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Roadmap

- Part 1: Role discovery
applied to re-identification

. [KDD’11, KDD’12, KDD’13] f

- Part 2: Arelative view of privacy

- [Work in Progress]
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First Part of the Talk
eGLRD

Guided Learning for Role Discovery (GLRD):
Framework, Algorithms, and Applications

In KDD 2013
nodes features roles features
wv
) Guidance ! r
w w —
2 g 2
Recursive NMF +
Structural Feature Model Selection
Extraction
R e F ex I RolX: Structural Role Extraction
It's Who You Know: Graph Mining Using & Mining in Large Graphs
Recursive Structural Features In KDD 2012.

In KDD 2011
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Cross-sectional Node Re-ldentification

DBLP Co-authorship Networks from 2005-2009

Network \4 | E| k | ILCC| | #CC
VLDB 1,306 | 3,224 | 4.94 769 112
SIGMOD || 1,545 | 4,191 | 5.43 | 1,092 116
CIKM 2.367 | 4,388 | 3.71 | 890 | 361
SIGKDD || 1,529 | 3,158 | 4.13 743 189
ICDM 1,651 | 2,883 | 3.49 | 458 | 281
SDM 915 | 1,001 | 3.28 243 165
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Given a network, there are many
behavioral questions we'd like to answer

Task Description

Change detection |dentify unusual changes in behavior

Use knowledge of one network to make

Knowledge transfer predictions in another

Network similarity/ | Determine network compatibility for knowledge
comparison transfer

Outlier detection |dentify individuals with unusual behavior

Re-identification |dentify individuals in an anonymized network

|dentify individuals with similar behavior to a

Similarity query known target
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Example: Can we identify users across
social graphs?
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Example: Knowledge Transfer Query

- How can we use labels from an external source to
predict labels on a network with no labels?

Ly LA

Target Network @ External Network

“ ¥,

Target Network



5/23/14

tina@eliassi.org

8

What features can we extract to do these

tasks?

Task

Description

Change detection

Identify unusual changes in behavior

Knowledge transfer

Use knowledge of one network to make
predictions in another

Network similarity/
comparison

Determine network compatibility for knowledge
transfer

Outlier detection

Identify individuals with unusual behavior

Re-identification

|dentify individuals in an anonymized network

Similarity Query

|dentify individuals with similar behavior to a
known target

Nodes

Target Network

{J

Features

0.23
0.25

n10
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Feature Requirements

- Requirement 1: Effective

- Features must be predictive
and predictive models must
transfer across graphs.

N

.- Knowledge

Transfer

- Requirement 2: Structural

- Features must not require
additional attributes or identity maps.

Nodes

n2

Target Network

Features

0.23

0.27

n3

0.63 0.25

0.63

0.36

0.36

0.55 [ 0.49 | 0.31 |
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ReFeX: Recursive Feature Extraction

- [Henderson et al., KDD 2011]

- Recursively combines node-based features with
egonet-based features; & outputs regional features

A
( | Regional \
[ Neighborhood )
A A A
[ Local Y Egonet Y Recursive )

ReFeX

A
Nodes \

335
\ 531

- Neighborhood features: \What is your connectivity pattern?
- Recursive Features: To what kinds of nodes are you connected?
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ReFeX: Structural Features

1"

- Local * -

8 | - Essentially measures of the node degree meoree
g
5 |- Egonet */\ %
5 - Computed based on each node’s ego network  source vs. sink
2 - Examples
- # of within-egonet edges %%é %
- # of edges entering & leaving the egonet Star vs. Clusigy
- Recursive

- Some aggregate (mean, sum, max, min, ...)
of another feature over a node’s neighbors %

- Aggregation can be computed over any
real-valued feature, including other recursive features
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ReFex Intuition: Regional Structure Matters

“DNS” “Peer-to-Peer”

Training Instances

Test Instances

Node sizes indicate communication volume relative to the central node in each frame.
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ReFeX (continued)

- Number of possible recursive features is infinite

- ReFeX pruning

- Feature values are mapped to small integers
via vertical logarithmic binning

. Log binning places mOSt Of the CE T A
discriminatory power among sets /
of nodes with large feature values N

- Look for pairs of features whose
values never disagree by more than a threshold

- A graph based approach
- Threshold automatically set
- Details in the KDD’11 paper
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ReFeX on the DBLP Re-ID Task

0.16 . . . .

