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Introduction

| relate De Haro's and my account of dualities to equivalence of theories,
and to emergence. We take a duality to be a matter of:

(a): two theories share a common core; (itself a theory, the bare
theory); and

(b): the theories are isomorphic models of this common core:
here, 'model’ means a homomorphic copy (cf. representation theory).

About equivalence, my main Remark is that dual theories can disagree,
either by
(Contr): contradicting each other about a subject-matter; or by
(Diff): describing different (though ‘isomorphic’) subject-matters .
This implies a limitation of proposals to understand theoretical
equivalence as logical equivalence or as a weakening of it.

About emergence, | endorse De Haro's account, and set it in the context
of dualities. Indeed: | set it beside dualities.
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Introducing dualities: three comments

Our usage

A bare theory can be realized (we will say: modelled) in various ways: cf.
representation theory. These models are in general not isomorphic, and
they differ from one another in their specific structure. But we say: when
the models are isomorphic, we have a duality.

We call the two dual i.e. isomorphic theories, model triples, the
‘triple’ referring to the fact that the theory consists of three items:
a state-space, a set of quantities, and a dynamics: (S, Q, D) .

Beware: the word ‘model’, as contrasted with ‘theory’, often connotes:
(i): a specific solution for the physical system concerned, whereas the
‘theory’ encompasses all solutions—often, for a whole class of systems;
(ii): an approximation, whereas the ‘theory’ deals with exact solutions;
(iii): being part of the physical world that gives the interpretation,
whereas the ‘theory’ is not part of the world, and so needs interpretation.

Our use of ‘model’ rejects all three connotations.
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Introducing dualities: three comments

Duality as surprising

We usually discover a duality in the context of studying, not a bare
theory, but rather: two interpreted models of such a theory.

Usually, we do not initially believe them to be isomorphic in any relevant
sense. Or even: to be models of any single relevant theory (even of a bare
one).

The surprise is to discover that they are such models—indeed are
isomorphic ones. And the surprise is greater, the more detailed is the
common structure (like ‘10-dimensional semisimple Lie group’, as against
‘group’).
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Introducing dualities: three comments

Notation for theories and models

A notation for a model M that exhibits how M augments the structure of
the theory T with specific structure, M say, of its own:—

Do not write M = (T, M), since M uses M to build a representation of
T's structure. Better to write: M = ( Ty, M). So the subscript M on T
reflects that the specific structure M is used to build the representation
of T. We call Ty, the ‘part’ of M that represents T, the model root.

Thus for a theory as a triple, T = (S, Q, D): we write a model as a
quadruple:

M:<SM7QM3DM7M> = <m7M> ) (1)

where m := Ty := (Sm, Qum, D) is called the model triple, as well as
model root.
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A Schema for duality

A Schema for duality

We propose that a duality is an isomorphism between two model triples.
Recall that the model triple is separated from the model’s specific
structure, and expresses only the model’s representing the bare theory.
As in Eq. (1): M = (Sm, Qm, Dm, M) =: (m, M) , where

m := Ty = (Sm, Qm, D) is the model triple (model root).

A duality between my = (Sum,, Qm,, Dm,) and ma = (S, Oy, D)

requires:

an isomorphism between Hilbert spaces (for classical theories: manifolds):
ds : Sm, — Sm, using d for ‘duality” ; (2)

and an isomorphism between the sets (almost always: algebras) of
quantities

dy: Om, — Qum, using d for ‘duality’ ; (3)
such that:
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A Schema for duality

(i) the values of quantities match:

(Q1,51)1 = (dg(@1), ds(51))2, VQ1 € Qm,y, 51 € Sm,- (4)

(i) ds is equivariant for the two triples’ dynamics, Ds.1, Ds.2, in the
Schrodinger picture; and dj is equivariant for the two triples’ dynamics,
Dpy.1, Do, in the Heisenberg picture: see Figure 1.

d. dg
Sy, —— Sm, O, —— 9m,
le:l J,DS:Z J/DH:I JVDH:Z
S <., s %
My M, v, —— Qm,

Figure : Equivariance of duality and dynamics, for states and quantities.
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Interpreting physical theories

Interpreting physical theories

| endorse the framework of intensional semantics, in the style of Frege,
Carnap and Lewis. Words and sentences are assigned intensions: maps
from the set of worlds W to extensions.

