[AND ANALYSIS OF SOCIAL NETWORKS]

KOBBI NISSIM

BGU/Harvard/BU

Charles River Workshop on Private Analysis of Social Networks May 2014

- Given:
 - \circ A dataset with sensitive information
- How to:
 - Compute and release functions of the dataset without compromising individual privacy

- Given:
 - $\circ\,$ A dataset with sensitive information
- How to:
 - Compute and release functions of the dataset without compromising individual privacy

Age of Miss America

compared with

Murders by steam, hot vapours and hot objects

Image credit: www.tylervigen.com

- Given:
 - $\circ\,$ A dataset with sensitive information
- How to:
 - Compute and release functions of the dataset without compromising individual privacy

- Given:
 - $\circ\,$ A dataset with sensitive information
- How to:
 - Compute and release functions of the dataset without compromising individual privacy

- Given:
 - $\circ\,$ A dataset with sensitive information
- How to:
 - Compute and release functions of the dataset without compromising individual privacy

- Traditional approaches:
 - Anonymization, redaction, auditing, noise addition, synthetic data, ...
 - \star Still in use
 - × Accumulating litany of attacks and failures

- Traditional approaches:
 - Anonymization, redaction, auditing, noise addition, synthetic data, ...
 - \star Still in use
 - Accumulating litany of attacks and failures
- Lack of rigor leads to unforeseen breaks

- Traditional approaches:
 - Anonymization, redaction, auditing, noise addition, synthetic data, ...
 - \star Still in use
 - × Accumulating litany of attacks and failures
- Lack of rigor leads to unforeseen breaks
- Privacy protection is unlike other 'incremental' algorithmic endeavors
 - \circ Information cannot be "de-leaked", breaks are forever

- Aren't releases of "global" information safe?
 - Statistics, machine learning, ...
 - O Don't I "hide in the crowd"?

- Aren't releases of "global" information safe?
 - Statistics, machine learning, ...
 - O Don't I "hide in the crowd"?
- "Global" goal can depend on a few specific values
 Not uncommon, e.g., Support Vector Machines

- Aren't releases of "global" information safe?
 - Statistics, machine learning, ...
 - O Don't I "hide in the crowd"?
- "Global" goal can depend on a few specific values
 Not uncommon, e.g., Support Vector Machines

Composition

Compute average salary before/after professor resigns

- Aren't releases of "global" information safe?
 - Statistics, machine learning, ...
 - O Don't I "hide in the crowd"?
- "Global" goal can depend on a few specific values
 Not uncommon, e.g., Support Vector Machines

Composition

- Compute average salary before/after professor resigns
- Statistics may together encode sensitive info
 - Too many, "too accurate" stats ⇒ reconstruct the data
 Robust even to fairly significant noise

DATA PRIVACY - THE PROBLEM [REFORMULATED FOR TODAY'S PURPOSES]

How to compute aggregates ...

DATA PRIVACY - THE PROBLEM [REFORMULATED FOR TODAY'S PURPOSES]

How to compute aggregates ...

... while controlling the leakage of individual information

THIS TALK: INTRO TO DIFFERENTIAL PRIVACY IN ANALYSIS OF GRAPHS

- What is differential privacy
 Differential privacy for graph data edge/node privacy
- Interpretations of the definition
- Basic properties
- Basic techniques

- Changes to my data (almost) unnoticeable in outcome
 - I can claim that my data is different from what it really is (deniability)

- Changes to my data (almost) unnoticeable in outcome
 - I can claim that my data is different from what it really is (deniability)
- Omission/inclusion of my data (almost) unnoticeable in outcome
 - \circ As if I chose to opt out

- Changes to my data (almost) unnoticeable in outcome
 - I can claim that my data is different from what it really is (deniability)
- Omission/inclusion of my data (almost) unnoticeable in outcome
 - \circ As if I chose to opt out
- My data?