Bl ReFex
0.14r

0.12f

0.06 |

0.04 |

0.02 I |
o

cikm (13%) sdm (33%) icdm (26%) sigmod (10%) vidb (10%)
Target Graph Overlap Percent)

Recall
o
o
G)
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\What are Roles?

- Roles are “functions” of nodes in the network
- Similar to functional roles of species in ecosystems

- Measured by structural behaviors
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Network Science Co-authorship Network



Why are Roles Important?

Role Discovery Task Use Case
Role query |dentify individuals with similar
W behavior to a known target
&Xﬁ g ; \JF Role outliers Identify individuals with
unusual behavior
@ Role dynamics |ldentify unusual changes in
behavior
W Re-identification Identify individuals in an
{\ : anonymized network
Role transfer Use knowledge of one

network to make predictions in

\/ Automated discovery another
\/ Behavioral roles Network Determine network
v Roles generalize comparison compatibility for knowledge

transfer
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Roles and Communities are Complementary

Fast Modularity®

- Roles group nodes with similar structural properties
- Communities group nodes that are well-connected to each other



5/23/14

RolX: Role eXtraction

- [Henderson et al., KDD 2012]
- Automatically extracts the underlying roles in a network
- Determines the number of roles automatically

- Assigns a mixed-membership of roles to each node

- Scales linearly on the number of edges

Input

Recursively
extract
features

tina@eliassi.org

Automatically
factorize roles
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RolX: Flowchart

Input f dim space

Node x Node RFe BUSWE Node x Feature
Matrix LG Matrix
Extractlon

n dim space v
N4
Role
Extraction
A
n>fFf>r

Node x Role Role x
Matrix Feature Matrix

r dim space Output
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RolX: Flowchart

Input

|

Node x Node
Matrix

_—

Example:
degree, avg

Recursive Node x Feature | | weight, # of
Feature Matrix — edges in egonet,

mean clustering
v
N4
Role
Extraction
A

coefficient of
Node x Role Role x
Matrix Feature Matrix

neighbors, etc
Output

Extraction
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A

Recursively
extract
features

Automatically
factorize roles




5/23/14 tina@eliassi.org 22

Role Extraction: Feature Grouping

- Soft clustering in the structural feature space - \
- Each node has a mixed-membership across roles | e o e il
- Generate a rank r approximation of V= GF |s === === -
features roles = _____-=
E— — features =
17p] /)]
5 ~O &
C (- o

- RolX uses NMF for feature grouping
- Computationally efficient

- Non-negative factors simplify
interpretation of roles and memberships

argminG,F”V_GFHfro,S.t. G Z O, F Z O
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Role Extraction: Model Selection

- Roles summarize behavior
- Or, they compress the feature matrix, V
- Use MDL to select the model size r that results in the best
compression
- L: description length
- M: # of bits required to describe the model
- E: cost of describing the reconstruction errors in V- GF
- Minimize L=M+ E
- To compress high-precision floating point values, RolX combines

Llyod-Max quantization with Huffman codes M =br(n+ f)
- Errors in V-GF are not distributed

normally, RolX uses KL

divergence to compute £ £ = E log ~V.+GF),

)

i,j
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A

Recursively
extract
features

Automatically
factorize roles
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RolX on the DBLP Re-ID Task

0.16 T T T T T

B ReFex
0.14+ [ JRolX
0.121

0
cikm (13%) sdm (33%) icdm (26%) sigmod (10%) vidb (10%)
Target Graph (Overlap Percent)
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GLRD: Guided Learning for Role Discovery

- [KDD’13] with Sean Gilpin and lan Davidson
- RolX is unsupervised

- What if we had guidance on roles?

- Guidance as in weak supervision encoded as constraints
- Types of guidance

- Sparse roles

- Diverse roles

- Alternative roles, given a set of existing roles
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GLRD

nodes features roles features
wv
(]
4 w v T& F
e o e
. c
Recursive NMF +
Structural Feature Model Selection
Extraction
R e F eX RolX: Structural Role Extraction
It's Who You Know: Graph Mining Using & Mining in Large Graphs
Recursive Structural Features In KDD 2012.