This framework has the great merit of respecting the meanings of words!
That may seem an obviously mandatory feature for any endeavour calling
itself ‘semantics’. But the ‘semantics’ in books of logic and model theory
investigate the mathematical consequences of assigning arbitrary
meanings (specifically, extensions) to words...

It also makes precise the notion of a subject-matter, as a partition of the
set W of worlds. In a cell of the partition, any two worlds match as
regards the subject-matter. Thus a proposition is entirely about a
subject-matter if the set of worlds at which it is true is a union of cells of
the subject-matter.
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Interpreting physical theories

Subject-matters: (Contr) and (Diff)

| now make precise the Remark that dual theories can disagree: either by
(Contr): contradicting each other about a subject-matter; or by
(Diff): describing different (though ‘isomorphic’) subject-matters.

(Contr): Each of two dual model triples is interpreted as wholly
true (its conjunctive proposition is wholly true) at a union of cells of a
common subject-matter. But these two unions are disjoint: for the
propositions contradict each other.

(Diff): Two dual model triples are interpreted as wholly true (the
conjunctive proposition of each is wholly true) at distinct sets of worlds.
Each set is a union of cells of the triple's subject-matter, i.e. partition.
But the partitions are different, and so are the sets. The sets need not be
disjoint: both the model triples could be, both of them, wholly true. But
the sets are distinct.
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The Remark in classical and quantum physics

The Remark in classical and quantum physics

(1): Newtonian mechanics with different absolute rests: (Contr)
Two formulations of Newtonian point-particle mechanics (say N particles
with gravitation), that differ in what they identify as absolute space:
what inertial timelike congruence is ‘truly at rest’.

Thus the spacetime is IR* and the bare theory is a neo-Newtonian
(Galilean) formulation of point-particle mechanics.

The specific structure in each dual (model, in our sense) is its
specification of absolute rest. The ‘left’ dual might specify as absolute
rest the obvious congruence, i.e. the lines (t,x,y, z) (with t varying, and
x,y, z fixed, for each line); while on the other hand, the ‘right’ dual
specifies (t,x — vt,y, z).
A state is an assignment of (absolute!) position and velocity to
each particle: (x1,...zy; X1, ....2Zy). The duality map ds on states takes a
state of the first (‘left’) model to the state in the second (‘right') model
with the same numerical values, with respect to its (the right model’s)
specification of absolute rest. Eq. 4 holds. 11/36



The Remark in classical and quantum physics

Beware: It is tempting to say that the contrary specifications of absolute
rest are ‘gauge’, or ‘a distinction without a difference’, or ‘a sign that we
should move to a neo-Newtonian formulation’, in which the ‘surplus
structure of absolute rest is eliminated’.

| agree that it is tempting to say these things. But the point is: these
temptations are the benefit of hindsight, i.e. of our now knowing the
neo-Newtonian formulation. Returning to the earlier epoch of Newton
and Clarke: their views are tenable—and the duality illustrates (Contr).

Agreed: these ‘temptations’ hint at two other important functions of
duality. Namely, to prompt us to guess: either

(i): the bare theory, the ‘common core’, when we have no formulation of
it; or

(i) another theory ‘behind the duals’, of which the two duals are—not
representations (a /a the Schema) but—approximations.
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The Remark in classical and quantum physics

(2): Position-momentum duality in elementary quantum
mechanics: (Diff)
Let the bare theory be L?(IR), equipped with, say, B(L?(IR)).

The idea will be: the left dual is fixed by the choice of position,
the right by the choice of momentum.

