Differentially Private Mechanisms
for Cut-Queries of a Graph

A Survey

Or Sheffet
Harvard university

osheffet@seas.harvard.edu

Charles River Workshop on

Private Analysis of Social Networks
May 19th 2014

Privacy in Graphs

Neighboring graphs:
Differ on a single edge

w.r.t edge changes while
approximating cut queries

Pa(S) = |E(S,)

The Right goal?

Goal: satisfy (¢,0)-privacy w.r.t edge changes,
while approximating cut queries &(S) = |E(S, S)|

Cuts help in divide-and-conquer
Cuts — communities and clustering
— Need extra info: avg degree in subgraph
Error: max-error over all cuts |
maXg. [P;(S) - answer(S)|
Helps in making qualitative observations???

— You tell me / us!

Differential Privacy

* n people
* Neighboring datasets:
— x changes

[DMNSO6, DKMMNO6]

Name PhD? ... STD?
Name PhD? STD?
Or S
77?7 77?7 ?? ?

(¢, 0)-differential privacy: V(D, D"), VS
Pr[ALG(D) € S] < e‘Pr[ALG(D") € S] + 9

Differential Privacy

e Def: GS(f)—(rgan |f(D) — f(D)]

« The basic mechanism: Given f, answer:
log(1/0
F(D) + GS(f) - N0, 2B

62
|

0.8

06

0.4+

02

0 |
-500 -400 300 \—288——y—ited 0 100 200

300

|
400

Differential Privacy

Def: GS(f)—(%lfgc f(D) —

What can we do
when GS(f) is big?

f(D)
The basic mechanism: Given f, answer:

f(D) +GS(f) -N(O\ .

log(1/5))

4 A)
How to answer
f17 f27 . ft?

_)

[DVR10] —noise proportional to Vit

[BLROS, HR10] —
inefficient/efficient technique to

answer general/linear queries
with noise proportional to log(t)

Graphs = Matrices

* Goal: satisfy (¢,0)-privacy w.r.t edge changes,
while approximating cut queries &4(S) = |E(S, S)|

* A, adjacency-matrix

Adjacency Matrix and Cuts

a b b 1,
1
000011110101 ¢ 0 1 X
1
o= DAy
b 0
0 18
b 1 0 JeT
0

o

Release A’ that approximates A well w.r.t cut-norm:

|A — A’HD_maX|ZA A,]

1€S
q€T

Graphs = Matrices

* Goal: satisfy (¢,0)-privacy w.r.t edge changes,
while approximating cut queries &4(S) = |E(S, S)|

* L. Edge-matrix n

e, ¢

€2 ¢

0..0 cc. 0 H{a,b}

0..01..0..-1..0

Graphs = Matrices

* Goal: satisfy (¢,0)-privacy w.r.t edge changes,
while approximating cut queries &4(S) = |E(S, S)|

* L. Edge-matrix

n a b

10

Edge Matrix and Cuts

&
Q

(IR
W

{a,b}| 0..01..0..-1..0

OO0 R KR REFRPRKR

Oo0oo0oo, .00 r OO

(Dg(S) — HEglgl‘z — 1£L(‘;15 — (Lglg) . LG

* Indeed, 1,7L1is the value of the (S,1)-cut — but caution:
* Approximating (.5,5) cuts = approximate vector lengths.
* Approximating (.S,T) cuts = approximating dot-products (for large vectors!)

11

Straw-Man Algorithm #1

* Given t queries, Sy, S,, ..., S,, answer each one
with small additive noise.
— Good: efficient; adaptive; non-restricted queries

—Bad: t < en?
* If error=0(n/e), thent = (n?/¢)

Straw-Man Algorithm #2

e Use exponential mechanism [MTO7, BLROS] ‘
» Scoring function: sc(M,G)=max|®,(S)-®,,(S)|

— Over adjacency matrices:

2 .
2" matrices = error ~ n?/e

Here’s where we restrict

— Over LapIaC|ans: outselves to (5,5) cuts

« 27 edge-matrices = error ~n?/e
o nlog(n)/n” gparsifier§ = error(S) & nlog(n) /e + n &(S)

— Good: low error, non-restricted queries.
— Bad: Non efficient.

Straw-Man Algorithm #3

e Use Private Multiplicative Weights [HR10,GRU12] (or
other iterative) mechanism

— Over edges = coordinates of the adjacency matrices
* Universe size of O(n?) (each update step take poly-time)

— Start with M = uniform adjacency matrix Crux: #“update” is

. bounded;
— Per query in (): g
th y I Q » d; AP Non-updates hardly
Ither tell user "answer according to leak privacy

* Ortell user “update using the query & private aiuswer u
— Error of O(|EI[Vi/€)!/2 or O(IEllog(IQ)/e)"/2
— Good: low error (for sparse graphs)
— Bad: Non efficient

— Q: Possible to find update-queries efficiently and privately?