In KDD 2011
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GLRD
GLRD

Guided Learning for Role Discovery (GLRD):
Framework, Algorithms, and Applications

In KDD 2013
nodes features roles features
. wv

i Guidance ! r
Q w w —
- o =

Recursive NMF +

Structural Feature Model Selection
Extraction
R e F ex I RolX: Structural Role Extraction
It's Who You Know: Graph Mining Using & Mining in Large Graphs

Recursive Structural Features In KDD 2012.

In KDD 2011
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Adding Constraints

features roles features
+ F
v ~ W 8
I 3| ¢
c c
Role assignment
vector
\ roles roles features
== softrole g‘ F\ \
ol & 1 A :
s s assignments for \
individual user Role definition /

explanation
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GLRD Framework

- Constraints on columns of G (i.e., role assignments) or
rows of F (i.e. role definitions) are convex functions

minimize ||V — GF||2
G,F

subject to  ¢:(G) < dg:, 1 =1,...,tq
fi(F) <dp;, i=1,...,tF

where g¢; and f; are convex functions.

- Use an alternative least squares (ALS) formulation
- Do not alternate between solving for the entire G and F

- Solve for one column of G or one row of F at a time
- This is okay since we have convex constraints
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Guidance Overview

Guidance Effect of increasing guidance
Type on role assignment (G) on role definition (F)
Reduces the nqmbgr of Decreases likelihood that features
: nodes with minority : )
Sparsity : with small explanatory benefit
memberships )
: are included
in roles
Limits the amount of Roles must be explained with
Diversity allowable overlap in completely different
assignments sets of features
Decreases the allowable Ensures that role definitions are
Alternative similarity between the two very dissimilar between the two
sets of role assignments sets of role assignments
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Sparsity
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argmin
G,F

subject to:

where

IV = GF||

G>0.F >0
Vi ||Gaill1 < €c
Vi ||Fiellt < er

ec and er define upperbounds for
the sparsity constraints (amount of

allowable density).
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Diversity

Goal: Find role assignments or definitions
that are very different from each other

tina@eliassi.org

argmin
G,F

subject to:

where

|V — GF||

more diverse

G>0F>0
Vi, GeiGei <eq i7#]
Vi,j Fie Fio <er i#]

ec and er define upperbounds on
how angularly similar role assign-
ments and role definitions can be to

each other.

33
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Diverse Roles and Sparse Roles

- Question: Can diversity and sparsity constraints create
better role definitions?

- Conjecture: Better role definitions will better facilitate other
problems such as node re-identification across graphs

- Experiment. Compare graph mining results using various
methods for role discovery

Network V| | E| k | |LCC| | #CC
VLDB 1,306 | 3,224 | 4.94 769 112
SIGMOD || 1,545 | 4,191 | 5.43 | 1,092 116
CIKM 2,367 | 4,388 | 3.71 890 361
SIGKDD || 1,520 | 3,158 | 4.13 | 743 | 189
ICDM 1.651 | 2,883 | 3.40 | 458 | 281
SDM 915 | 1,501 | 3.28 243 165

DBLP Co-authorship Networks from 2005-2009
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GLRD on the DBLP Re-ID Task

0.16

0.14|

0.12f

O

o

»
I

0.04r

B ReFex
[ RolX

[ ]GLRD(Sparse) 7
Bl GLRD(Diverse)||

0.02r I
0

cikm (13%)

sdm (33%)

icdm (26%)
Target Graph (Overlap Percent)

S|gmod (10%) vidb (10%)

35

See KDD’11, KDD’12, and KDD’13 papers for details: http://eliassi.org/pubs.html
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Recap Part 1. Role Discovery

- ReFeX automatically extracts regional structural features
- Neighborhood features: What is your connectivity pattern?
- Recursive features: To what kinds of nodes are you connected?

