate the industry’s estimations to guide
our decision.

CHAPTER 3. ARCHITECTURE RESEARCH 14

Chapter 4

Development

This chapter focuses on developping scenarios and leveraging existing technolo-
gies.

Contents
5.1 First implementation tests and measures 32

5.1.1 Test : Video acquisition and compression 35
5.1.2 Test : Network communication speeds 35
5.1.3 Component list and necessary budget 36
5.1.4 Unfortunate turn of events 36

5.2 NiFi implementation and simulations 37
5.2.1 NiFi Implementation . 37
5.2.2 NiFi Tests . 39
5.2.3 NiFi Test Results . 40

4.1 Network technologies

4.1.1 Equivalent number of connected cameras
In the case of "smart" buoys, all the networking technologies are good enough

to support more than 200 cameras.
In the case of "dumb" buoys, the images should not be processed on the

buoys, but rather on a powerful computing cluster in the cloud or on shore. We can
estimate the number of images and equivalent cameras that the network can handle.

The data we will be transferring on the connections are still pictures from HD
cameras.

15

Buoy For Shark Recognition Pierre Moreau

Full HD video images have 1920 ∗ 1080 = 2Mpx. A 100% JPEG compression
with 24 bits per pixel gives a file size of 3.38 Mb. A 90% compression almost divides
the file size by 2 giving a still of 1.69 Mb [17].

Using this first approximation, we can draw a gross number of images that
can be sent across the network. Knowing that each camera is supposed to film at 2
frames per seconds, we also deduce the equivalent maximum number of connected
cameras.

4.1.2 Comparison
Even though our numbers are not fully reliable, it’s important to make esti-

mates at some point so that we can draw conclusions and move forward.
The tables 4.1 and 4.2 summarize our studies across the different mediums,

either with wireless or wired technologies. All bitrates are in Mbps.

Considering that we plan to deploy around 200 cameras, all cellular networks
have an upload rate too small, so it filters out everything except Wireless 802.11ad,
Ethernet, USB and thunderbolt. Now the maximum cable length of the serial com-
munications (USB and Thunderbolt) render those technologies useless in our sce-
nario.

In order to guide our choice between Wireless Wifi or Ethernet, we further
developped the characteristics and consequences of using those technologies in the
table 4.3.

Either of those technologies are all vulnerable to cutting (waves for wifi, cable
break for ethernet), and have a Single Point Of Failure (SPOF) should a buoy crash,
as it stops transmitting all the data from buoys down the line. This vulnerability
should be monitored all the time so that users are alerted should it occur.

10Gb and 40Gb Ethernet connections assures reliability and scalability. Those
connections can be either optical or copper based. The fiber cables are really fragile
and needs to be handled with great care. The copper based version, with a max
length of 100m (vs 40Km for the optical fiber), as a major cost advantage over the
optical fiber option. The Category 6a Ethernet cable and equipment allows 10 Gbps
transfer rates over 100m cabling. This is a very cost effective solution [20, 1].

Having autonomous Wifi buoys, they need solar panels or betteries to function
properly. The convenience of those independant devices also comes at the dependence
of having to recharge them at night, whereas the wired buoys can just supply power
in the cables.

CHAPTER 4. DEVELOPMENT 16

Buoy For Shark Recognition Pierre Moreau

Technology download
rate

goodput
coeffi-
cient

Effective
Bitrate

Range Approx
max

frames
per sec.

Equiv.
nb of

cameras
(2fps)

EDGE (type 2 MS) 1.894 1.894 Long 1.1 0
LTE (4×4 MIMO) 326 326 Long 192.8 96
5G 900 900 Long 532.5 266

Wireless 802.11b 11 60% 6.6 100m 3.9 1
Wireless 802.11g 54 60% 32 100m 19.1 9
Wireless 802.11n 600 30% 180 30m 106.5 53
Wireless 802.11ac 1 300 30% 390 30m 230.7 115
Wireless 802.11ad 7 000 30% 2100 30m 1242 621

Bluetooth 3.0 25 25 60m 14.7 7
Bluetooth 4.0 25 25 60m 14.7 7
Bluetooth 5.0 50 50 240m 29.5 14

Table 4.1: Wireless communication technologies and their bitrate in Mbps [9, 14, 23,
2]

Technology physical
bitrate

goodput
coeffi-
cient

Effective
Bitrate

Max
Length

Approx
max

frames
per sec.

Equiv.
nb of

cameras
(2fps)

Ethernet 10 80% 8 100m 4.7 2
Fast Ethernet 100 80% 80 100m 47.3 23
Gigabit Ethernet 1 000 80% 800 100m 473.3 236
10Gb Ethernet 10 000 80% 8000 100m 4733.7 2366
40Gb Ethernet 40 000 80% 32000 100m 18934.9 9467
100Gb Ethernet 100 000 80% 80000 100m 47337.2 23668

USB 2.0 480 80% 384 5m 227.2 113
USB 3.0 5 000 80% 4000 3m 2366.8 1183
USB 3.1 10 000 80% 8000 3m 4733.7 2366
USB 3.2 20 000 80% 16000 3m 9467.4 4733
Thunderbolt 2 20 000 20000 3m 11834.3 5917
Thunderbolt 3 40 000 40000 2m 23668.6 11834

Table 4.2: Wired communication technologies and their bitrate in Mbps [9, 14, 23,
3, 1]

CHAPTER 4. DEVELOPMENT 17

Buoy For Shark Recognition Pierre Moreau

Characteristic 10Gb
Ethernet

40Gb
Ethernet

100Gb
Ethernet

Wifi
802.11ad

Reliable 5 5 5 -2
Vulnerable to cutting -3 -3 -5 -1
Single Point Of Failure (SPOF) -5 -5 -5 -5
Scalable 4 5 5 1
Availability of equipment 5 1 1 4
Praticity 0 0 -1 5
Needs batteries or solar panels 0 0 0 -3
Cost 4 2 -3 3
TOTAL 5 0 -8 4

Table 4.3: Arbitrary notation of some characteristics consequences ranging from -5
(bad) to 5 (good)

4.1.3 Results
"smart" buoys : All presented networking technology is supposedly good enough
to handle 200 cameras analyzed by smart buoys.

"dumb" buoys : Either the Wireless 802.11ad and 10Gb Ethernet are both net-
working technologies suitable for our use case. In a subsequent test phase, we will
be implementing both to run some tests and measures in order to further validate
the viability of both those implementations.

Certainly improvements could be made on the compression phase to allow better
results, however at the moment 10Gb Ethernet on Cat6a cables is the most cost
effective applicable and reliable solution that has margin for error and further scaling.

4.2 Architecture
Considering 4 cameras per buoy every 10m for 500m yields 200 cameras. If we

take 200 cameras with that 90% JPEG compression, it generates almost 680 Mbps
every seconds, which is 2.3 Terabits of images every hour. Obviously that volume
should be further compressed when considering storage, once the images have been
processed. For instance, by skimming the images to be saved as not all images are
useful in the archives.

However, the processing unit should be able to handle that processing rate and
hold sufficient space in RAM to load those images to process. And the number are
even higher regarding the processing of the image. When they are loaded in RAM,
each frame takes up to 1.33 Gbits in space.

CHAPTER 4. DEVELOPMENT 18

Buoy For Shark Recognition Pierre Moreau

Those numbers requires a wicked fast, real-time processing architecture. How-
ever since the number of cameras is likely to be a variable, the architecture needs to
be easily scalable to accommodate the costs with the project’s size.