It is usual to think of these choices as just ‘choices of basis':

A wave function ¢ : IR — C is mapped by a unitary map F to its
Fourier transform 1[) :IR — C. The usual (Schrodinger) representations of
position and momentum, Q : 1(x) — x1p(x) and P : ¢(x) — —iLep(x)
respectively, are related by: P = F1QF.

This implies the preservation of any expectation value between
the ‘left’ and the ‘right’: an inner product is the same when calculated in
two different orthobases, related by a unitary map.

This is not an example of (Contr) or of (Diff). But it is an
important prototype of the left and right duals agreeing. Bosonization is
another example: again with a unitary equivalence.

3/36



The Remark in classical and quantum physics

But we can get an illustration of (Diff) by thinking ‘like Bohr': ‘position
and momentum ‘perspectives’ cannot be adopted together'.

The left dual is to be only about position. Its states are just the
probability distributions for position; i.e. probability densities

p(x) = |¢(x)|?. And the left dual’s quantities are to be just position @
and the (Borel) functions of position, (@), with expectation values
(F(Q) = [ dx F(x)p(x).

Similarly, the right dual is only about momentum. Its states are just
the probability densities for momentum, p(k), yielding expectation values
(F(P)) = [ dk F(K)p(K).

The duality map ds maps the state p(x) to the same mathematical
real function: but now interpreted as a probability density for momentum.
So ds is the identity map on probability distributions: but as interpreted
on physical states, it is an active transformation—not the identity map.

Similarly for quantities: Q — P.

14
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The Remark in classical and quantum physics

(3): Kramers-Wannier duality in classical statistical mechanics:
(Diff)
The bare theory is the classical equilibrium statistical mechanics of a
two-dimensional square lattice with the Ising Hamiltonian: i.e. the
canonical ensemble with the Boltzmann probabilistic weights for a
configuration s given by exp(—(BH[s]), where H is the Ising Hamiltonian
and 8 = 1/kT is the inverse temperature.

The duals are approximations to the partition function
Z =%, exp(—fH][s]) that are valid at low and high temperatures T,
respectively: say, low on the ‘left’ and high on the ‘right’.

We write the partition function using the dimensionless inverse
temperature v := J/kT, and we define v* by tanh v* := exp(—2v).

So v* = 0/00 iff v = 00/0 respectively, and low temperature i.e. large v
corresponds to a high conjugate temperature i.e. small v*.

Then the expansions for low and high temperatures are related by

Z(v) = Z(v*)2'"N(2sinh20)"N . (5)

where N is the number of lattice sites.

15 /36



The Remark in classical and quantum physics

Take the left dual as the family of expansions parameterized by T being
in some low range [T, T2] C IR, i.e. by large v := J/KT in the range
[J/kTa,J/kT1]. Then the right dual is the expansions parameterized by
small v* in the range [tanh(exp(J/kT1)), tanh(exp(J/kT2))].

So the duality map ds is

Z(v)

s Z(0) = 2(07") 1= iy oo

(6)
Like Example (2): this is a case of (Diff). The low temperature regime
and high temperature regime are different though isomorphic
subject-matters.

And there is no temptation—even in hindsight—to say that there is no
real difference between the duals, that the contrast between them is
‘gauge’ etc.

16
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The Implication about ‘theoretical equivalence’

An Implication about ‘theoretical equivalence’

Two dual theories satisfying (Contr) or (Diff) might get formalized so as
to be logically equivalent. But obviously such duals are not
equivalent—as ‘equivalent’ is normally understood. So logical equivalence
is too weak an explication of ‘theoretical equivalence’. And so also,
therefore, is any weakening of logical equivalence.

This Implication is worth stressing. For the recent philosophical
literature on theoretical equivalence has focussed on logical equivalence
being too strong. Think of synonymy, e.g. classical electromagnetism
written in English and French.