THE Open Question

Efficient algorithm that answers all cut-queries with
error=0(nlog(n))
— Best known to date: n3/2
* For the general case (any graph, any cut-query)

Or just for sparse cuts? (with |S1 < s)
— Best known to date: s3/2

Or just for sparse graphs? (with [El=O(|\))
— Best known to date: with () of poly-size. (PMW-mechanism)

e PLEASE(!) break the n3/2 barrier

Rest of this Talk

1. Getting n3/2 via Randomized Response [GRU12]
2. Getting s3/2 for cuts of size s [DTTZ14]

3. Better bounds for better graphs [BBDS12]
— When all eigenvalues of the Laplacian are large

4. Approximating the PCA [DDTZ14]+[HR13, H14]

— Spectral gap (o, ; > o0,) and {v; ... v} capture many
cut-queries

— Better guarantees for incoherent matrices

1. Randomized Response ~Gru12]

Algorithm:
Fill adjacency matrix with 1.-1 iid,

Pr[Ay, =1 | (u,0) € B(G)] = Lt

PrlAu, =11 (u,0) ¢ E(G)] = 3

2

Privacy:

Pr[A,, =1 (u,v) € B(Q)]
PrlAy, =1] (u,v) ¢ E(G)]

< (1+4¢) <ef

a b b
1 -1
1
-1
For all queries:
s =mn/2
v=1/2¢

Utility:

—

Hence the n3/2 bound

/

| |uES,vES ueS,v¢S

Pr Z Ay —€ Z Wy.| > O(y/log(1/v)s(n —s))| <v

2. Laplacian Perturbation [prrz14)

Algorithm: LN
Additive random (Gaussian) noise of
O(1/e€) for each entry in the Laplacian| deg, 1

b 1 deg,
Privacy:
Each entry changes by <1

Utility: (151%) - (Lg + noise), noise ~ N(O, 5% /€?)
= expected error of a single query = O(s/¢)
= w.h.p all n® cut have error O(s%*?log(n)/¢)

3. Johnson-Lindenstrauss sspsi2;

=
nn
=
Q
=
nn

OO0 R R R R

Oo0oo0oo .Loo0or oo

|(M - Ec)1s|]” ~ ||[Ecls|” = |E(S. S)

JL Mechanism - Main Theorem

E., E~—two neighboring edge-matrices
guaranteed to|have singular values Q2(log(1/6)/¢)

R —arowin the JL matrix
(iid coordinates ~ (0,1)-Gaussian)
Pryrr, |PDFrL,(2) € € “PDFgp_, (z)] > 16

#rows =~ log(#Queries) /n?
= singular values >

Q((N#rows)-log(1/6)/€) = Q((VMog(#Queries))-log(1/6)/en)

=

4. PCA of a Matrix

Cut-queries — a private case of a matrix (L) operating on a vector (1)
PCA: Given L, output M of rank £ s.t. we minimize

" (Lg — M)z
xTx

Non-privately — the top-k eigenvectors of L,
We would like to be as close to these k vectors as possible

All works assume:
— General matrices
— Neighboring matrices — a single entry differs by at most 1

Doesn’t necessarily imply we give good answers to all / many cuts...

— Query vector should have large weight on subspace spanned by top-k
eigenvectors
* Ausercan find it out
— And we should have a large gap 0, > 0.,
* We can release this information privately

PCA of a Matrix [prrz14]

e Algorithm:
— M = L, + noise(1/¢) per entry
— Output uy, u,, ..., u, — top-k eigenvectors of M
* Analysis:
— Notation: vy, v,, ... v, — top-k eigenvectors of L,
— u,TMuy > v;TMv; = v;7(L + noise(1/¢€))v; = o, + E[noise]
— uyTMuy < uTL u, + E[max-noise(1/¢)]
— = u, Lou, > 0,- O(\Nn/e)

— For k>1
u T Muy, = maxg.y;,, min g zTMz
> mmxespan{v oy TTMz
= min BT LT - Min e,y 2T(nOISE]T

a:ESpari}

=)

PCA of a Matrix [Hr13, H14]

* Release leading eigenvector via power iterations:
7" = normalize(Lgz")

PCA of a Matrix [Hr13, H14]

Private power iterations

"™ = normalize(Lgx' + N(0,1/¢*)™)
In general — roughly same guarantees
— T L, 2" >0,- O(\n/e)

Denote SVD L, = U XU
HR main observation: suffices to use noise o ||U|| 2
— il < U, w.h.p

— So adding Noise of (V#Iterations)-coherence/e per coordinate
should maintain privacy in all power-iterations

— Error = O(\/n ||U1|oo/€)

— Optimal noise: matching lower bound.

PCA of a Matrix [Hr13, H14]

e To get a rank-k approximation:

— Run power-iteration £ times
* At time 4, approx first eigenvector of L-2.. /"' o, v 0]

— Gives error of O(k2(n-coherence+\k)/e)

— Run power iteration for a n x k matrix
— Gives error of O(N(nk)|lU | o, /o, €)

Summary

* We know:
— Efficiently answer all cut-queries with error=n3/2
— Inefficiently answer all cut-queries with error=nlog(n)
— Efficiently answer all s-sparse cut-queries with error=s%2
— Inefficiently answer all s-sparse cut-queries with error=(|Els)/2
— Efficiently answer many-cut queries for nice graphs
— Efficiently compute PCA of any matrix with error of error=vn
— Efficiently compute PCA of incoherent matrices with error=n|U]_

* We don’t know:
— Efficiently answer all cut-queries with error error=nlog(n)
— Efficiently answer all s-sparse cut-queries with error=(ns)!/2
— Other notions of “niceness”

Thank youl!