- Roles are structural behavior (“function”) of nodes and are
complementary to communities

- RolX
- Maps nodes in a graph to a lower-dimensional role space
- Each node has a mixed-membership over roles
- Automatically selects the best model
- Roles generalize across disjoint graphs

- Has many applications in graph mining: transfer learning, affecting
dissemination, re-ID, node dynamics, etc

- GLRD can incorporate guidance in role discovery
- All are scalable (linear on # of edges)
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Recap Part 1. Role Discovery

- Several tutorials on this work are available ( http://eliassi.org )

- Previous work mostly in sociology under positions and regular
equivalences

- Joint work with
- LLNL (Keith Henderson & Brian Gallagher)
CMU (Christos Faloutsos et al.)
Google (Sugato Basu) @GLRD

Guided Learning for Role Discovery (GLRD):
Framework, Algorithms, and Applications

- UC Dawvis (lan Davidson et al.) ,
nodes features roles features
- Rutgers (Long T. Le) ] Cuidance s
S A —_— V| —_— & G )
2 o 2
Recursive ° NMF +
Structural Feature Model Selection
Extraction \
l RolX
Re Fex RolX: Structural Role Extraction
It's Wh You K now: Graph Mlnlng Usmg & Mining in Large Graphs

e Structural Featu In KDD 2012.
I KDDZOll
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Roadmap

- Part 1: Role discovery
applied to re-identification

. [KDD'11, KDD’12, KDD’13]

- Part 2: Arelative view of privacy

- [Work in Progress]

- Joint with Priya Govindan (Rutgers), Shawndra Hill &
Jin Xu (UPenn Wharton), and Chris Volinsky (AT&T
Research)
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Motivation

- 87% of the U.S. Population are uniquely identified by {date
of birth, gender, ZIP}!]

- Releasing anonymized graphs, with a small partial
matching can reveal identities.[?]

[1] L. Sweeney. Simple Demographics Often Identify People Uniquely. Data Privacy Working Paper, 2000.
[2] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In IEEE Symposium on Security and Privacy, 2009.
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Motivation
- 87% of the U.S. Population are uniquely identified by {date
of birth, gender, ZIP}!]

- Releasing anonymized graphs, with a small partial
matching can reveal identities.[?]

- Can a handful of anonymized structural features “break
privacy”?

A
[ ___Features

\

1
[ 211 1.1

f 1
I I T . .

\ 531

[1] L. Sweeney. Simple Demographics Often Identify People Uniquely. Data Privacy Working Paper, 2000.

[2] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In IEEE Symposium on Security and Privacy, 2009.
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Features Tied to Popular Social Theories

- Tied to four social theories
- Social capital (connectivity)
- Social exchange (reciprocity)
- Balance (transitivity)
- Structural hole (control of info flow)

- Local and egonet features
[Berlingerio et al. ASONAM’13]:

# of neighbors

clustering coefficient

avg. # of neighbors’ neighbors
avg. clustering coeff. of neighbors
edges in egonet

outgoing edges from egonet

SECRONCNONONC)

# of neighbors of egonet

wodaAaoS

egonet

features

000 ... @

2
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Problem Definition

Structural Feature Table, F

. Degree  Clust. Avg Degree Avg Clust. # Edgesin  # Outgoing Edges  # Nbrs of

Coeff. of Nbrs Coeff. of Nbrs Egonet from Egonet Egonet

Releases /

|
SOpPON

|
Local and Egonet based Features
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Problem Setting

Releases

tina@eliassi.org

Structural Feature Table, F

#Edgesin  # Outgoing Edges #Nbrs of

. Degree Clust. | Avg Degree Avg Clust.
Coeff. of Nbrs Coeff. of Nbrs

Egonet from Egonet Egonet

L
Y
Local and Egonet based Features

43

SOPON
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Problem Setting

Structural Feature Table, F

Degree  Clust. Avg Degree Avg Clust. #Edgesin  # Outgoing Edges #Nbrs of
Coeff.
1

A of Nbrs Coeff. of Nbrs Egonet from Egonet Egonet

S

1
SOPON

Structural Feature Table, Faux L )

Degree | Clust. | Avg Degree Avg Clust. #Edgesin # Outgoing Edges  # Nbrs of '
Coeff. of Nbrs Coeff. of Nbrs Egonet from Egonet Egonet

Local and Egonet based Features

Y
Local and Egonet based Features
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Problem Setting

®  Adversary’s algorithm

- For each node vin F,
- automatically find the smallest set of nodes in Faux

that are most likely to be v

F Faux
Features Features
[ : \ ? [ . \
1 1
. PN The size of the
, , “re-ID” set
:- ? K varies from
’ node to node.
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Why is this interesting?