So it is worth seeing that there is also a problem ‘in the other
direction’. In short: dualities illustrating (Contr) or (Diff) show how an
appropriate homonymy can render logical equivalence too weak.
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The Implication about ‘theoretical equivalence’

In terms of the proverbial Alice advocating the left dual, and Bob
advocating the right dual:—

If they are ‘unwise enough’ to use the same words in their advocacies,
and an appropriate subset of their words have appropriately ‘inverted’
meanings, then: what they say can be the same, despite their theories
disagreeing. So their theories might well get formalized so as to be
logically equivalent.

Thus in Example (3), Kramers-Wannier duality: suppose Alice speaks
standard English, so that in advocating her expansion for the Ising lattice
at low temperatures, she says ‘low temperature expansion’ etc. And
suppose the semantics (intended interpretation) of Bob's language is
‘high-low" inverted with respect to Alice’'s. So Bob, in advocating the
right dual, i.e. describing the lattice at high temperature, says ‘low
temperature expansion’ etc.

Thanks to the duality: Alice and Bob, in advocating their different
theories, might say the very same set of sentences.
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The Implication about ‘theoretical equivalence’

In terms of the duality map ds: Alice describes a state Z(v), i.e. an
expansion of the partition function at low temperature, by saying the
lattice has a free energy F = F(Z(v)) for a temperature T = T(v).
Bob describes the transformed state ds(Z(v)) := Z(v*) (eq. 6), i.e.
the expansion at the conjugate high temperature, by the same words.
Their assertions differ, but are compatible: (Diff). For ‘low’ in Bob's
mouth means high (in Alice’s mouth, and ours). More exactly: the
notation (‘numeral’) v in Bob’s mouth means the real number
v* = v*(v) := tanh ™! (exp(—2v)).

Similarly in other Examples. In Example (2): we can suppose Alice speaks
standard English, so that her word ‘position’ means position; while Bob
uses the word ‘position’ to mean momentum. So when Alice describes a
state s by saying ‘the particle has a Gaussian distribution for position
centred at x = 5’, Bob describes the transformed state ds(s) by saying
the same words. Their assertions differ, but are compatible: (Diff).
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The Implication about ‘theoretical equivalence’

This Implication also holds good for other proposed notions of
‘theoretical equivalence’ that are weakenings of logical equivalence: for
example, definitional equivalence.

The idea of definitional equivalence is that starting from one theory, one
can introduce definitions of the other theory's notions and then rigorously
deduce all the claims, i.e. theorems, of the other theory; and vice versa,
starting with the other theory.

Ty and T, are definitionally equivalent iff: (i) one can add to Ty a
definition of each vocabulary item of T, in such a way that within the
resulting augmentation of Ty one can deduce all of T,; and of course (ii)
vice versa.

(i) is called: making a definitional extension of Ty, and showing T, to
be (a sub theory of) a definitional extension of T;.

So: definitional equivalence is a matter of the two theories having a
common definitional extension.
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The Implication about ‘theoretical equivalence’

This notion makes no difference to the Remark and Implication—for
the now-familiar reason, that the logical framework deliberately sets aside
intended meanings.

Thus even if the advocates, Alice and Bob, of such a pair of dual theories
are ‘wise enough’ to use disjoint vocabularies, their theories might
nevertheless, once formalized, be definitionally equivalent.

The same moral applies beyond the case of definitional equivalence, to
other weakenings of logical equivalence that have been proposed
(Barrett, Halvorson, Hudetz and Weatherall). (Agreed: the proposals
have evident merits as explications of ‘theoretical equivalence'). Namely:
generalized definitional equivalence and categorical equivalence.
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Emergence beside dualities

Emergence beside dualities

Cf. De Haro's talk! We take ontological emergence as:
(i) a relation between theories, given by a linkage map from the
“bottom” theory T, to the “top” theory Ti, written as link : T, — Ty;
(ii) the domains of interpretation are distinct: Dy # D,,.
So the set-up is:

Figure : The linkage and duality maps: drawn as commuting

Our examples, both of (Contr) and of (Diff), illustrate this:—
both “at top” and “at bottom”; and
with ontological emergence, and without it.
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Emergence beside dualities

(1): Newtonian mechanics: (Contr)—revisited

(At the top): Take the two formulations of Newtonian mechanics, with
rival absolute rests, as T, Trt. They are dual by the “boost” map on
states and quantities discussed above, now written d; : T+ — Tgry.