 $\circ\,$ Record containing my information in a database

- Changes to my data (almost) unnoticeable in outcome
 - I can claim that my data is different from what it really is (deniability)
- Omission/inclusion of my data (almost) unnoticeable in outcome
 - \circ As if I chose to opt out
- My data?
 - Record containing my information in a database
 - Graph data: edge/node

NEIGHBORING INPUTS

[WHAT SHOULD BE PROTECTED?]

- Inputs are neighboring if they differ on the data of a single individual
 - Record privacy: Databases X, X' neighboring if differ on one record

NEIGHBORING INPUTS

[WHAT SHOULD BE PROTECTED?]

- Inputs are neighboring if they differ on the data of a single individual
 - Record privacy: Databases X, X' neighboring if differ on one record
 - Edge privacy: graphs G, G' neighboring if differ on one edge

NEIGHBORING INPUTS

[WHAT SHOULD BE PROTECTED?]

- Inputs are neighboring if they differ on the data of a single individual
 - Record privacy: Databases X, X' neighboring if differ on one record
 - Edge privacy: graphs G, G' neighboring if differ on one edge
 - Node privacy: graphs G, G' neighboring if differ on one node and its adjacent edges

• A is differentially private if

o for all neighboring G, G'

 given A's outcome, privacy attacker cannot guess whether input was G or G'

• A is differentially private if \circ for all neighboring G, G' \circ for all subsets S of outputs $\Pr[A(G) \in S] \approx \Pr[A(G') \in S]$

A is ε-differentially private if
o for all neighboring G, G'
o for all subsets S of outputs
Pr[A(G) ∈ S] ≤ e^ε · Pr[A(G') ∈ S]

• A is ε -differentially private if

o for all neighboring G, G'

o for all subsets S of outputs

 $\Pr[A(G) \in S] \le e^{\epsilon} \cdot \Pr[A(G') \in S]$

Notes:

- DP is a property of the algorithm A
 - No sense in saying that a particular output preserves privacy relationship between input and output is what matters

• A is ε -differentially private if

o for all neighboring G, G'

o for all subsets S of outputs

 $\Pr[A(G) \in S] \le e^{\epsilon} \cdot \Pr[A(G') \in S]$

Notes:

- DP is a property of the algorithm A
 - No sense in saying that a particular output preserves privacy relationship between input and output is what matters
- The parameter ϵ measures 'leakage' or 'harm' (more later).

• Not negligible. Think
$$\epsilon \approx \frac{1}{100}$$
 or $\epsilon \approx \frac{1}{10}$ not $\epsilon \approx 2^{-80}$

• A is ε -differentially private if

o for all neighboring G, G'

o for all subsets S of outputs

 $\Pr[A(G) \in S] \le e^{\epsilon} \cdot \Pr[A(G') \in S]$

Notes:

- DP is a property of the algorithm A
 - No sense in saying that a particular output preserves privacy relationship between input and output is what matters
- The parameter ϵ measures 'leakage' or 'harm' (more later).
 - Not negligible. Think $\epsilon \approx \frac{1}{100}$ or $\epsilon \approx \frac{1}{10}$ not $\epsilon \approx 2^{-80}$
- Choice of distance measure (max log ratio) not accidental

BASIC PROPERTIES OF DIFFERENTIAL PRIVACY

- Post processing:
 - \circ If A is ε -dp then $B \circ A$ is ε -dp for all B

BASIC PROPERTIES OF DIFFERENTIAL PRIVACY

• Post processing:

 \circ If A is ε -dp then $B \circ A$ is ε -dp for all B

- Composition:
 - $\circ A_1, A_2$: ε -dp then (A_1, A_2) is 2ε -dp.

More efficient composition theorems exist w.r.t. a relaxation of differential privacy

BASIC PROPERTIES OF DIFFERENTIAL PRIVACY

• Post processing:

 \circ If A is ε -dp then $B \circ A$ is ε -dp for all B

• Composition:

- $\circ A_1, A_2$: ε -dp then (A_1, A_2) is 2ε -dp.
 - More efficient composition theorems exist w.r.t. a relaxation of differential privacy
 - × t executions of ϵ -dp private mechanisms are ≈ $\sqrt{t}\epsilon$ -dp

 A naïve hope: Your beliefs about me are the same after you see the output as they were before.