- Defines threatening privacy as a relative concept

- R, = the smallest set of known individuals that is most likely
to include an anonymized individual /

- If [R| << |R/ then individual j is more “distinguishable” than
individual J
- Example

- In DBLP co-authorship graphs, we observe super-stars
having smaller R sets than recent graduates
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How should we evaluate this slightly
different problem setting?

- Recall: Is node v's match present in the matched cluster?

1, if v € Ol ¢ gove

0, otherwise.

Recall(v, G¥") = {
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How should we evaluate this slightly
different problem setting?

- Recall: Is node v's match present in the matched cluster?

1, if v € Ol ¢ gove

0, otherwise.

Recall(v, G¥") = {

- Precision: How much of v's uncertainty was reduced?

‘Ci,auw‘ .
; . 1,aUT

0, otherwise.

|O;’a’ux| auxr
=|1- Recall(v, G***)

Precision(v,G*"") = {

naum
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Evaluation Metrics

- Recall: Is node v's match present in the matched cluster?

1, if v € Ol ¢ gove

0, otherwise.

Recall(v, G¥") = {

- Precision: How much of v's uncertainty was reduced?

‘Ci,auw‘ .
; . 1,aUT

0, otherwise.

|O;’a’ux| auxr
=|1- Recall(v, G***)

naum

Precision(v,G*"") = {

Objective: Maximize Precision to narrow down
the set of likely matches for each node in F
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Challenges

1. No link structure

tina@eliassi.org

50
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Challenges

1. No link structure

2. Nodes have many lookalikes

F

Features

Nodes

Fa ux

Features
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Challenges

1. No link structure
2. Nodes have many Lookalikes

3. Trivial nxnax comparisons not feasible

Structural Feature Table, F Structural Feature Table, Faux

ust. | Avg Degree Avg Clust. # Edgesin  #Outgoing Edges  # Nbrs of
of Nbrs Coeff. of Nbrs Egonet from Egonet Egonet

‘ Degree  Clust. ‘ Avg Degre: Avg Clust. #Edgesin  # Outgoing Edges #Nbrs of
Coeff. fre

e
of Nbrs ‘ Coeff. of Nbrs Egonet om Egonet Egonet

n xnaUX

|
SOPON

Y Y
Local and Egonet based Features Local and Egonet based Features

52

SOPON
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Challenges

1. No link structure

2. Nodes have many Lookalikes
3. Trivial n2 comparisons not feasible
4. No k given so need to automatically find the most likely k
nodes F Fuux
| e o Foauros ‘_

k=4

Nodes
1
S9pPON
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RRID*: Cluster, Match, Repeat

- Goal

- Narrow down the set of likely matches for each node in F

- Approach F s
- Recursively match ——— ? ‘ '
sets of similar nodes : N

in F with sets of nodes |- o\ .
in Faux | "\ “’
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RRID*: Cluster, Match, Repeat

- Goal

- Narrow down the set of likely matches for each node in F

- Approach F Fous
- Recursively match ! T _| =
sets of similar nodes ; PN
in £~ with sets of nodes 4| - B
in Faux Z 3 "’
- Assumption ' '

- If a node vE€ G has a corresponding node v@¥x& Ga% then
v and v@¥* are structurally similar
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RRID*: Cluster, Match, Repeat

e Cluster by

median
of a feature

-’