So take as T and Tgrp, two formulations of non-relativistic
quantum theory, set in Newtonian spacetime, with rival absolute rests.
They are dual by a "boost” map on quantum states and quantities that
is the analogue of d;: call it dy : T_p — Trp-

It is the analogue because the boost concept is regardless of the
quantum-classical transition.

And T and Tgp illustrate (Contr), just like T, Try.

Define link as "h — 0": whatever you believe defines the emergence of

classical from quantum! So: link, : T, — T_t, and linkg : Trp — Try.

Most would say both link maps give ontological emergence.
Certainly, that issue has no dependence on a boost. So either both
link., linkg give ontological emergence, or both do not.
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Emergence beside dualities

(At the bottom): Take the two given formulations of Newtonian
mechanics, with rival absolute rests, as T, Trp. They are dual by the
“boost” map on states and quantities, now written d : T p — Trp.

Let link merely define the motions of the centre-of-mass (or of the
c.o.m. and some few other collective variables) of the N particles. So
Tit, Try are two “mini-theories”.

They are also dual by the “boost” map on states and quantities,
di: Tey — TRyt

Most would say both link maps do not give ontological emergence,
but “at best, epistemic emergence” .

Certainly, that issue has no dependence on a boost. So again: either
both link_, linkg give ontological emergence, or both do not.

And T ; and Tg illustrate (Contr), just like Ty p, Trpb.
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(2): Position-momentum duality: (Diff)—revisited

(At the top): Take the “monomaniac” position and momentum theories
as TL,ty TR,,_».

They are dual by the duality maps on states (viz. identity on
probability density functions p(x)) and on quantities (Q — P) discussed
above, now written dy : Tt — Tret.

So take as T and TR, the “monomaniac-position” and
“monomaniac-momentum” sectors of pilot-wave theory.

Thus Tip uses a state (¢, Xy, ..., Xy); but only so as to extract from
it the (orthodox) probability density function for position p(x) = |¢|2.
And T . extracts |)|?, taken as probability density for momentum.

Tip and Tgrp are dual by the obvious duality maps: viz. on states,
identity on both probability density functions p(x), and on particles’
positions (xi, ..., Xy); and on quantities, @ — P. Write this analogue of
dt as: db . TL,b — TR,b-

dy is the analogue of d; because the position-to-momentum
“interpretative flip" is regardless of believing in particles’ positions
<X1,...,XN>. 25/36



Emergence beside dualities

TLp and Tr illustrate (Diff), just like Ty s, Try.

Define link as usual in pilot-wave theory: as dropping the particles’
positions (X, ...,Xn). So: link_ : T, — T, and linkg : Trp — TRyt

Most would say both /ink maps do not give ontological emergence, but
“at best, epistemic emergence”. For from a pilot-wave perspective,
orthodox quantum theory cannot claim such novelty—and this applies on

both the Left and the Right.
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Emergence beside dualities

(At the bottom): Take the “monomaniac” position and momentum
theories as Ty p, Tr,p.They are dual by the identity map on probability
density functions p(x) etc., now written dy : T p — Trp-

Let /ink merely define the motions of the mean of the distribution; or
of the mean and some other statistic, i.e. functional of the distribution.

So T+ is a mini-theory about the mean etc. of position probabilities;
and Trt is a mini-theory about the mean etc. of momentum probabilities.

They are also dual by the the position-to-momentum “interpretative
ﬂip”, dt : T|_’»C — Tth.