4.2.1 Kafka
For reliable and efficient real time processing, there is a need for a cost-

effective, scalable and fault tolerant distributed system. Kim and Jeong [21] detailed
a distributed architecture based on the open source Apache Kafka to process video
streams in real time : "Although the GPU is well suited for high-speed processing
of images, it still has limited memory capacity. Using Kafka to distributed envi-
ronment allows overcoming of the memory capacity that cannot be accommodated
by one node. In particular, since image data can be stored in the file system, it is
advantageous to handle large-scale images without data loss." [21].

If you’re not familiar with Kafka, I greatly recommend you to read the hack-
ernoon post from S. Kovlovski [22] that details it thoroughly. I will however present
its concepts as well as how they are applied and implemented in our case.

1. the buoys (producers) publishes image frames (messages) to a node (broker)
in the Kafka cluster. Those messages are all stored in the same Kafka collection
(topic).

2. The Kafka cluster consists of several nodes (brokers). The big input topic
is divided into smaller partitions that are assigned to the brokers for load
balancing and replication (see section 4.2.1).

3. Processing nodes subscribe to the Kafka brokers using the stream api, and
pull data to process as capacity is available. The data will always be pulled in
the order it came in, and Kafka will assure a "at least once" treatment for the
image.

4. The processing nodes then publishes a new message that encompasses : the
image metadata, the result of the labelling application, and the file-path of the
archive. Those new messages are published in the same Kafka cluster, but in
another topic.

5. The output topic is connected to a relational database for long term storage
and analytic.

6. The messages in this output topic can then be subscribed to from a consumer
like Flink, which will process the result of the detection and trigger notifications
if needed.

7. The processed Kafka messages in the input topic will eventually die after being
treated to free some space.

CHAPTER 4. DEVELOPMENT 19

Buoy For Shark Recognition Pierre Moreau

High Availability vs Performance : Partitions, and Replication factors

Figure 4.1: Kafka Broker and Partition Architecture. An example with 3 nodes, 2
partitions, 2 consumer groups, and a replication factor of 3

Kafka is designed with failure in mind. At some point, a system will fail, and
Kafka’s distributed architecture allows for different levels of resilience. It is also
designed to be easily scalable by parallelizing it’s architecture. The key concepts
here are partitions and replications.

Partitions for performance

CHAPTER 4. DEVELOPMENT 20

Buoy For Shark Recognition Pierre Moreau

Kafka divides big topics into partitions. This allows it to distribute the loads
more efficiently. A message is assigned to a partition via a record key if present, or
a round-robin by default. We’ll likely be using the round-robin assignment strat-
egy, but for the clarity of the argument, we’ll represent the partition via the buoy
keys : {buoys 1 to 100} and {buoys 100 to 200}. Multiple partitions scales a topic
across servers to parallelize writes, and consumers consume messages in parallel up
to the number of partitions. Each partition can only be assigned to 1 consumer in
a consumer group, so that the messages don’t get processed twice by 2 consumers.
This means that the partition number is the maximum unit of parallelizing. Mul-
tiple partitions can be assigned to a consumer however. Furthermore, in order to
have real-time processing, the consumer needs to be able to process all it’s assigned
partitions incoming data as fast as they are produced. If not, then it’s lagging and
messages are waiting to be catch-up, which requires more processing power.

So say I have a total of TMbps data to be processed each second, and each
consumers can only handle T

C
Mbps, then I need at least C consumers, and if the

data is partitionned equally, at least P = C partitions. However, in the real world,
we can’t expect each consumer to be equally capable, neither the data flow to be
constant, neither the partitions to be totally equal. This is why we need a thinner
granularity in the partitions sizes so that they can be assigned in a more balanced way
to the consumers, according to their capacity. However, partitions also means more
replication latency, rebalances, and open server files. By a conservative estimate,
one partition on a single topic can deliver 80 Mbps [11]. This means that our 200
cameras data rate should require at least 680Mbps

80Mbps
≈ 9 partitions. To make those

partitions as equally as possible, and to assign them more efficiently, good practices
[24] says we should use the round-robin assignment policy.

Replications for High Availability

First, we explained how Kafka keeps the messages written in cache until they
are consumed. This guarantees that once a frame is published into Kafka, it is
persisted until consumed at some point even if a processing node or application
should fail [4].

To account for the failure of a Kafka node however, we need replications so that
the data is backed up in another node. In the event of a Kafka node crash, Kafka
will reconfigure itself with the remaining nodes. This needs a replication factor ≥ 2
so that a broker with the replicated standby partition (follower) can become leader
straight away and take on the stream.

In our case, we shouldn’t worry much about the split-brain scenario, that
mainly occurs in a cluster spread across different availability zones. A deployment
architecture that can tolerate the failure of F machines, should count on deploying

CHAPTER 4. DEVELOPMENT 21

Buoy For Shark Recognition Pierre Moreau

2 ∗ F + 1 machines. For such, it needs to have at least 3 nodes to account for the
event of the failure of 1.

Replication is great, but we need to ask the right questions for our use case.
Considering that messages are consumed in real time, even without replication, if
a Kafka broker fails, the system readjusts automatically by redirecting the input
messages to the remaining nodes, and messages still continue to get processed in real
time. So as long as, in the unlikely event of a broker failure, we can afford a few
seconds of images lost (while the network reconfigures), so we shouldn’t focus much on
solving this problem. As more replication drastically increases network, processing,
and disk loads on the Kafka nodes, we shouldn’t have a replication factor greater
than 2 in our use case, but mainly lots of partitions.

4.2.2 Our Kafka-centered design
The overall following breakdown is illustrated in Figure 4.2. The inspirations

and details for this design comes from Data Works Summit conferences [33, 34, 31,
28] :

1. The buoys convert all those frames into serialized objects 1, that encompasses
the pixel data and the camera localization and metadata

2. The camera Stream Channel in the buoy publishes those events, and sends
them to the Kafka broker in the Input Topic, using the KafkaProducer client

3. The input message is assigned to a partition using the round-robin allocation
strategy

4. The kafka broker acts as a buffer queue to store the data while it’s waiting
to be processed. Kafka stores that data in the file system, which improves
durability and overall performance when loads or availability varies. It also
garantees the order of the messages in a single partition for a given topic. This
also guarantees fault tolerance since Kafka replicates the saved messages to the
broker [8].

5. The processing nodes pulls the message in order from the Kafka broker, and
reconstructs the frame matrix to feed it to the detection application. This
yields optimal performance for large-scale data by pulling only the messages in
its processing capacity.

1As a study [29] by Sidkar, Teymourian and Jermaine suggests, there are better format than
JSON to serialize and compress the data. The JAVA KRYO object for instance should be 2 times
lighter than the same JSON object. We’ll surely use this format later, but the JSON format is far
easier and explicit to use at first in order to do our first implementation tests.

CHAPTER 4. DEVELOPMENT 22

Buoy For Shark Recognition Pierre Moreau

6. Once the labelling is done, the application decides if it should send it for long
term storage on the archive database. If so, it compresses the image, sends it
to the database filesystem, and adds the filepath to the image metadata.

7. The computing node then publishes a new message in a second topic : "Labelled
Metadata", of the original message stripped from the frame data, and enriched
with the labellization outcomes and filepath.