-
-
-
——————
- -
————————
-t N e

______
__________________

~, ~, ' A
_________
~~~~~~~
____________
___________
____________________________
~,
____ .. ~—— S~ N - o _,4_—’
e T ., PN et L -

e ————— - e e e p ol
——— L S, T L
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RRID*: Cluster, Match, Repeat

Cluster by
median
of a feature

old Precision (C',)
<

Precision (C2,) +Precision (C2,)

-’

-
-
-
,,,,,
——————
———————
-

______
__________________

'
-
-
-
-
____
e
-

-
-
-
____
———————
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RRID*: Cluster, Match, Repeat

Precision (C',)
<

Precision (C2,) + Precision (C2,)

Yes:

Continue on @ @

No:

Continue DFS on @

Runtime complexity: O(n log n), n = # of nodes.

Cluster by
median
of a feature

-’

-
-
-
,,,,,
- -
- -
- -
—

______
__________________

vvvvvv A
-.:-—-P—’:::::: ____________________
o
o
elejele
- P B nd WL .- —;::;4"——
R LT e
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Experiments: Graph Data

tina@eliassi.org 59

Real Graphs Avg. Number of Nodes Avg. Number of Edges
Twitter Retweet Monthly 64,072 81,906
Yahoo! IM Weekly 84,992 261,167
DBLP Co-authorship Yearly 2,045 4,024

IMDB Collaboration Yearly 10,887 236,132

Synthetic Graphs Number of Nodes Number of Edges
Barabasi-Albert Graph 5,000 124,375
Erdos-Rényi Random Graph 5,000 125,021
Forest Fire Graph 5,000 116,135
Watts-Strogatz Graph 5,000 125,000
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Auxiliary Graphs

- Various noise models generate auxiliary graphs

1. Edge rewiring while keeping degree distribution the same

2. Edge deletion

3. Node deletion

- Noise parameter tested at 5%, 10%, 20%

Real Graphs Avg. Number of Nodes Avg. Number of Edges
Twitter Retweet Monthly 64,072 81,906
Yahoo! IM Weekly 84,992 261,167
DBLP Co-authorship Yearly 2,045 4,024
IMDB Collaboration Yearly 10,887 236,132
Synthetic Graphs Number of Nodes Number of Edges
Barabasi-Albert Graph 5,000 124,375
Erdos-Rényi Random Graph 5,000 125,021
Forest Fire Graph 5,000 116,135
Watts-Strogatz Graph 5,000 125,000
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Maximum Recall Varied In Real Graph Pairs

90.0% -
80.0% -
70.0% -

60.0% -

48.0% 50.1%

50.0% -

42.6%

40.0% -
30.0% -

Maximum Recall with Graph G

20.0% -
10.0% -

0.0% . . T .

Retweets Yahoo! IM DBLP IMDB
(G = May 2009) (G = 1 week of April 2008) (G =2005) (G =1952)

Real Graphs

number of overlapping nodes

Maximum Recall (in real graphs) = or of nodes in G
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Comparison with Baselines

Average F1 Score

62

Real Graph + Real Graph + Sy:_‘tge:fh(:t';iph
Real Noise Synthetic Noise yn
Noise
RRID* (Our method) 0.543 0.78 0.74
Paired hlerarch!cal 0.30 0.35 0.38
random clustering
K-means clustering 0.21 0.36 0.36
Random clustering 0.31 0.28 0.30

F1 Score =

2 X Recall X Precision on Recalled Nodes

Recall + Precision on Recalled Nodes
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Comparison with Baselines

Average F1 Score
(Recall; Precision on Recalled Nodes)
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Real Graph + Real Graph + Sy:tls'le::tchgtl;(a:ph
Real Noise Synthetic Noise yn
Noise
0.543 0.78 0.74
RRID* (Our method)
(R=0.44;P=0.71) | (R=0.89;P=0.70) | (R=0.80; P=0.68)
Paired hierarchical 0.30 0.35 0.38
random clustering | (R=0.19;P=0.74)| (R=0.23;P=0.71) | (R=0.26;P =0.70)
. 0.21 0.36 0.36
K-means clustering
(R=0.12; P=0.74)| (R=0.25;P=0.66) | (R=0.25;P =0.66)
0.31 0.28 0.30

Random clustering

(R=0.21P=0.61)

(R=0.18; P = 0.63)

(R=0.19; P = 0.68)
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Comparison with KD-Tree and LSH

- KD-tree and LSH require k, the size of cluster to be
specified a priori

- In KD-tree and LSH, number of queries is N (= size of
graph)
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Comparison with KD-Tree and LSH

- KD-tree and LSH require k, the size of cluster to be
specified a priori

