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YES, THIS HAS BEEN ASKED BEFORE

 Traditional approaches:
 Anonymization, redaction, auditing, noise addition, 

synthetic data, …
 Still in use

 Accumulating litany of attacks and failures

 Lack of rigor leads to unforeseen breaks

 Privacy protection is unlike other ‘incremental’ 
algorithmic endeavors
 Information cannot be “de-leaked”, breaks are forever
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 Aren’t releases of “global” information safe?
 Statistics, machine learning, …

 Don’t I “hide in the crowd”?

 “Global” goal can depend on a few specific values
 Not uncommon, e.g., Support Vector Machines

 Composition
 Compute average salary before/after professor resigns

 Statistics may together encode sensitive info
 Too many, “too accurate” stats  ⇒ reconstruct the data

 Robust even to fairly significant noise
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DATA PRIVACY – THE PROBLEM
[REFORMULATED FOR TODAY’S PURPOSES]

How to compute aggregates …

… while controlling the leakage of individual information



THIS TALK: INTRO TO DIFFERENTIAL PRIVACY IN

ANALYSIS OF GRAPHS

 What is differential privacy
 Differential privacy for graph data – edge/node privacy

 Interpretations of the definition

 Basic properties

 Basic techniques
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outcome
 I can claim that my data is different from what it really is 

(deniability)

 Omission/inclusion of my data (almost) unnoticeable 
in outcome
 As if I chose to opt out

 My data?
 Record containing my information in a database

 Graph data: edge/node
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 Inputs are neighboring if they differ on the data 
of a single individual
 Record privacy: Databases X, X’ neighboring if differ on 

one record

 Edge privacy: graphs G, G’ neighboring if differ on one edge

 Node privacy: graphs G, G’ neighboring if differ on one 
node and its adjacent edges 

A A(G’)A A(G)

Image credit: www.perey.com
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 Post processing:
 If A is 𝜀-dp then 𝐵 ∘ 𝐴 is 𝜀-dp for all B

 Composition:

𝐴1, 𝐴2: 𝜀-dp then 𝐴1, 𝐴2 is 2𝜀-dp.
More efficient composition theorems exist 

w.r.t. a relaxation of differential privacy

𝑡 executions of 𝜖-dp private mechanisms are 
≈ 𝑡𝜖-dp
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 A naïve hope: Your beliefs about me are the same after
you see the output as they were before. 

 Suppose I smoke in public
 A public health study could teach that I am at risk for cancer.

 But it didn’t matter whether or not my data was part of it.

 Theorem [Dwork Naor 06]: Learning things about 
individuals is unavoidable in the presence of arbitrary 
external information.
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(almost) the same things about me whether or not my 
data are used.
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𝑖
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𝑛
)

to 𝑥−𝑖 = (𝑥1, 𝑥2, … , ⊥,… , 𝑥𝑛)

 𝐴 is 𝜀-differentially private if for all vectors 𝑥
and for all 𝑖: 𝐴(𝑥) ≈ 𝜀 𝐴(𝑥−𝑖).

 For any non-negative function p of the outcome,
𝐸[𝑝 𝐴 𝑥 ≤ 𝑒𝜖 ⋅ 𝐸[𝑝 𝐴 𝑥′

 Let p = my insurance premium

 My expected premium almost does not change whether I participate 
in A or not!
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 Leakage accumulates with composition
 ε adds up with many releases

 Very unlike what is usual in crypto

 Inevitable in some form (reconstruction attacks)

 How to set ε?



VARIATIONS ON DIFFERENTIAL PRIVACY

 Predecessors [DDN’03,EGS’03,DN’04,BDMN’05]

 (ε,δ)- differential privacy [DKMMN’05]
 Require Pr 𝐴 𝑥 ∈ 𝑆 ≤ 𝑒𝜖 Pr 𝐴 𝑥′ ∈ 𝑆 + 𝛿
 Similar semantics to (ε,0)- differential privacy when δ ≪ 1/poly(n)
 Allows for improved utility

 Computational variants [MPRV09,MMPRTV’10].

 Distributional variants [RHMS’09,BBGLT’11,BGKS’13].
 Assume something about adversary’s prior distribution.
 Deterministic releases.
 Poor composition guarantees.

 Generalizations.
 [BLR’08, GLP’11] simulation-based definitions.
 [KM’12, BGKS’13] General language for specifying privacy concerns, 

tricky to instantiate.

 Crowd-blending privacy [GHLP’12].
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 𝑓(𝐺) = 𝑒𝑖𝑗 where 𝑒𝑖𝑗 ∈ {0,1}

 Algorithm: On input 𝐺 return 𝑓(𝐺) + 𝑌, where 𝑌 ∼ 𝐿𝑎𝑝(1
𝜖
)

 Laplace Distribution:

 𝐸 𝑌 = 0; 𝜎[𝑌] = 2/𝜀

 Sliding property: 
ℎ 𝑦

ℎ 𝑦+1
≤ 𝑒𝜖

 For 𝐺, 𝐺’ edge neighboring: 

𝑓 𝐺 − 𝑓 𝐺′ =  

𝑖𝑗

𝑒𝑖𝑗 − 

𝑖𝑗

𝑒𝑖𝑗
′ ≤ 1
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FRAMEWORK OF GLOBAL SENSITIVITY [DMNS06]