8. The output topic is connected to a relational database for long term storage
and analytic.

9. The messages in this output topic can then be subscribed to from a consumer
like Flink, which will process the result of the detection and trigger notifications
if needed.

10. The processed Kafka messages in the input topic will eventually die after being
treated to free some space.

Note : Apparently, as Kafka is primarily designed for text messages of small
sizes, the configuration will need to be changed to accept larger JSON messages
(1.7 Mb). Those parameters in the Producer Config are respectively batch.size,
max.request.size, compression.type [8]

CHAPTER 4. DEVELOPMENT 23

Buoy For Shark Recognition Pierre Moreau

Fi
gu

re
4.
2:

O
ur

ov
er
al
la

rc
hi
te
ct
ur
e
de
sig

n

CHAPTER 4. DEVELOPMENT 24

Buoy For Shark Recognition Pierre Moreau

4.2.3 The fatal flaw
The Kafka streaming mechanisme is designed around accumulating data, wait-

ing to be processed. Its use case is mainly around variable flowrates, where bursts of
input data should be hold onto while the systems scales up and adjusts and processes
the data. No data is ever loss with Kafka, but lags can appear. As such
is is mainly oriented to cloud-like infrastructures with data persistency and close-
to-real-time processing. This could be our best solution in the situation where the
computing would be done in the cloud, with elastic processing availability.

However, I think we should rather be concerned with the speed of the
data. In the event of accumulation of untreated images, we rather skim a
few images out to reduce the load, but keep on processing images without
accumulating delay, as long as we keep all traceability. There is actually a recent
framework designed around that, also Open Source by the Apache foundation, it’s
called NiFi [31].

4.2.4 NiFi
NiFi is also an open source data flow tool from the Apache Fundation, with

great performance, horizontally scalable and pluggable architecture. However, NiFi
doesn’t replicate data like Kafka. If a node goes down, the flow is redirected to
another node, but the queued data in the failed node will have to wait until the node
comes back up. It is however able to configure back-pressure threshold, prioritized
queueing, and data traceability. Its key functionalities are [5]:

Guaranteed Delivery : The data is persistently stored. And as long as the system
is online (or repaired back online), all data will eventually reach it’s delivery.

Back Pressure with specific Quality of Service : Where data must be pro-
cessed and delivered within seconds to be of any value, it’s possible to configure
specific latency, throughput, loss tolerance, back pressure and pressure release
mechanisms.

Traceability : Easy monitoring of flows, queues, and forensics. Everything is
logged.

Modularity : The web-based graph interface allows easy supervision of the flows
and routings. Processes and flows can be easily modified, tested, and deployed
at any points or any scale of the pipeline.

Edge intelligence : NiFi handles the flow from the first mile of data ingesting
in the buoys, to the last miles of shark notifications via instant messaging.
By managing all that flow with one tool and combining inputs from different

CHAPTER 4. DEVELOPMENT 25

Buoy For Shark Recognition Pierre Moreau

sources allows you to intelligently and dynamically transfer data. We can
leverage the bi-directional communications to the buoys to make them respond
to the changing environmental conditions in real-time.

Figure 4.3: the interface of NiFi’s software [5]

NiFi is mainly a dataflow tool, and as such has many other great other function-
alities. As it’s implementation is used to create a fault-tolerent production pipeline.
It’s simple web-based graph interface and wide coverage makes it easy to modify,
test, update and deploy changes at any points and any scale of the pipeline. That
flexibility allows the following use cases :

• Create new input connections with input data such as GPS and weather

• Push data to databases or storage

• Connect instant messaging apps like emails or slack to send and get notifications

• Run SQL queries on the network

• No need for python management scripts, cron jobs, automate tools and update
mechanisms. Everything can be handled through miNiFi and NiFi

• Flows can be versionned

• Make changes live in the models, or in the network

CHAPTER 4. DEVELOPMENT 26

Buoy For Shark Recognition Pierre Moreau

• Run experiments live on some devices, and deploy model upgrades

• Update and deploy image processing flows or the Machine Learning model

• Scale up and down the network

• Should the buoys become powerful enough to run the model, it is
easy to move some parts of the model to test buoys, or even migrate
all the model into the buoys.

All that abstraction is great, but it also means that it’s easy to create conges-
tion and bad routes that would clutter the underlying hidden physical layers with
unnecessary data flows and processes. It’s important to understand how the data is
managed on the network by the tool to use it correctly.

NiFi’s Repositories

Figure 4.4: the NiFi nodes inner workings [5]

NiFi is a high-level tool, and most of it’s implementation is hidden to the user.
However if we want to design a performing system, we need take an in-depth look
into it’s implementation and design decisions.

Flow-based design. Based around FlowFiles. The Apache NiFi documentation
describes a FlowFile as : "A FlowFile is a data record, which consists of a pointer
to its content (payload) and attributes to support the content, that is associated with
one or more provenance events" [6].

The payload of the message is the content and its attributes. In our case, it
might be the pictures or sensor’s data. All the FlowFile’s attribute are stored in
key-value pairs, and provenance records the transformations and life events of the
FlowFiles.

CHAPTER 4. DEVELOPMENT 27

Buoy For Shark Recognition Pierre Moreau

This design is used to optimize the storage, traffic, and usage of those different
parts. They are each assigned to a dedicated repository in the Host’s file system.
FlowFile Repository : Metadata for all the current FlowFiles in the flow. Flow-

Files being processed are loaded in a hash map in the JVM memory. They are
then stored on disk in a Write-Ahead log, which is immutable.

Content Repository : Content for current and past FlowFiles. Usually the largest
repository, especially when dealing big payloads such as images. Content writ-
ten is immutable. The motivation is to strip it from the metadata so that
it doesn’t have to be loaded in memory each time the metadata is processed
in the network, and that multiple FlowFiles can share the same pointer to
the common content. As such it is good practice to extract key information
from the content into the FlowFile’s attributes that would be useful for other
processor to use, so that it doesn’t need to read through the content.

Provenance Repository : History of FlowFiles. New provenance events are cre-
ated each time an event occurs for a FlowFile, which makes them snapshots of
that FlowFile. Those are mainly used for auditing, monitoring, and debuging
the flows.

Immutability : The immutability of the Content and Metadata means that the
data can’t be updated. It has to be read, copied and transformed, and then update
the FlowFile’s pointer to the new content. It makes the content storage acts like
an "immutable versioned content store" [6]. This takes advantage of OS caching
to avoids large complex graph processing, and improves replay capability, random
read/write performance hits, and reasoning. Immutability also garantees integrity in
the events of system failures. The metadata or content are loaded in a hash map of
the JVM memory to be processed, and then written to disk in the repositories. With
the immutability paradigm, only periodic checkpoints written on disk are enough to
restore the node’s state in the event of failure. The corrupted data in the JVM’s will
gets cleaned during the automatic garbage collection.

More in-depth details are given in NiFi’s advanced documentation [6].

