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YEs, THIS HAS BEEN ASKED BEFORE

*» Traditional approaches:

o Anonymization, redaction, auditing, noise addition,
synthetic data, ...

= Still in use
= Accumulating litany of attacks and failures

» Lack of rigor leads to unforeseen breaks

* Privacy protection is unlike other ‘incremental’
algorithmic endeavors
o Information cannot be “"de-leaked”, breaks are forever
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AGGREGATE COMPUTATIONS AND PRIVACY

» Aren't releases of "global” information safe?
o Statistics, machine learning, ...
o Don't I “hide in the crowd"?

» "Global" goal can depend on a few specific values
o Not uncommon, e.g., Support Vector Machines
« Composition
o Compute average salary before/after professor resigns
» Statistics may together encode sensitive info

o Too many, "too accurate” stats = reconstruct the data
o Robust even to fairly significant noise
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DATA PRIVACY - THE PROBLEM

[REFORMULATED FOR TODAY’S PURPOSES]

How to compute aggregates ...

.. while controlling the leakage of individual information




THIS TALK: INTRO TO DIFFERENTIAL PRIVACY IN
ANALYSIS OF GRAPHS

» What is differential privacy
o Differential privacy for graph data - edge/node privacy

» Interpretations of the definition
» Basic properties
» Basic techniques
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» Changes to my data (almost) unnoticeable in
outcome

o I can claim that my data is different from what it really is
(deniability)

» Omission/inclusion of my data (almost) unnoticeable
In outcome
o As if I chose to opt out

* My data?
o Record containing my information in a database
o Graph data: edge/node
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[ WHAT SHOULD BE PROTECTED?]

* Inputs are neighboring if they differ on the data
of a single individual

o Record privacy: Databases X, X' neighboring if differ on
one record

o Edge privacy: graphs G, G' neighboring if differ on one edge

o Node privacy: graphs 6, G’ neighboring if differ on one
hode and its adjacent edges

A(G) N

Image credit: www.perey.com
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*Ais differentially private if
o for all neighboring G, G’

ogiven A's outcome, privacy attacker cannot
guess whether input was G or G
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* A is e-differentially private if
o for all neighboring G, G’

o for all subsets S of outputs
Pr[A(G) € S] < e€ - PrlA(G") € S]

» DP is a property of the algorithm A

o No sense in saying that a particular output preserves privacy - relationship
between input and output is what matters

» The parameter ¢ measures 'leakage’ or ‘harm’ (more later).

- : 1 1 _
o Not negligible. Think € ~ — or € ~ — not € ~ 27

» Choice of distance measure (max log ratio) not accidental
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» Post processing:
o If Aise-dp then B o A is e-dp for all B

» Composition:
0A1,A,: e-dp then (44, 4,) is 2e-dp.
=More efficient composition theorems exist
w.r.t. a relaxation of differential privacy

=t executions of e-dp private mechanisms are
~ +/te-dp
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» A naivehope: beliefs about me af fer
_you see the out ey werebefore—

» Suppose I smoke in public
o A public health study could teach that T am at risk for cancer.
o But it didn't matter whether or not my data was part of it.

» Theorem [Dwork Naor 06]: Learning things about
individuals is unavoidable in the presence of arbitrary
external information.
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» Compare x
to x_

* A is e-differentially private if for all vectors x
and for all i: A(x) =~ ¢ A(x_)).

* No matter what you know ahead of time, you learn
(almost) the same things about me whether or not my
data are used.
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INTERPRETING DIFFERENTIAL PRIVACY

o« Compare x = (x,X, ...,X, ..., X,)
to x_;= (x,x,...,1,..,x)

* A is e-differentially private if for all vectors x
and for all i: A(x) =~ ¢ A(x_)).

 For any non-negative function p of the outcome,
E[p(A(x)] < e® - E[p(A(x')]
O Let p = my insurance premium

o My expected premium almost does not change whether I participate
in A or not!
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* May not protect sensitive global information, e.g.
o Clinical data: Smoking and cancer
o Financial transactions: firm-level trading strategies

o Genomic data: information about me may be revealed if enough
of my family members participate

o Social data: what if my presence affects everyone else?
o Bug of feature?

» Leakage accumulates with composition
o ¢ adds up with many releases
= Very unlike what is usual in crypto
= Inevitable in some form (reconstruction attacks)

o How to set €?




VARIATIONS ON DIFFERENTIAL PRIVACY

* (¢&,0)- differential privacy [DKMMN'05]
o Require Pr[A(x) € S] < e®Pr[A(x') e S]+ 6
o Similar semantics to (¢,0)- differential privacy when & « 1/poly(n)
o Allows for improved utility
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EXAMPLE: COUNTING EDGES

[THE BASIC TECHNIQUE]

f(G) = Ze; where e; € {0,1}
Algorithm: On input G return f(G) + Y, where Y ~ Lap(3)

Laplace Distribution: h(y) = Se<lv!

o E[Y] = 0;0[Y] =+V2/¢
o Sliding property: h?y(ﬂ) <e€ \

» For G, G' edge neighboring: 0O A

f(G) = f(G)] =




FRAMEWORK OF GLOBAL SENSITIVITY [DMNSO06]

f function f: G -» R?

