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YES, THIS HAS BEEN ASKED BEFORE

 Traditional approaches:
 Anonymization, redaction, auditing, noise addition, 

synthetic data, …
 Still in use

 Accumulating litany of attacks and failures

 Lack of rigor leads to unforeseen breaks

 Privacy protection is unlike other ‘incremental’ 
algorithmic endeavors
 Information cannot be “de-leaked”, breaks are forever
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AGGREGATE COMPUTATIONS AND PRIVACY

 Aren’t releases of “global” information safe?
 Statistics, machine learning, …

 Don’t I “hide in the crowd”?

 “Global” goal can depend on a few specific values
 Not uncommon, e.g., Support Vector Machines

 Composition
 Compute average salary before/after professor resigns

 Statistics may together encode sensitive info
 Too many, “too accurate” stats  ⇒ reconstruct the data

 Robust even to fairly significant noise
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DATA PRIVACY – THE PROBLEM
[REFORMULATED FOR TODAY’S PURPOSES]

How to compute aggregates …

… while controlling the leakage of individual information



THIS TALK: INTRO TO DIFFERENTIAL PRIVACY IN

ANALYSIS OF GRAPHS

 What is differential privacy
 Differential privacy for graph data – edge/node privacy

 Interpretations of the definition

 Basic properties

 Basic techniques
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outcome
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(deniability)

 Omission/inclusion of my data (almost) unnoticeable 
in outcome
 As if I chose to opt out

 My data?
 Record containing my information in a database

 Graph data: edge/node
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NEIGHBORING INPUTS
[WHAT SHOULD BE PROTECTED?]

 Inputs are neighboring if they differ on the data 
of a single individual
 Record privacy: Databases X, X’ neighboring if differ on 

one record

 Edge privacy: graphs G, G’ neighboring if differ on one edge

 Node privacy: graphs G, G’ neighboring if differ on one 
node and its adjacent edges 

A A(G’)A A(G)

Image credit: www.perey.com
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DIFFERENTIAL PRIVACY
[DMNS 06]

𝐴 is 𝜀-differentially private if
for all neighboring G, G’

given A’s outcome, privacy attacker cannot 
guess whether input was G or G’
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 Post processing:
 If A is 𝜀-dp then 𝐵 ∘ 𝐴 is 𝜀-dp for all B

 Composition:

𝐴1, 𝐴2: 𝜀-dp then 𝐴1, 𝐴2 is 2𝜀-dp.
More efficient composition theorems exist 

w.r.t. a relaxation of differential privacy

𝑡 executions of 𝜖-dp private mechanisms are 
≈ 𝑡𝜖-dp
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INTERPRETING DIFFERENTIAL PRIVACY

 A naïve hope: Your beliefs about me are the same after
you see the output as they were before. 

 Suppose I smoke in public
 A public health study could teach that I am at risk for cancer.

 But it didn’t matter whether or not my data was part of it.

 Theorem [Dwork Naor 06]: Learning things about 
individuals is unavoidable in the presence of arbitrary 
external information.
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 No matter what you know ahead of time, you learn 
(almost) the same things about me whether or not my 
data are used.
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 𝐴 is 𝜀-differentially private if for all vectors 𝑥
and for all 𝑖: 𝐴(𝑥) ≈ 𝜀 𝐴(𝑥−𝑖).

 For any non-negative function p of the outcome,
𝐸[𝑝 𝐴 𝑥 ≤ 𝑒𝜖 ⋅ 𝐸[𝑝 𝐴 𝑥′

 Let p = my insurance premium

 My expected premium almost does not change whether I participate 
in A or not!
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THINGS TO NOTE ABOUT DIFFERENTIAL PRIVACY

 May not protect sensitive global information, e.g.
 Clinical data: Smoking and cancer

 Financial transactions: firm-level trading strategies

 Genomic data: information about me may be revealed if enough 
of my family members participate

 Social data: what if my presence affects everyone else?

 Bug of feature?

 Leakage accumulates with composition
 ε adds up with many releases

 Very unlike what is usual in crypto

 Inevitable in some form (reconstruction attacks)

 How to set ε?



VARIATIONS ON DIFFERENTIAL PRIVACY

 Predecessors [DDN’03,EGS’03,DN’04,BDMN’05]

 (ε,δ)- differential privacy [DKMMN’05]
 Require Pr 𝐴 𝑥 ∈ 𝑆 ≤ 𝑒𝜖 Pr 𝐴 𝑥′ ∈ 𝑆 + 𝛿
 Similar semantics to (ε,0)- differential privacy when δ ≪ 1/poly(n)
 Allows for improved utility

 Computational variants [MPRV09,MMPRTV’10].

 Distributional variants [RHMS’09,BBGLT’11,BGKS’13].
 Assume something about adversary’s prior distribution.
 Deterministic releases.
 Poor composition guarantees.

 Generalizations.
 [BLR’08, GLP’11] simulation-based definitions.
 [KM’12, BGKS’13] General language for specifying privacy concerns, 

tricky to instantiate.