4.2.5 Zabbix
With all the connected buoys, cameras, processing nodes, Kafka broker etc...

we need a centralized tool to monitor everything. Zabbix is an open-source tool
designed to monitor the network architecture, as well as all connected devices. It
can automatically add devices and monitor their performance. The web interfaces
allows the system administrator to configure alerts, clusters, and reports. The Zabbix
server should better be installed on a server node in the server cluster, so that it is
in the network itself. Here are some points that we plan to achieve with Zabbix :

CHAPTER 4. DEVELOPMENT 28

Buoy For Shark Recognition Pierre Moreau

• Scan the topology of the network, it’s changes

• Monitor the Network bandwidth, performance drops, and packets errors

• Scan the devices present on the network, and if any comes offline

• Monitor the buoys, see if that their system is online, with all necessary resources
to function correctly

• Monitor the Kafka consumers, especially their lag and fetch rate

• Monitor the processing nodes, their GPU usage and RAM performance

• Monitor the database and storage filesystem

• Record the system-level telemetry (CPU, Mem, IOPS, Disk%, ...) of all buoys,
processing nodes, Kafka nodes, and database nodes

• Create visualization dashboards of the system’s health

• Send some alerts with different levels of gravity according to the problems
detected on unhealthy systems

4.2.6 MXNet
In order to run the inference, which is the labellisation of the image using the

ML algorithm, the model needs to be exported and available on the processing nodes.
An apache project, cloud ready, and runs on tiny nodes for edge computing,

like in our buoys, supports ONNX - update the model on 1 device, test it, and deploy
the changes to all devices qusing nifi, model server. It runs as great on a raspberry
pi for image labellisation than on a distributed multi GPU server

4.2.7 System Requirements
"dumb" buoys system requirements

The minimum system requirements for a "dumb" buoy setup are presented in
Table 4.4.

CHAPTER 4. DEVELOPMENT 29

Buoy For Shark Recognition Pierre Moreau

Nodes : Buoys Servers Compute Training Database
RAM 1GB + 32 GB ++ 16 GB ++ 32 GB ++ 8 GB
CPU not much relevant Decent Good not relevant Decent
GPU - - - Nvidia +++ -
Storage 64 GB 50 GB 50 GB 500 GB 1000 GB
How many xN x2 x1 x1 x1

Table 4.4: Minimum System Requirements with "dumb" buoys
+ signs means the higher the better

Buoys : With the dumb buoy setup, the objective is having the cheapest buoys.
We can accomplish this by using cheap Raspberry Pies for the buoy, which cost not
much and are plenty sufficient for this job.

Server nodes : As a rule of thumb, a Java Virtual Machine (JVM) needs 8 Gb
of RAM. In the big data stack, almost all applications/services are in fact a JVM,
and it’s still true for Kafka Broker, NiFi nodes, Zookeeper, Flink, Hadoop nodes...
We can start our system with 1 server node (that could then be scaled-up to 3), 1
processing node (that could be linearly scaled up), and 1 database node. However
we are going to compare NiFi and Kafka implementation.

Compute nodes : The trained machine learning model takes 3 GB of space in
RAM. To which we add up 1.3 Gbits for each image. A decent computation node
should have at least 16 Gb of Ram (the higher the better). To label the images, the
GPU is not relevant as we don’t handle many images. We need a good CPU with
many cores. Again, the bigger the better.

Training nodes : In order to train the model, and tests some compression algo-
rithms as well as allowing some continuous improvements, we can expect to add a
training node to train the model. It is different than a standard computing node such
that all processing is done on a GPU, and all the training set needs to be available
from storage. The processor, in this case, is not relevant.

"smart" buoys system requirements

The minimum system requirements for a "smart" buoy setup are presented in
Table 4.6. Here nothing much changed except for the "Compute" nodes that are not
needed anymore, and the buoys.

CHAPTER 4. DEVELOPMENT 30

Buoy For Shark Recognition Pierre Moreau

Nodes : Buoys Servers Training Database
RAM 4GB + 32 GB ++ 32 GB ++ 8 GB
CPU quad core ++ Decent not relevant Decent
GPU - - Nvidia +++ -
Storage 64 GB 50 GB 500 GB 1000 GB
How many xN x2 x1 x1

Table 4.6: Minimum System Requirements with "smart" buoys
+ signs means the higher the better

Buoys : This time the buoys needs to process their own images. The inference is
mainly using RAM and CPU. The model takes 3GB in RAM, so that’s already a
minimum requirement to have. To label the images, the more CPUs the better. At
decent quad-core should do the job fine.

CHAPTER 4. DEVELOPMENT 31

Chapter 5

Evaluation

This chapter focuses on tests, measures, and implementation of the project.

5.1 First implementation tests and measures
We first searched the market for the available single board computers. Those

would be an ideal choice to use on the buoys as they are usually cheap, can run linux,
and don’t consume much power. Our research is visible in Fig.5.1.

32

Buoy For Shark Recognition Pierre Moreau

Fi
gu

re
5.
1:

Pe
rt
in
en
t
se
le
ct
io
n

fro
m

"C
om

pa
ris

on
of

12
5
O
pe

n
Sp

ec
,
H
ac
ke
r
Fr
ie
nd

ly
Si
ng

le
Bo

ar
d

C
om

pu
te
rs
",

Li
nu

xG
iz
m
os
.c
om

[1
2]

CHAPTER 5. EVALUATION 33

Buoy For Shark Recognition Pierre Moreau

As the decision has been made to run the algorithm in the buoys, we mainly
axed our research to compare the embedded computers powerful enough to run the
inference. As we said before, to run the inference we mainly need RAM and process-
ing power. The GPU is not relevant. Since the model takes at least 3GB in RAM,
we looked for boards that had at least 4GB RAM.

From that comparison, the best choice is definitively the Odroid N2, since
devices under $75 aren’t powerfull enough. In the $75-$130 area, the Odroid N2 is
definitively the best of all, and it would wost at least twice the price to get a more
powerfull processor, which might be, in the end, usefull, but we’ll stick to this board
for our tests, as it is a reference point in many benchmarks, and it will give us the
data we need to know where to further develop.

The next goal is to test the implementation designed above, and validate the
technical choices. For our first prototypes and tests, we can deal with only a few
cameras, and even cheaper networking technologies. We need to tests implementa-
tions and makes measures first before beggining to scale up. For such, we will work
with some little cheap computer boards (Raspberry Pi 3B+), a few usb cameras,
and some Gigabit Ethernet and Wireless 802.11ac networking equipment.

Raspberry Pi (RPi) model 3B+ is the latest to this day, is a micro-computer
board that has a 1.4GHz 64-bit quad-core processor, dual-band wireless 802.11ac,
Bluetooth 4.2, Fast Ethernet and usb-2 sockets [27]. We can install Linux and run
our own program to prototype the buoy. It’s ethernet traffic goes through the USB-2
chip, whith shares the throughput with all other USB-2 devices. So even with a
Gigabit adaptor, the Ethernet speeds of the RPi won’t go over 400Mbps. However
this doesn’t look like an issue since only the data from that buoy’s cameras need to go
through that port. All the other transmitted videos directly hops between switches
on the network, without bouncing on each connected RPis. The wireless hardware
on the RPI 3B+ however is measured with download speeds only up to 45Mbps [19].

Today, June 24th 2019, the Raspberry Pi foundation released the model 4 of
their board. It now supports full throughput Gigabit Ethernet, USB-3, and Blue-
tooth 5. This board stays at the same price, even considering it’s upgraded feature
and new Quad Core Cortex-A72 1.5GHz processor. This is a great board. It even has
upgraded models with 2GB and 4GB RAM, all of those versions under $55. However
the device is out-of-stock, so I’ll have to start some tests with the earlier model 3B+.

The Raspberry Pies, in the end, are the best alternatives to create "dumb"
buoys. They are not powerful enough to run the AI algorithm at this stage. However
I can still use a couple of Raspberry Pi 2 B+ that I already have laying around in
my room to run some implementation tests and measures.