A A(G) = f(G) + noise

>

local random
coins

* GS; = max |f(G) — f(G')|,Taken over neighboring G, G’

» Theorem [DMNSQ6]:

0 A(G) = f(G) + Lap? (2L

€
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GSy = max |f(G) — f(G')|, taken over neighboring G, G’
GS
AG) = f(6) + Lap* (=)

» Many natural functions have low global sensitivity

o e.g., histogram, mean, covariance matrix, distance to a
function, estimators with bounded "sensitivity curve”,
strongly convex optimization problems.

* Laplace mechanism can be a programming
interface [BDMN '05].

o Implemented in several systems [McSherry ‘09, Roy et al.
'10, Haeberlen et al. '11, Moharan et al. '12].
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EDGE vs. NODE PRIVACY - COUNTING EDGES

GSr = max |f(G) — f(G')|, taken over neighboring G, ¢’
GS
A(G) = f(6) + Lap* (=)

» Counting edges: f(G) = Xe; where ¢, € {0,1}
* Edge privacy: GS; = 1, noise ~§

. . . . o
* Node privacy: GSy = n, noise ~-

» Degree distribution??
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GLOBAL VS. LOCAL SENSITIVITY

Database Space Range(f) (Distribs on)
Output Space

o LS¢(X) = X)—-fX'
0=, max IfX) ~f(XOl

O GSf = mMaXy LSf(X)
» [NRS'07,DL'0O9] Techniques with error % local sensitivity




EXPONENTIAL SAMPLING [MTO7]

* x;= {books read by i this year}, Y = {book hames}
» “Score" of yeY: q(y,x) = #{i:y € x;}
* Goal: output book read by most




EXPONENTIAL SAMPLING [MTO7]

* x;= {books read by i this year}, Y = {book hames}
» “Score" of yeY: q(y,x) = #{i:y € x;}
* Goal: output book read by most

» Mechanism: given x, output book name y with
probability prop to exp(g - q(y,x))




EXPONENTIAL SAMPLING [MTO7]

* x;= {books read by i this year}, Y = {book hames}
» “Score" of yeY: q(y,x) = #{i:y € x;}
* Goal: output book read by most

» Mechanism: given x, output book name y with
probability prop to exp(g - q(y,x))

* Claim: Mechanism is e-differentially private
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* x;= {books read by i this year}, Y = {book hames}
» “Score" of yeY: q(y,x) = #{i:y € x;}
* Goal: output book read by most

» Mechanism: given x, output book name y with
probability prop to exp(g - q(y,x))

* Claim: Mechanism is e-differentially private

¢ Claim: If most popular website has score T =
max q(y, x), then E[q(yo, x)] 2 t - 0(=E%h

€




APPLICATIONS OF EXPONENTIAL SAMPLING

» Very general and widely used
o Often a 'first attempt’ at a differentially private task.

» Used explicitly for

o Learning discrete classifiers, Synthetic data generation,
Convex Optimization, Genome-wide association studies,
High-dimensional sparse regression, ...

» But, generally inefficient [DNRRYV,...]




DIFFERENTIAL PRIVACY IN "PRACTICE"

» Currently, differential private algorithms hard to use.
o Noise.
o No off-the-shelf software.
o Each application requires fresh thinking.

» Several systems to make use easier.

o [McSherry'09] PINQ: variation on LINQ with differential privacy
enforced by query mechanism.

o [Haeberlen et al. '11] Programming language with privacy enforced by
type system.

o [Roy et al. '10, Moharan et al. '12] Systems for restricted classes of
queries, focus on usability with legacy code.

* Hard to get right!
o [Haeberlen et al. '11] Timing attacks.
o [Mironov '12] Leakage via numerical errors.




SETTINGS WHERE DIFFERENTIAL PRIVACY WAS
APPLIED [PARTIAL LIST]

* Machine learning
o Statistics

 Continual observation and pan privacy

o When input is supplied gradually
o When the state of the algorithm can be subpoenaed

* Distributed settings

o Surprising relationships with computational differential privacy

e Mechanism design
* Privacy for the analyzer
* Graph data




CONCLUSIONS

* Heuristic treatment of privacy leads to failures

o Weaknesses: Auxiliary information, (self) composition,
leakage in decisions, ...

» Differential Privacy: privacy defined in terms of
my effect on output
o Meaningful despite arbitrary external information.
o I should participate if I get benefit.

» Computations with rigorous privacy guarantees.
o Basic Tools.
o More advanced examples.

» Connections to many areas: Security and crypto,
Machine learning, Statistics, Economics.




