CS 201 Introduction to Programming with Python: SYLLABUS

Instructor: Anatoliy Aleksandrov, Ph.D.

Email: <u>aaleksan@bu.edu</u>

Course Description

Introduction to programming basics (what it is and how it works), binary computation, problem-solving methods and algorithm development. Includes procedural and data abstractions, program design, debugging, testing, and documentation. Covers data types, control structures, functions, parameter passing, library functions, arrays, inheritance and object oriented design. Laboratory exercises in Python.

Course Objectives and Learning Goals

The students should be able to

- Understand basic principles of computers
- Understand basics of binary computation
- Understand the programming basics (operations, control structures, data types, etc.)
- Readily use the Python programming language
- Apply various data types and control structure
- Understand class inheritance and polymorphism
- Understand the object-oriented program design and development
- Understand and begin to implement code

Resources

Contemporary programming languages like Python enjoy rich online documentation. Indeed, they are built on the premise that programmers are continually in contact with such documentation, and are not expected to memorize any but a small fraction of it. The textbook for the course is below.

"Starting Out with Python plus MyProgrammingLab with Pearson eText --Access Card Package (3rd or 4th Edition) Tony Gaddis ISBN-13: 978-0133862256"

Week-by-Week Topics

Weekly Activities

Each week you will need to:

- Attend the lectures
- Read recommended pages in the textbook (listed below)
- Complete the interim assessment for feedback
- Complete the homework assignment

Week	Module	Торіс	Readings
1	1	Module 1: Introduction	Chapters 1
		Relationship between computers and programs	_
		Basic principles of computers	
		File systems	
		Using the Python interpreter	
		Introduction to binary computation	
2	2	Module 2: Data types and control structures	Chapter 2, 3.1, 3.2, 3.4, 3.5,
		Operators (unary, arithmetic, etc.)	3.6, 4.1, 4.2, 4.3
		Data types, variables, expressions, and statements	
		Assignment statements	
		Input/output	
		Strings and string operations	
		Control Structures: loops and decision	
3	3	Module 3: Modularization and Classes	Chapter 5.1 – 5.5
		Standard modules	
		Packages	
		Defining Classes	
		Defining functions	
		Functions and arguments (signature)	
4	4	Module 4: Exceptions and data structures	Chapter 6, 9.1, 9.2
		Data Structures (array, List, Dictionary)	
		Error processing	
		Exception Raising and Handling	
5	5	Module 5: Object oriented design	Chapter 10, 11
		Programming types	
		Object Oriented Programming	
		Object Oriented Design	
		Inheritance and Polymorphism	
5	6	Module 6: Remaining materials, Exam preparation.	Remaining materials, Q&A
Remaining			

GRADING: Programming assignments: Labs/Homework - 40% Quizzes – 20% Class Participation and Attendance - 5% Midterm - 10% Final - 25%

PROGRAM EVALUATION CRITERIA Program correctness - 60% Documentation - 20% Readability - 20%