CHAPTER 5. EVALUATION 34

Buoy For Shark Recognition Pierre Moreau

5.1.1 Test : Video acquisition and compression
1. Connect 2 usb cameras to a RPi to monitor and record the cameras

2. Test compression methods and measure the file sizes

3. Measure the ressources and time it takes to preprocess the videos

Figure 5.2: Illustration of the test subsection 5.1.1

5.1.2 Test : Network communication speeds
1. Create a network with 2 RPi each feeding live camera feeds to a computer

2. Measure the network speeds betweenWifi 802.11ac and Gigabit Ethernet speeds
over different loads and distances

Figure 5.3: Illustration of the test subsection 5.1.2

CHAPTER 5. EVALUATION 35

Buoy For Shark Recognition Pierre Moreau

5.1.3 Component list and necessary budget
I can use my own router at home to try some tests, but there is still hardware

needed to implement the buoy, like ethernet Cat6. cables and a USB HD Camera.
The Figure 5.4 lists the required components to buy before starting the next steps.

Figure 5.4: Amazon.com shopping list of hardware for the first tests and in prevision
of later further tests

By doing those first tests, we can measure the performances of each block, so
that we can better guide the hardware needed for the next phases. We looked for
the cheapest options while keeping the required technical specifications to match our
tests and later prototypes, as those components will likely be reused later on.

5.1.4 Unfortunate turn of events
As specified before, this project was in collaboration with the CRA research

center at La Reunion. My contact was the director of the center, Mr Eric Chateau-
minois. He made the order on Amazon for the necessary components for those tests,
but those never arrived. Unfortunately, the director then retired from his position,
and I was not able to contact Amazon on behalf of him, and the other researchers
at the center would not deal with this issue.

I decided to postpone those tests and simulate those environments with virtual
servers, which is the focus of the next sections of this chapter.

CHAPTER 5. EVALUATION 36

Buoy For Shark Recognition Pierre Moreau

5.2 NiFi implementation and simulations
As detailed above, NiFi was the best solution to manage the data flow for

this project. So I designed 2 solutions in order to compare the "smart" and "dumb"
configurations.

5.2.1 NiFi Implementation
All of this implementation is installed on custom Virtual Machines (VM) in the

cloud. This allowed me to configure and modify them easily as suited for my later
performance benchmarks.

The architecture is quite straightforward, with the buoys dealing with the cap-
ture, and the server dealing with the centralization, alerts and archives. With the
NiFi user friendly interface, the whole process is easily controllable and monitored.
The flows are pictured in the appendix. With NiFi, the buoys can all be managed
via the server’s web interface using templates.

Figure 5.5: NiFi architecture for the tests

Site-to-Site communication : In order to send data from the buoys to the server,
I’m using NiFi’s Site-to-Site protocol. It’s the recommended protocol from the doc-
umentation. In this configuration, the buoys are the clients, and the server is the
server. The buoys sends data to a Remote Process Groups, which is then received

CHAPTER 5. EVALUATION 37

Buoy For Shark Recognition Pierre Moreau

on the server on an input port. This allows me to maintain attributes and manage
my input ports separately. Since the buoy might also have an unknown or chang-
ing IP address when being turned off or using 4G, this also simplifies the future
configurations by having to use only the server’s fixed IP in the configurations.

Input Data : The flow is easily managed in NiFi and I used diverse NiFi processors
and features to simulate the input video data since I didn’t have the cameras. I
wanted to avoid writing custom code so that this project could be easily transferred
to the research center at La Reunion, and usable for people without programming
experience.

Inference : Usually when we learn to develop Machine Learning algorithm, we
forgot about how to deploy them in production. We are mainly training and re-
training the models. However I can’t use the same tools here. The inference is
cheaper than the training since all the training dataset doesn’t need to be read, we
just need the pre-trained model, and there’s only 1 image being processed. For such,
we don’t need to use a GPU. We don’t want either to use a custom script loading
the model, and running the inference for each image. We would rather have a local
server with the model pre-loaded in RAM, to which we can just make some calls
with the file path, and it would return the labels.

In order to simplify processes in the future, we wanted a standard interface for
the model, and asked that the model would be given in the universal Open Neural
Network Exchange (ONNX) format. Etienne Meunier developed the model using
PyTorch, and the direct PyTorch integration isn’t greatly supported by NiFi and
I wanted to avoid writing custom processors hard to maintain in the future. The
ONNX format is an open source exchange format widely compatible, and I also
chose to use the open source Apache MXNet project for the inference service, for
compatibility and serviceability.

MXNet was also chosen because it proposed a lightweight C++ installation that
could as easily run without Java with the MiNiFi C++ installation on a lightweight
buoy.

Alert : I didn’t had any specifications regarding the types of alerts to send, so I
created a Slack bot that would connect to NiFi and send alerts to subscribed people.
With Slack, this is a easy process, and the message can be sent in real-time and
formatted to include the image, some text, and even some actions so that the reader
can give some feedback or look for more details.

It’s easy to add any type of alerting, and I even added an other type of alerts
that sends me SMS with a succinct text message and an URL to check out for more
details.

CHAPTER 5. EVALUATION 38

Buoy For Shark Recognition Pierre Moreau

Database : Even though NiFi is a great monitoring and traceability tool, with
advanced database to store the flowfiles metadata, I setup a custom PostgresSQL
database on a separate VM to upload there the flowfile’s attributes for further ana-
lytics.

Measuring : For our tests and analytics, we need to measure exactly how each
image takes before the corresponding alert can be sent. This is why we added tome
custom processors in NiFi to add attributes.

5.2.2 NiFi Tests
The goal of the following tests is to compare different buoy and network con-

figurations. Using Virtual Machines (VM), we are enabling and disabling CPUs,
as well as throttling the network. When dealing with large batches of images, and
comparing between a "smart" and "dumb" buoy in those configurations, we want to
gain insights on the feaseability of those implementations.

Test Procedure
1. Using a custom script, I configure the buoy VM into the desired CPU and

network configuration

2. A variable is set into NiFi with a test-id to later match the entries to their
test in my database

3. I use a NiFi processor to load a batch of 100 or 1000 images from the CRA’s
video database, and hold them in queue

4. The test is then run and all the start time is instantly appended each flowfile’s
attributes

5. Depending on the test, the flowfiles are sent now or later to the server (dumb
vs smart)

6. The image is processed on an local MXNet server hosting the inference model,
and the result is appended in the flowfile’s attributes

7. If a shark is detected, an alert is immediately sent in Slack, with the attributes
and the image

8. The flowfile’s total duration is then computed and appended in its attributes

9. The flowfile’s attributes are then added to a analytics postgres database run-
ning on another VM instance

CHAPTER 5. EVALUATION 39

Buoy For Shark Recognition Pierre Moreau

Test Specifications

The buoys and main server are running Ubuntu 18.04.3 LTS, nifi-1.9.2, Java 8,
and mxnet-model-server 1.0.5.

• the buoy is a VM on Google Cloud, on network us-east4, with configuration
n1-highcpu-8 (ie. 8 VCPUs Intel(R) Xeon(R) CPU @ 2.20GHz, 7.2GiB RAM)

• the main server is a VM in the MIT, with only 4 CPUs (Intel(R) Xeon(R) CPU
E5-2660 v2 @ 2.20GHz) but 16GiB of RAM

I am then disabling CPUs on the buoy, and throttling the network speeds
according to tables 4.1 and 4.2. All the batch’s images (100 or 1000) are preloaded
in NiFi’s queue and asked to be processed immediately.

