Antidote Application: An Educational System for Treatment of Common Toxin Overdose | June 3, 2020

 

Speaker: Dr. Guanglan Zhang, Associate Professor of Computer Science
Moderated by: Andrey Blidman, Computer Science Program Coordinator
June 3, 2020

Abstract:Poisonings account for almost 1% of emergency room visits each year. Time is a critical factor in dealing with a toxicologic emergency. Delay in dispensing the first antidote dose can lead to life-threatening sequelae. Current toxicological resources that support treatment decisions are broad in scope, time-consuming to read, or at times unavailable. Our review of current toxicological resources revealed a gap in their ability to provide expedient calculations and recommendations about appropriate course of treatment. To bridge the gap, we developed the Antidote Application (AA), a computational system that automatically provides patient-specific antidote treatment recommendations and individualized dose calculations. We implemented 27 algorithms that describe FDA (the US Food and Drug Administration) approved use and evidence-based practices found in primary literature for the treatment of common toxin exposure. The AA covers 29 antidotes recommended by Poison Control and toxicology experts, 19 poison classes and 31 poisons, which represent over 200 toxic entities. To the best of our knowledge, the AA is the first educational decision support system in toxicology that provides patient-specific treatment recommendations and drug dose calculations. The AA is publicly available at http://projects.met-hilab.org/antidote/.

View all posts