- In KD-tree and LSH, number of queries is N (= size of

graph)
Average F1 Score
Real Graph + Real Graph + Synthetic Graph
Real Noise Synthetic Noise + Synthetic
Noise
RRID* (Our method) 0.54 0.78 0.74
KD-Tree* 0.55 0.78 0.68
LSH* 0.55 0.79 0.67
2 X Recall X Precision on Recalled Nodes
F1 Score =

Recall + Precision on Recalled Nodes




5/23/14

tina@eliassi.org

66

Comparison with KD-Tree and LSH

- KD-tree and LSH require k, the size of cluster to be
specified a priori

- In KD-tree and LSH, number of queries is N, size of graph

Average F1 Score
(Recall; Precision on Recalled Nodes)

Real Graph + Real Graph + Synthetic Graph
Real Noise Synthetic Noise + Synthetic

Noise

RRID* (Our method) 0.54 0.78 0.74
(R=0.44;P=0.71) | (R=0.89; P=0.70) | (R=0.80; P =0.68)

KD-Tree* 0.55 0.78 0.68
(R=0.45;P=0.70) | (R=0.90; P=0.69) | (R=0.69; R =0.67)

LSH* 0.55 0.79 0.67

(R=0.45;,P=0.70)

(R = 0.90; P = 0.70)

(R =0.68; R = 0.67)




5/23/14 tina@eliassi.org

Runtime Performance vs. F1 Score of
KD-Tree & LSH Relative to RRID*

Competing method wins in runtime
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Relative Difference in Scaled F1 = (RRID+’s F1 / Competing Method’s F1)
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RRID+ on Real Graphs:
Precision on Recalled Nodes vs. Recall
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where RecalledNodes = {Vv : Recall(v,G) = 1}
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Insights into the Performance

- As distance between feature matrices increases
- Number of clusters decreases
- Recall increases
- Precision of recalled nodes decreases
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Insights into the Performance

- As distance between feature matrices increases
- Number of clusters decreases

- Recall increases
» Precision of recalled nodes decreases

Real Graphs + Real Noise

Number of clust
L
°l e
e
L
e
Number of clusters
L
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L 2
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Number of clust
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Canberra distance between feature matrices Scaled Recall Precision of recalled nodes
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RRID* Outputs Varying Sized Clusters

0.14 - ]

0121 ]

0.08 -
0.06 -

0.04 -

Fraction of the 1,744 nodes in DBLP 2005

002 ]

0.00 L

DBLP 2006 DBLP 2007 DBLP 2008 DBLP 2009
(# clusters = 14) (# clusters = 14)  (# clusters = 16) (# clusters = 12)

Individuals in smaller clusters are more ‘distinguishable’
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Effects of Various Subsets of Structural
Features on Recall

. Real Graphs with Real Noise

. Real Graphs with Synthetic Noise

Synthetic Graphs with Synthetic Noise

Egonet features
Clustering coeff. features
Degree features

Egonet's nbrs

Egonet's outedges

Egonet's within edges
Avg. clustering coeff. of nbrs
Avg. degree of nbrs

Node clustering coeft.

Node degree

-40.0% -30.0% -20.0% -10.0% 0.0% 10.0% 20.0% 30.0%

% change in Recall compared to using all features
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Recap Part 2: A Different View of Privacy

1. A new way of looking at the re-identification problem
Defining a threat to privacy as a relative concept

A novel collective solution

> W Db

Performance on real graphs with real noise
- Average Recall = 0.44

- Average Precision on Recalled Nodes = 0.71

5. An examination of r e

re-identification performance —_ Fentures

based on feature selection,

cluster sizes, and runtime.

Future work: Quantifying noise

in real social graphs
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Summary

- Structural features and roles threaten privacy in
social graphs

- Threats are w.r.t.
- one-to-one mappings between nodes

- personalized one-to-many mappings between
nodes

Supported by NSF, LLNL, DTRA, DARPA, and IARPA.



5/23/14

Thank You! ( http:/eliassi.org )