5.2.3 NiFi Test Results
The Figure 5.6 compares the average flow-file’s duration between all the differ-

ent configurations. The lower the better. The duration displayed in seconds in the
average time an image spends in the processing since the batch has been opened up
until after the alert has been sent. This is an average over 100 or 1000 images.

A simple and boring boxplot shows that those times are evenly distributed
between 0 second and 2x the average. We can already see in NiFi during the tests
that the bottlenecks are the inferences, at which the whole batch is queued before
being processed. It’s amazing to see that the fastest time to process the first image
is always below 1 second (cf Table 5.1). This can give us a baseline ≤ 1 second
for the latency . And it’s worth noting too that the max processing time is of
course and thankfully less than batch_size ∗ min_processing_time.

"dumb" buoys "smart" buoys

Average Min. Processing Time 0.17 s 0.89 s
Max. Processing Time (batch 100) 25.88 s 10.80 s
Max. Processing Time (batch 1000) 261.34 s 109.43 s

Table 5.1: Min and Max processing times between implementations

On figure 5.6, I plot the comparison of 24 configurations, evaluating batches of
100 and 1000 images across 3 different network speeds, and limiting the number of
processors.

CHAPTER 5. EVALUATION 40

Buoy For Shark Recognition Pierre Moreau

Figure 5.6: NiFi Simulation Test Results

At first glance it looks like the network speed isn’t such a problem as we initially
expected. Even using 4G, the result are in the same range as with WiFi or Ethernet.
We can also notice that a high number of CPU didn’t reduce the processing time
as we expected. I should clarify right away that I double checked that the network
speed was indeed limited and that the CPUs were indeed disabled.

Network speed and compression

We might have wanted to deal more with the compression of our data. Since a
lot of images are sent over the network, it seems an important point not to overlook.
However results shows that the network isn’t the bottleneck at all yet, and NiFi
is already doing a great job optimizing the network capabilities already. It’s still
worth noting that while the network speeds has almost no effect on the "smart" buoy
configurations, its effects are increased in the "dumb" buoy setup, which makes sense
knowing since there is, as already justified, more traffic with the "dumb" buoy setup.

CHAPTER 5. EVALUATION 41

Buoy For Shark Recognition Pierre Moreau

Batch Size

Interestingly, we see that the processing times are linearly correlated with
the batch size. All the average and maximum processing times for the tests with
batch_size = 1000 are 10 times the times for batch_size = 100. By subtracting
the latency of ∼ 1 second, those consistent results gives us a baseline formula to
compute the maximum number of cameras we can process depending on the delay
we can allow for a specific configuration.

For instance, since the number of cores doesn’t create a big enough variation,
and matching our baseline of HD cameras at 2 fps, we computed that a "smart" buoy
with those configurations should be able to process correctly without delay (ie. only
the latency) about 20 frames per second. This corresponds to 10 HD cameras at 2
fps.

A "dumb" buoy, on the other hand, could only handle 8 images per second with
this configuration, which is equivalent to 4 HD cameras at 2 fps.

This is really surprising me as I was expecting the dumb buoy configuration to
being able to process more images than the smart configuration.

Dumb vs. Smart configurations

The "dumb" buoys have approximately 3 times the delay of the "smart" buoys.
This is a lot and can be quite unexpected. It’s worth noting that the main server
which is running the inference in the "dumb" scenario is having only 4 CPUs, and
should be quite in the same configuration as the buoy when the buoy is using only 4
CPUs. Since it still takes 3x longer in those scenarios, we can also remove the RAM
from the equation, because the server already has 2x the RAM of the buoy. I expect
this delay to be occurring from the overhang of running the inference on images that
are originally stored on the buoys. And as expected, that results in more processing
time for the "dumb" buoys.

Those comparisons might not be conclusive enough, and more tests and in-
vestigations can still be done. However based on the data we have, a "smart" buoy
configuration with 4G dongles will be a effective and cost-efficient implementation.

CHAPTER 5. EVALUATION 42

Chapter 6

Future Work

This research document details the considerations of implementing underwater
buoys with cameras to detect sharks in real time. I focused primarly on the Infor-
mation System’s Network architecture concepts, limitations, and implementations.
We now know that a "smart" buoy setup with 4G connectivity is a suitable effective
and cost-efficient configuration.

On a personal side, I am already really happy and proud with this research as I
learned a lot about streaming architecture, event processing, in depth kafka and nifi
architecture, and deploying a Machine Learning model. This is also a really useful
project that will be continued, and I learned a lot about approaching a project with
a researcher’s mindset.

As the scope of this project is very large, and that I had only 2 months to work
part-time on this project, I have let some parts of the projects to be done later.

� Data Compression : the frame objects could greatly benefit from further
compression before being sent over the network. A good and fast compression
algorithm in the buoys, and decompression in the processing nodes, should
increase the capacity of the network in terms of cameras. NiFi would make
this step easier should it be the selected architecture.

� Security of the system : Setup kerberos authentication ? SSL or not ? NiFi
already handles SSL encryption of the data, and authentication mechanisms
should not be complex to set up.

� Notification to send when shark is detected : This can be done in many
ways, either in the Relational Database, either with Flink in the Kafka cluster
connected to the output topic, or either in NiFi that can connects to messaging
apps like Slack and send instant messages with the corresponding image.

43

Buoy For Shark Recognition Pierre Moreau

� System monitoring and management : Zabbix has been presented in sub-
section 4.2.5. It should be known if it’s implementation is useful and should
be implemented to monitor system’s health.

� Designing the Buoys : The design of the underwater buoys is still to be
conceived and prototype. More research should be done on the configuration
of the underwater cameras.

CHAPTER 6. FUTURE WORK 44

45

Buoy For Shark Recognition Pierre Moreau

Chapter 7

Appendices

Figure 7.1: NiFi flow on the buoys
CHAPTER 7. APPENDICES 46

Buoy For Shark Recognition Pierre Moreau

Figure 7.2: NiFi flow on the server

CHAPTER 7. APPENDICES 47

Buoy For Shark Recognition Pierre Moreau

Figure 7.3: NiFi alert and log flow on the server

CHAPTER 7. APPENDICES 48

Bibliography

[1] 10 Gigabit Ethernet. en. Page Version ID: 899541661. May 2019. url: https:
//en.wikipedia.org/w/index.php?title=10_Gigabit_Ethernet&oldid=
899541661 (visited on 06/15/2019).

[2] 5G. en. Page Version ID: 901845141. June 2019. url: https://en.wikipedia.
org/w/index.php?title=5G&oldid=901845141 (visited on 06/15/2019).

[3] 8-N-1. en. Page Version ID: 896581180. May 2019. url: https://en.wikipedia.
org/w/index.php?title=8-N-1&oldid=896581180 (visited on 06/15/2019).

[4] Apache Kafka. en. url: https://kafka.apache.org/21/documentation/
streams/architecture (visited on 06/23/2019).

[5] Apache NiFi Overview. Apr. 2019. url: https://nifi.apache.org/docs/
nifi-docs/html/overview.html (visited on 06/24/2019).

[6] Apache_NiFi_In_Depth. Apr. 2019. url: https://nifi.apache.org/docs/
nifi-docs/html/nifi-in-depth.html (visited on 07/06/2019).