- A naïve hope: Your beliefs about me are the same after you see the output as they were before.
- Suppose I smoke in public
 - A public health study could teach that I am at risk for cancer.
 - But it didn't matter whether or not my data was part of it.

- A naïve hope: Your beliefs about me are the same after you see the output as they were before.
- Suppose I smoke in public
 - A public health study could teach that I am at risk for cancer.
 - But it didn't matter whether or not my data was part of it.
- Theorem [Dwork Naor 06]: Learning things about individuals is unavoidable in the presence of arbitrary external information.

• Compare
$$x = (x_1, x_2, ..., x_i, ..., x_n)$$

to $x_{-i} = (x_1, x_2, ..., \bot, ..., x_n)$

• A is ε -differentially private if for all vectors x and for all $i: A(x) \approx \varepsilon A(x_{-i})$.

• Compare
$$x = (x_1, x_2, ..., x_i, ..., x_n)$$

to $x_{-i} = (x_1, x_2, ..., \bot, ..., x_n)$

- A is ε -differentially private if for all vectors x and for all $i: A(x) \approx \varepsilon A(x_{-i})$.
- No matter what you know ahead of time, you learn (almost) the same things about me whether or not my data are used.

• Compare
$$x = (x_1, x_2, ..., x_i, ..., x_n)$$

to $x_{-i} = (x_1, x_2, ..., \bot, ..., x_n)$

- A is ε -differentially private if for all vectors x and for all $i: A(x) \approx \varepsilon A(x_{-i})$.
- For any non-negative function p of the outcome, $E[p(A(x)] \le e^{\epsilon} \cdot E[p(A(x')]]$

• Compare
$$x = (x_1, x_2, ..., x_i, ..., x_n)$$

to $x_{-i} = (x_1, x_2, ..., \bot, ..., x_n)$

- A is ε -differentially private if for all vectors x and for all $i: A(x) \approx \varepsilon A(x_{-i})$.
- For any non-negative function p of the outcome, $E[p(A(x)] \le e^{\epsilon} \cdot E[p(A(x')]]$
 - \circ Let p = my insurance premium
 - My expected premium almost does not change whether I participate in A or not!

- May not protect sensitive global information, e.g.
 - $\circ\,$ Clinical data: Smoking and cancer
 - Financial transactions: firm-level trading strategies
 - Genomic data: information about me may be revealed if enough of my family members participate
 - Social data: what if my presence affects everyone else?

- May not protect sensitive global information, e.g.
 - $\circ\,$ Clinical data: Smoking and cancer
 - Financial transactions: firm-level trading strategies
 - Genomic data: information about me may be revealed if enough of my family members participate
 - Social data: what if my presence affects everyone else?
 - Bug of feature?

- May not protect sensitive global information, e.g.
 - $\circ\,$ Clinical data: Smoking and cancer
 - Financial transactions: firm-level trading strategies
 - Genomic data: information about me may be revealed if enough of my family members participate
 - $\circ\,$ Social data: what if my presence affects everyone else?
 - Bug of feature?
- Leakage accumulates with composition
 - $\circ~\epsilon$ adds up with many releases
 - Very unlike what is usual in crypto
 - x Inevitable in some form (reconstruction attacks)

- May not protect sensitive global information, e.g.
 - $\circ\,$ Clinical data: Smoking and cancer
 - Financial transactions: firm-level trading strategies
 - Genomic data: information about me may be revealed if enough of my family members participate
 - Social data: what if my presence affects everyone else?
 - Bug of feature?
- Leakage accumulates with composition
 - $\circ~\epsilon$ adds up with many releases
 - Very unlike what is usual in crypto
 - Inevitable in some form (reconstruction attacks)
 - How to set ε?