 𝐺𝑆𝑓 = max |𝑓 𝐺 − 𝑓 𝐺
′ |1taken over neighboring 𝐺, 𝐺’

 Theorem [DMNS06]: 

𝐴 𝐺 = 𝑓 𝐺 + 𝐿𝑎𝑝𝑑(
𝐺𝑆𝑓

𝜖
) is -differentially private

local random 
coins

A

function 𝑓: 𝐺 → ℝ𝑑

𝐴 𝐺 = 𝑓 𝐺 + 𝑛𝑜𝑖𝑠𝑒



FRAMEWORK OF GLOBAL SENSITIVITY

𝐺𝑆𝑓 = max |𝑓 𝐺 − 𝑓 𝐺
′ |1 taken over neighboring 𝐺, 𝐺’

𝐴 𝐺 = 𝑓 𝐺 + 𝐿𝑎𝑝𝑑(
𝐺𝑆𝑓

𝜖
)

 Many natural functions have low global sensitivity
 e.g.,  histogram, mean, covariance matrix, distance to a 

function, estimators with bounded “sensitivity curve”, 
strongly convex optimization problems.



FRAMEWORK OF GLOBAL SENSITIVITY

𝐺𝑆𝑓 = max |𝑓 𝐺 − 𝑓 𝐺
′ |1 taken over neighboring 𝐺, 𝐺’

𝐴 𝐺 = 𝑓 𝐺 + 𝐿𝑎𝑝𝑑(
𝐺𝑆𝑓

𝜖
)

 Many natural functions have low global sensitivity
 e.g.,  histogram, mean, covariance matrix, distance to a 

function, estimators with bounded “sensitivity curve”, 
strongly convex optimization problems.

 Laplace mechanism can be a programming 
interface [BDMN ’05].

 Implemented in several systems [McSherry ’09, Roy et al. 
’10, Haeberlen et al. ’11, Moharan et al. ’12].
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𝐺𝑆𝑓 = max |𝑓 𝐺 − 𝑓 𝐺
′ |1 taken over neighboring 𝐺, 𝐺’

𝐴 𝐺 = 𝑓 𝐺 + 𝐿𝑎𝑝𝑑(
𝐺𝑆𝑓

𝜖
)

 Counting edges: 𝑓(𝐺) = 𝑒𝑖𝑗 where 𝑒𝑖𝑗 ∈ {0,1}

 Edge privacy: 𝐺𝑆𝑓 = 1, noise ~
1

𝜖

 Node privacy: 𝐺𝑆𝑓 = n, noise ~
𝑛

𝜖

 Degree distribution??
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𝑓 𝑋 − 𝑓 𝑋′ 1

 𝐺𝑆𝑓 = max𝑋 𝐿𝑆𝑓(𝑋)

 [NRS’07,DL’09] Techniques with error ≈ local sensitivity
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 “Score” of 𝑦 ∈ 𝑌:  𝑞 𝑦, 𝑥 = #{𝑖: 𝑦 ∈ 𝑥𝑖}
 Goal: output book read by most

 Mechanism: given 𝑥, output book name y with 
probability prop to exp(

𝜖

2
⋅ 𝑞 𝑦, 𝑥 )

 Claim: Mechanism is ε-differentially private

 Claim: If most popular website has score 𝑇 =

max
𝑦∈𝑌
𝑞(𝑦, 𝑥), then 𝐸 𝑞 𝑦0, 𝑥 ≥ 𝑡 − 𝑂(

log 𝑌

𝜖
)



APPLICATIONS OF EXPONENTIAL SAMPLING

 Very general and widely used
 Often a ‘first attempt’ at a differentially private task.

 Used explicitly for
 Learning discrete classifiers, Synthetic data generation, 

Convex Optimization, Genome-wide association studies, 
High-dimensional sparse regression, ...

 But, generally inefficient [DNRRV,…]



DIFFERENTIAL PRIVACY IN “PRACTICE”

 Currently, differential private algorithms hard to use.
 Noise.
 No off-the-shelf software.
 Each application requires fresh thinking.

 Several systems to make use easier.
 [McSherry’09] PINQ: variation on LINQ with differential privacy 

enforced by query mechanism.
 [Haeberlen et al. ’11] Programming language with privacy enforced by 

type system.
 [Roy et al. ’10, Moharan et al. ’12] Systems for restricted classes of 

queries, focus on usability with legacy code.

 Hard to get right!
 [Haeberlen et al. ’11] Timing attacks.
 [Mironov ‘12] Leakage via numerical errors.



SETTINGS WHERE DIFFERENTIAL PRIVACY WAS

APPLIED [PARTIAL LIST]

 Machine learning

 Statistics

 Continual observation and pan privacy
 When input is supplied gradually

 When the state of the algorithm can be subpoenaed 

 Distributed settings
 Surprising relationships with computational differential privacy

 Mechanism design

 Privacy for the analyzer

 Graph data



CONCLUSIONS

 Heuristic treatment of privacy leads to failures
 Weaknesses: Auxiliary information, (self) composition, 

leakage in decisions, …

 Differential Privacy: privacy defined in terms of 
my effect on output
 Meaningful despite arbitrary external information.
 I should participate if I get benefit.

 Computations with rigorous privacy guarantees.
 Basic Tools.
 More advanced examples.

 Connections to many areas: Security and crypto, 
Machine learning, Statistics, Economics.