[7] Scott Arena.MET CS 625 Business Data Communication and NEtworks Boston
University. Jan. 2019. url: https://www.bu.edu/academics/met/courses/
met-cs-625/ (visited on 06/14/2019).

[8] Amit Baghel. Video Stream Analytics Using OpenCV, Kafka and Spark Tech-
nologies. Sept. 2017. url: https : / / www . infoq . com / articles / video -
stream-analytics-opencv/ (visited on 06/15/2019).

[9] Bandwidth (computing). en. Page Version ID: 900066956. June 2019. url:
https://en.wikipedia.org/w/index.php?title=Bandwidth_(computing)
&oldid=900066956 (visited on 06/15/2019).

[10] News BBC. Shark attack: Surfer killed off France’s Réunion Island - BBC
News. url: https://www.bbc.com/news/world-europe-48219268 (visited
on 06/14/2019).

[11] Ken Bromhead. Apache Kafka: Ten Best Practices to Optimize Your Deploy-
ment. Oct. 2018. url: https://www.infoq.com/articles/apache-kafka-
best-practices-to-optimize-your-deployment/ (visited on 06/23/2019).

49

https://en.wikipedia.org/w/index.php?title=10_Gigabit_Ethernet&oldid=899541661
https://en.wikipedia.org/w/index.php?title=10_Gigabit_Ethernet&oldid=899541661
https://en.wikipedia.org/w/index.php?title=10_Gigabit_Ethernet&oldid=899541661
https://en.wikipedia.org/w/index.php?title=5G&oldid=901845141
https://en.wikipedia.org/w/index.php?title=5G&oldid=901845141
https://en.wikipedia.org/w/index.php?title=8-N-1&oldid=896581180
https://en.wikipedia.org/w/index.php?title=8-N-1&oldid=896581180
https://kafka.apache.org/21/documentation/streams/architecture
https://kafka.apache.org/21/documentation/streams/architecture
https://nifi.apache.org/docs/nifi-docs/html/overview.html
https://nifi.apache.org/docs/nifi-docs/html/overview.html
https://nifi.apache.org/docs/nifi-docs/html/nifi-in-depth.html
https://nifi.apache.org/docs/nifi-docs/html/nifi-in-depth.html
https://www.bu.edu/academics/met/courses/met-cs-625/
https://www.bu.edu/academics/met/courses/met-cs-625/
https://www.infoq.com/articles/video-stream-analytics-opencv/
https://www.infoq.com/articles/video-stream-analytics-opencv/
https://en.wikipedia.org/w/index.php?title=Bandwidth_(computing)&oldid=900066956
https://en.wikipedia.org/w/index.php?title=Bandwidth_(computing)&oldid=900066956
https://www.bbc.com/news/world-europe-48219268
https://www.infoq.com/articles/apache-kafka-best-practices-to-optimize-your-deployment/
https://www.infoq.com/articles/apache-kafka-best-practices-to-optimize-your-deployment/

Buoy For Shark Recognition Pierre Moreau

[12] Eric Brown. Catalog of 125 open-spec hacker boards. June 2019. url: http:
//linuxgizmos.com/catalog-of-125-open-spec-hacker-boards/ (visited
on 06/29/2019).

[13] Climate. en. Nov. 2014. url: https://en.reunion.fr/practical/reunion-
island/geography-and-climate/climate (visited on 06/16/2019).

[14] Comparison of wireless data standards. en. Page Version ID: 900373760. June
2019. url: https://en.wikipedia.org/w/index.php?title=Comparison_
of_wireless_data_standards&oldid=900373760 (visited on 06/15/2019).

[15] CRA. Le Centre de Ressources et d’Appui pour la réduction du risque requin,
Acceuil. fr. Apr. 2019. url: http://www.info-requin.re/le-centre-de-
ressources-et-d-appui-pour-la-r70.html (visited on 06/14/2019).

[16] Reunion CRA. Test II du Sonar Xblue : un dispositif innovant pour la sécuri-
sation de la gauche de Saint-Leu face au risque requin. fr. Apr. 2019. url:
http://www.info-requin.re/test-ii-du-sonar-xblue-un-dispositif-
innovant-pour-a872.html (visited on 06/14/2019).

[17] Peter Forret.Megapixel calculator | toolstudio. en. 2018. url: https://toolstud.
io/photo/megapixel.php?width=1920&height=1080&compare=video&
calculate=compressed (visited on 06/15/2019).

[18] FranceInfo. Le taux de chômage augmente à La Réunion de 2 points. fr. Apr.
2019. url: https://la1ere.francetvinfo.fr/reunion/taux-chomage-
augmente-reunion-2-points-697356.html (visited on 06/14/2019).

[19] Jeff Geerling. Getting Gigabit Networking on a Raspberry Pi 2, 3 and B+ | Jeff
Geerling. url: https://www.jeffgeerling.com/blogs/jeff-geerling/
getting-gigabit-networking (visited on 06/16/2019).

[20] ISO/IEC 11801. en. Page Version ID: 892552170. Apr. 2019. url: https://
en.wikipedia.org/w/index.php?title=ISO/IEC_11801&oldid=892552170
(visited on 06/15/2019).

[21] Yoon-Ki Kim and Chang-Sung Jeong. “Large Scale Image Processing in Real-
Time Environments with Kafka”. In: 2017. doi: 10.5121/csit.2017.70120.

[22] Stanislav Kozlovski. Thorough Introduction to Apache Kafka™. Dec. 2017. url:
https://hackernoon.com/thorough- introduction- to- apache- kafka-
6fbf2989bbc1 (visited on 06/22/2019).

[23] List of interface bit rates. en. Page Version ID: 900218833. June 2019. url:
https://en.wikipedia.org/w/index.php?title=List_of_interface_
bit_rates&oldid=900218833 (visited on 06/15/2019).

[24] Tony Mancill and pwpadmin. Best Practices for Apache Kafka. en-US. Aug.
2018. url: https : / / blog . newrelic . com / engineering / kafka - best -
practices/ (visited on 06/23/2019).

BIBLIOGRAPHY 50

http://linuxgizmos.com/catalog-of-125-open-spec-hacker-boards/
http://linuxgizmos.com/catalog-of-125-open-spec-hacker-boards/
https://en.reunion.fr/practical/reunion-island/geography-and-climate/climate
https://en.reunion.fr/practical/reunion-island/geography-and-climate/climate
https://en.wikipedia.org/w/index.php?title=Comparison_of_wireless_data_standards&oldid=900373760
https://en.wikipedia.org/w/index.php?title=Comparison_of_wireless_data_standards&oldid=900373760
http://www.info-requin.re/le-centre-de-ressources-et-d-appui-pour-la-r70.html
http://www.info-requin.re/le-centre-de-ressources-et-d-appui-pour-la-r70.html
http://www.info-requin.re/test-ii-du-sonar-xblue-un-dispositif-innovant-pour-a872.html
http://www.info-requin.re/test-ii-du-sonar-xblue-un-dispositif-innovant-pour-a872.html
https://toolstud.io/photo/megapixel.php?width=1920&height=1080&compare=video&calculate=compressed
https://toolstud.io/photo/megapixel.php?width=1920&height=1080&compare=video&calculate=compressed
https://toolstud.io/photo/megapixel.php?width=1920&height=1080&compare=video&calculate=compressed
https://la1ere.francetvinfo.fr/reunion/taux-chomage-augmente-reunion-2-points-697356.html
https://la1ere.francetvinfo.fr/reunion/taux-chomage-augmente-reunion-2-points-697356.html
https://www.jeffgeerling.com/blogs/jeff-geerling/getting-gigabit-networking
https://www.jeffgeerling.com/blogs/jeff-geerling/getting-gigabit-networking
https://en.wikipedia.org/w/index.php?title=ISO/IEC_11801&oldid=892552170
https://en.wikipedia.org/w/index.php?title=ISO/IEC_11801&oldid=892552170
https://doi.org/10.5121/csit.2017.70120
https://hackernoon.com/thorough-introduction-to-apache-kafka-6fbf2989bbc1
https://hackernoon.com/thorough-introduction-to-apache-kafka-6fbf2989bbc1
https://en.wikipedia.org/w/index.php?title=List_of_interface_bit_rates&oldid=900218833
https://en.wikipedia.org/w/index.php?title=List_of_interface_bit_rates&oldid=900218833
https://blog.newrelic.com/engineering/kafka-best-practices/
https://blog.newrelic.com/engineering/kafka-best-practices/