 Crowd-blending privacy [GHLP’12].
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 𝑓(𝐺) = 𝑒𝑖𝑗 where 𝑒𝑖𝑗 ∈ {0,1}

 Algorithm: On input 𝐺 return 𝑓(𝐺) + 𝑌, where 𝑌 ∼ 𝐿𝑎𝑝(1
𝜖
)

 Laplace Distribution:

 𝐸 𝑌 = 0; 𝜎[𝑌] = 2/𝜀

 Sliding property: 
ℎ 𝑦

ℎ 𝑦+1
≤ 𝑒𝜖

 For 𝐺, 𝐺’ edge neighboring: 

𝑓 𝐺 − 𝑓 𝐺′ =  

𝑖𝑗

𝑒𝑖𝑗 − 

𝑖𝑗

𝑒𝑖𝑗
′ ≤ 1
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FRAMEWORK OF GLOBAL SENSITIVITY [DMNS06]

 𝐺𝑆𝑓 = max |𝑓 𝐺 − 𝑓 𝐺
′ |1taken over neighboring 𝐺, 𝐺’

 Theorem [DMNS06]: 

𝐴 𝐺 = 𝑓 𝐺 + 𝐿𝑎𝑝𝑑(
𝐺𝑆𝑓

𝜖
) is -differentially private

local random 
coins

A

function 𝑓: 𝐺 → ℝ𝑑

𝐴 𝐺 = 𝑓 𝐺 + 𝑛𝑜𝑖𝑠𝑒
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𝐺𝑆𝑓 = max |𝑓 𝐺 − 𝑓 𝐺
′ |1 taken over neighboring 𝐺, 𝐺’

𝐴 𝐺 = 𝑓 𝐺 + 𝐿𝑎𝑝𝑑(
𝐺𝑆𝑓

𝜖
)

 Many natural functions have low global sensitivity
 e.g.,  histogram, mean, covariance matrix, distance to a 

function, estimators with bounded “sensitivity curve”, 
strongly convex optimization problems.

 Laplace mechanism can be a programming 
interface [BDMN ’05].

 Implemented in several systems [McSherry ’09, Roy et al. 
’10, Haeberlen et al. ’11, Moharan et al. ’12].
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𝐺𝑆𝑓 = max |𝑓 𝐺 − 𝑓 𝐺
′ |1 taken over neighboring 𝐺, 𝐺’

𝐴 𝐺 = 𝑓 𝐺 + 𝐿𝑎𝑝𝑑(
𝐺𝑆𝑓

𝜖
)

 Counting edges: 𝑓(𝐺) = 𝑒𝑖𝑗 where 𝑒𝑖𝑗 ∈ {0,1}

 Edge privacy: 𝐺𝑆𝑓 = 1, noise ~
1

𝜖

 Node privacy: 𝐺𝑆𝑓 = n, noise ~
𝑛

𝜖

 Degree distribution??
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Database Space Range(f)

GLOBAL VS. LOCAL SENSITIVITY

 𝐿𝑆𝑓 𝑋 = max
𝑋′𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑋

𝑓 𝑋 − 𝑓 𝑋′ 1

 𝐺𝑆𝑓 = max𝑋 𝐿𝑆𝑓(𝑋)

 [NRS’07,DL’09] Techniques with error ≈ local sensitivity

(Distribs on) 
Output Space

X 

f(X)
A(X)
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probability prop to exp(

𝜖

2
⋅ 𝑞 𝑦, 𝑥 )

 Claim: Mechanism is ε-differentially private



EXPONENTIAL SAMPLING [MT07]

 𝑥𝑖= {books read by i this year}, 𝑌 = {book names}
 “Score” of 𝑦 ∈ 𝑌:  𝑞 𝑦, 𝑥 = #{𝑖: 𝑦 ∈ 𝑥𝑖}
 Goal: output book read by most

 Mechanism: given 𝑥, output book name y with 
probability prop to exp(

𝜖

2
⋅ 𝑞 𝑦, 𝑥 )

 Claim: Mechanism is ε-differentially private

 Claim: If most popular website has score 𝑇 =

max
𝑦∈𝑌
𝑞(𝑦, 𝑥), then 𝐸 𝑞 𝑦0, 𝑥 ≥ 𝑡 − 𝑂(

log 𝑌

𝜖
)



APPLICATIONS OF EXPONENTIAL SAMPLING

 Very general and widely used
 Often a ‘first attempt’ at a differentially private task.

 Used explicitly for
 Learning discrete classifiers, Synthetic data generation, 

Convex Optimization, Genome-wide association studies, 
High-dimensional sparse regression, ...

 But, generally inefficient [DNRRV,…]



DIFFERENTIAL PRIVACY IN “PRACTICE”

 Currently, differential private algorithms hard to use.
 Noise.
 No off-the-shelf software.
 Each application requires fresh thinking.

 Several systems to make use easier.
 [McSherry’09] PINQ: variation on LINQ with differential privacy 

enforced by query mechanism.
 [Haeberlen et al. ’11] Programming language with privacy enforced by 

type system.
 [Roy et al. ’10, Moharan et al. ’12] Systems for restricted classes of 

queries, focus on usability with legacy code.

 Hard to get right!
 [Haeberlen et al. ’11] Timing attacks.
 [Mironov ‘12] Leakage via numerical errors.



SETTINGS WHERE DIFFERENTIAL PRIVACY WAS

APPLIED [PARTIAL LIST]

 Machine learning

 Statistics

 Continual observation and pan privacy
 When input is supplied gradually

 When the state of the algorithm can be subpoenaed 

 Distributed settings
 Surprising relationships with computational differential privacy

 Mechanism design

 Privacy for the analyzer

 Graph data



CONCLUSIONS

 Heuristic treatment of privacy leads to failures
 Weaknesses: Auxiliary information, (self) composition, 

leakage in decisions, …

 Differential Privacy: privacy defined in terms of 
my effect on output
 Meaningful despite arbitrary external information.
 I should participate if I get benefit.

 Computations with rigorous privacy guarantees.
 Basic Tools.
 More advanced examples.

 Connections to many areas: Security and crypto, 
Machine learning, Statistics, Economics.