VARIATIONS ON DIFFERENTIAL PRIVACY

- Predecessors [DDN'03,EGS'03,DN'04,BDMN'05]
- (ε, δ) differential privacy [DKMMN'05]
 - Require $\Pr[A(x) \in S] \le e^{\epsilon} \Pr[A(x') \in S] + \delta$
 - $\,\circ\,$ Similar semantics to (2,0)- differential privacy when $\delta\ll$ 1/poly(n)
 - $\circ\,$ Allows for improved utility
- Computational variants [MPRV09,MMPRTV'10].
- Distributional variants [RHMS'09,BBGLT'11,BGKS'13].
 - Assume something about adversary's prior distribution.
 - Deterministic releases.
 - Poor composition guarantees.
- Generalizations.
 - [BLR'08, GLP'11] simulation-based definitions.
 - [KM'12, BGKS'13] General language for specifying privacy concerns, tricky to instantiate.
- Crowd-blending privacy [GHLP'12].

• $f(G) = \Sigma e_{ij}$ where $e_{ij} \in \{0,1\}$

- $f(G) = \Sigma e_{ij}$ where $e_{ij} \in \{0,1\}$
- Algorithm: On input G return f(G) + Y, where $Y \sim Lap(\frac{1}{\epsilon})$
- Laplace Distribution: $\circ E[Y] = 0; \sigma[Y] = \sqrt{2}/\varepsilon$

- $f(G) = \Sigma e_{ij}$ where $e_{ij} \in \{0,1\}$
- Algorithm: On input G return f(G) + Y, where $Y \sim Lap(\frac{1}{\epsilon})$
- Laplace Distribution: • $E[Y] = 0; \sigma[Y] = \sqrt{2}/\varepsilon$ • Sliding property: $\frac{h(y)}{h(y+1)} \le e^{\epsilon}$

- $f(G) = \Sigma e_{ij}$ where $e_{ij} \in \{0,1\}$
- Algorithm: On input G return f(G) + Y, where $Y \sim Lap(\frac{1}{\epsilon})$

- $GS_f = \max |f(G) f(G')|_1$ taken over neighboring G, G'
- Theorem [DMNS06]: $\circ A(G) = f(G) + Lap^{d}(\frac{GS_{f}}{\epsilon}) \text{ is } \varepsilon \text{-differentially private}$

FRAMEWORK OF GLOBAL SENSITIVITY

 $GS_{f} = \max |f(G) - f(G')|_{1} \text{ taken over neighboring } G, G'$ $A(G) = f(G) + Lap^{d}(\frac{GS_{f}}{\epsilon})$

Many natural functions have low global sensitivity

 e.g., histogram, mean, covariance matrix, distance to a function, estimators with bounded "sensitivity curve", strongly convex optimization problems.

FRAMEWORK OF GLOBAL SENSITIVITY

 $GS_{f} = \max |f(G) - f(G')|_{1} \text{ taken over neighboring } G, G'$ $A(G) = f(G) + Lap^{d}(\frac{GS_{f}}{\epsilon})$

Many natural functions have low global sensitivity

- e.g., histogram, mean, covariance matrix, distance to a function, estimators with bounded "sensitivity curve", strongly convex optimization problems.
- Laplace mechanism can be a programming interface [BDMN '05].
 - Implemented in several systems [McSherry '09, Roy et al. '10, Haeberlen et al. '11, Moharan et al. '12].

EDGE VS. NODE PRIVACY - COUNTING EDGES

 $GS_{f} = \max |f(G) - f(G')|_{1} \text{ taken over neighboring } G, G'$ $A(G) = f(G) + Lap^{d}(\frac{GS_{f}}{\epsilon})$

- Counting edges: $f(G) = \Sigma e_{ij}$ where $e_{ij} \in \{0,1\}$
- Edge privacy: $GS_f = 1$, noise $\sim \frac{1}{\epsilon}$
- Node privacy: $GS_f = n$, noise $\sim \frac{n}{\epsilon}$

EDGE VS. NODE PRIVACY - COUNTING EDGES

 $GS_{f} = \max |f(G) - f(G')|_{1} \text{ taken over neighboring } G, G'$ $A(G) = f(G) + Lap^{d}(\frac{GS_{f}}{\epsilon})$

- Counting edges: $f(G) = \Sigma e_{ij}$ where $e_{ij} \in \{0,1\}$
- Edge privacy: $GS_f = 1$, noise $\sim \frac{1}{\epsilon}$
- Node privacy: $GS_f = n$, noise $\sim \frac{n}{\epsilon}$
- Degree distribution??