Buoy For Shark Recognition Pierre Moreau

[25] Sue Palminteri. You don’t need a bigger boat: AI buoys safeguard swimmers and
sharks. en-US. Apr. 2018. url: https://news.mongabay.com/2018/04/ai-
buoys-safeguard-swimmers-and-sharks/ (visited on 06/14/2019).

[26] Raymond R. Panko. Business data communications. Upper Saddle River, NJ:
Prentice Hall, 1997. isbn: 978-0-13-308164-0.

[27] RaspberryPi. Buy a Raspberry Pi 3 Model B+ – Raspberry Pi. url: https:
//www.raspberrypi.org (visited on 06/16/2019).

[28] Joshua Robinson. High-Performance Input Pipelines for Scalable Deep Learn-
ing. en-US. Mar. 2019. url: https://dataworkssummit.com/barcelona-
2019/session/high-performance-input-pipelines-for-scalable-deep-
learning/ (visited on 06/22/2019).

[29] Sourav Sikdar, Kia Teymourian, and Chris Jermaine. “An experimental com-
parison of complex object implementations for big data systems”. In: Sept.
2017, pp. 432–444. doi: 10.1145/3127479.3129248.

[30] Michael Slezak. Shark nets used at most beaches do not protect swimmers,
research suggests | Environment | The Guardian. Feb. 2016. url: https://
www.theguardian.com/environment/2016/feb/09/shark-nets-used-at-
most-beaches-do-not-protect-swimmers-research-suggests (visited on
06/14/2019).

[31] Timothy Spann. Apache Deep Learning 201. en-US. Mar. 2019. url: https://
dataworkssummit.com/barcelona-2019/session/apache-deep-learning-
201/ (visited on 06/22/2019).

[32] Tritech. Tritech Successfully Deploys Shark Detection Sonar | Tritech | Out-
standing Performance in Underwater Technology. Feb. 2017. url: https://
www.tritech.co.uk/news- article/tritech- successfully- deploys-
shark-detection-sonar (visited on 06/14/2019).

[33] Itai Yaffe. Stream, Stream, Stream: Different Streaming Methods with Spark and
Kafka. en-US. Mar. 2019. url: https://dataworkssummit.com/barcelona-
2019/session/stream-stream-stream-different-streaming-methods-
with-spark-and-kafka/ (visited on 06/22/2019).

[34] Itai Yaffe and Yakir Buskilla. Counting Unique Users in Real-Time: Here’s a
Challenge for You! en-US. Mar. 2019. url: https://dataworkssummit.com/
barcelona-2019/session/counting-unique-users-in-real-time-heres-
a-challenge-for-you/ (visited on 06/22/2019).

BIBLIOGRAPHY 51

https://news.mongabay.com/2018/04/ai-buoys-safeguard-swimmers-and-sharks/
https://news.mongabay.com/2018/04/ai-buoys-safeguard-swimmers-and-sharks/
https://www.raspberrypi.org
https://www.raspberrypi.org
https://dataworkssummit.com/barcelona-2019/session/high-performance-input-pipelines-for-scalable-deep-learning/
https://dataworkssummit.com/barcelona-2019/session/high-performance-input-pipelines-for-scalable-deep-learning/
https://dataworkssummit.com/barcelona-2019/session/high-performance-input-pipelines-for-scalable-deep-learning/
https://doi.org/10.1145/3127479.3129248
https://www.theguardian.com/environment/2016/feb/09/shark-nets-used-at-most-beaches-do-not-protect-swimmers-research-suggests
https://www.theguardian.com/environment/2016/feb/09/shark-nets-used-at-most-beaches-do-not-protect-swimmers-research-suggests
https://www.theguardian.com/environment/2016/feb/09/shark-nets-used-at-most-beaches-do-not-protect-swimmers-research-suggests
https://dataworkssummit.com/barcelona-2019/session/apache-deep-learning-201/
https://dataworkssummit.com/barcelona-2019/session/apache-deep-learning-201/
https://dataworkssummit.com/barcelona-2019/session/apache-deep-learning-201/
https://www.tritech.co.uk/news-article/tritech-successfully-deploys-shark-detection-sonar
https://www.tritech.co.uk/news-article/tritech-successfully-deploys-shark-detection-sonar
https://www.tritech.co.uk/news-article/tritech-successfully-deploys-shark-detection-sonar
https://dataworkssummit.com/barcelona-2019/session/stream-stream-stream-different-streaming-methods-with-spark-and-kafka/
https://dataworkssummit.com/barcelona-2019/session/stream-stream-stream-different-streaming-methods-with-spark-and-kafka/
https://dataworkssummit.com/barcelona-2019/session/stream-stream-stream-different-streaming-methods-with-spark-and-kafka/
https://dataworkssummit.com/barcelona-2019/session/counting-unique-users-in-real-time-heres-a-challenge-for-you/
https://dataworkssummit.com/barcelona-2019/session/counting-unique-users-in-real-time-heres-a-challenge-for-you/
https://dataworkssummit.com/barcelona-2019/session/counting-unique-users-in-real-time-heres-a-challenge-for-you/

	Project Description
	Motivation
	Limitations of existing work

	Initial targets
	Computer Science Tasks
	Engineering the IoT device

	Timeline
	Funding

	Technical Requirements Specifications
	Project presentation
	Functional Requirements
	Interface Requirements
	Hardware interfaces

	Environment
	Weather
	Terrain
	Connectivity

	Technical specs
	Standards and compatibility requirements
	Buoy configuration and barrier length

	Performance Requirements
	Speed requirements
	Reliability requirements
	Scalability requirements

	Architecture Research
	Dumb vs Smart buoys
	Network bandwidth
	Goodput coefficient

	Development
	Network technologies
	Equivalent number of connected cameras
	Comparison
	Results

	Architecture
	Kafka
	Our Kafka-centered design
	The fatal flaw
	NiFi
	Zabbix
	MXNet
	System Requirements

	Evaluation
	First implementation tests and measures
	Test : Video acquisition and compression
	Test : Network communication speeds
	Component list and necessary budget
	Unfortunate turn of events

	NiFi implementation and simulations
	NiFi Implementation
	NiFi Tests
	NiFi Test Results

	Future Work
	Appendices
	Bibliography