• $LS_f(X) = \max_{X' neighbor of X} |f(X) - f(X')|_1$

• $LS_f(X) = \max_{X'neighbor of X} |f(X) - f(X')|_1$ $\circ GS_f = \max_X LS_f(X)$

• $LS_f(X) = \max_{X' neighbor of X} |f(X) - f(X')|_1$

 $\circ GS_f = \max_X LS_f(X)$

[NRS'07,DL'09] Techniques with error ≈ local sensitivity

- x_i = {books read by i this year}, Y = {book names}
- "Score" of $y \in Y$: $q(y, x) = #\{i: y \in x_i\}$
- Goal: output book read by most

- x_i = {books read by i this year}, Y = {book names}
- "Score" of $y \in Y$: $q(y, x) = #\{i: y \in x_i\}$
- Goal: output book read by most
- Mechanism: given x, output book name y with probability prop to $\exp(\frac{\epsilon}{2} \cdot q(y, x))$

- x_i = {books read by i this year}, Y = {book names}
- "Score" of $y \in Y$: $q(y, x) = #\{i: y \in x_i\}$
- Goal: output book read by most
- Mechanism: given x, output book name y with probability prop to $\exp(\frac{\epsilon}{2} \cdot q(y, x))$
- Claim: Mechanism is ε-differentially private

- x_i = {books read by i this year}, Y = {book names}
- "Score" of $y \in Y$: $q(y, x) = #\{i: y \in x_i\}$
- Goal: output book read by most
- Mechanism: given x, output book name y with probability prop to $\exp(\frac{\epsilon}{2} \cdot q(y, x))$
- Claim: Mechanism is ε-differentially private
- Claim: If most popular website has score $T = \max_{y \in Y} q(y, x)$, then $E[q(y_0, x)] \ge t O(\frac{\log|Y|}{\epsilon})$

APPLICATIONS OF EXPONENTIAL SAMPLING

- Very general and widely used
 Often a 'first attempt' at a differentially private task.
- Used explicitly for
 - Learning discrete classifiers, Synthetic data generation, Convex Optimization, Genome-wide association studies, High-dimensional sparse regression, ...
- But, generally inefficient [DNRRV,...]

DIFFERENTIAL PRIVACY IN "PRACTICE"

- Currently, differential private algorithms hard to use.
 - Noise.
 - No off-the-shelf software.
 - Each application requires fresh thinking.
- Several systems to make use easier.
 - [McSherry'09] PINQ: variation on LINQ with differential privacy enforced by query mechanism.
 - [Haeberlen et al. '11] Programming language with privacy enforced by type system.
 - [Roy et al. '10, Moharan et al. '12] Systems for restricted classes of queries, focus on usability with legacy code.
- Hard to get right!
 - [Haeberlen et al. '11] Timing attacks.
 - [Mironov '12] Leakage via numerical errors.

SETTINGS WHERE DIFFERENTIAL PRIVACY WAS APPLIED [PARTIAL LIST]

- Machine learning
- Statistics
- Continual observation and pan privacy
 - When input is supplied gradually
 - \circ $\,$ When the state of the algorithm can be subpoenaed
- Distributed settings
 - Surprising relationships with computational differential privacy
- Mechanism design
- Privacy for the analyzer
- Graph data

CONCLUSIONS

- Heuristic treatment of privacy leads to failures
 Weaknesses: Auxiliary information, (self) composition, leakage in decisions, ...
- Differential Privacy: privacy defined in terms of my effect on output
 - Meaningful despite arbitrary external information.
 - I should participate if I get benefit.
- Computations with rigorous privacy guarantees.
 - Basic Tools.
 - More advanced examples.
- Connections to many areas: Security and crypto, Machine learning, Statistics, Economics.