Again: most would say both /ink maps do not give ontological
emergence, but “at best, epistemic emergence”.

Certainly, the issue has no dependence on the contrast between
position and momentum. So again: either both link_, linkg give
ontological emergence, or both do not.

And T ; and Tg illustrate (Diff), just like T, Trb-
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Emergence beside dualities

Thank you!
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Emergence beside dualities
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Emergence beside dualities

The Remark in string theory

The Remark is not an artefact of our having chosen elementary
Examples. Nor of our logically weak definition of the Schema for duality.
For requiring a duality to be non-obvious, scientifically important ...

will retain as Examples, e.g. Kramers-Wannier and related dualities in
statistical mechanics.

And in string theory too—tentatively ... Gauge/gravity duality, and
T-duality, provide Examples of (Contr).
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Emergence beside dualities

(4): Gauge-gravity duality: (Contr)

‘Gauge/gravity duality’ is the umbrella term for dualities between a string
theory (hence including a description of gravity) on a D-dimensional
spacetime (the ‘bulk’) and a quantum field theory (a gauge theory, with
no description of gravity) on a (D — 1)-dimensional space or spacetime
that forms the bulk's boundary.

De Haro (2016, 2016a) argues that in terms of our Schema, the common
core, i.e. bare theory, of which the bulk and boundary theories are models
(in our representation-theory sense) has as its spacetime:

the (D — 1)-dimensional boundary manifold equipped—not with a metric,
but merely—with an equivalence class of them, under local conformal
transformations.
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Emergence beside dualities

Suppose the bulk theory (the ‘left dual’) says spacetime is
five-dimensional (D = 5); so the boundary theory, the right dual, says it
is is four-dimensional. But both theories are putative ‘theories of
everything’, ‘toy cosmologies’. They are both about a single topic, the
cosmos; in philosophers’ jargon, the actual world. So the theories make
contrary assertions about that single topic, the actual world, namely
about the dimension of its spacetime. So this is a case of (Contr). In
terms of the simple logic—or rhetoricl—of the situation, we have come
full circle, back to Example (1).
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Emergence beside dualities

| agree that there is a temptation to say: ‘the real truth lies in what is in
common, or what is behind, the two duals’. That is: either

(i) to formulate the duals’ common core/bare theory (if we have no
formulation or a defective one), and-or

(ii) to formulate another theory ‘behind the duals’, of which they
are approximations, not representations.
This is indeed the heuristic function of dualities. Recall the analogous
temptation for Example (1): either

(i) to move to Galilean (neoNewtonian) spacetime, or

(i) to move to geometrized gravity, such as in general relativity.

| of course agree that this temptation is worthy: scientifically,
heuristically, valuable—and accordingly stressed by physicists’ discussions.
But do not let this temptation, oriented to the further development of
our theories, distort the activity of interpreting them as now formulated.
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Emergence beside dualities

(5): T-duality: (Contr)

‘T-duality’ is the umbrella term for two dualities between two pairs of
string theories (as currently formulated). Both dualities involve inverting
the radius of one of the compact (‘curled up’ like a circle) dimensions of
space. Thus a type IlA theory postulating that a certain dimension of

space has radius R is dual to a type IIB theory where the dimension is
1/R.

Objection! If one theory, say a type IIA theory, postulates a radius R so
small that it could not be empirically detected, 1/R may well be so large
that it could be detected—if it was real.

Reply! Measuring the radius of a putative compact dimension—say by
sending off a particle and timing how long it takes to return to you—can
be naturally accommodated by both dual theories.

For what one dual describes as a journey through physical space, is
described by the other dual as a journey through an internal space.
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Emergence beside dualities

| interpret the duals as both being about a single topic: the cosmos, the
actual world. They make contrary assertions about this topic. So they
disagree: a case of (Contr).

Just like Example 4: except that disagreement over a spatial radius
replaces disagreement over spatial dimensionality.

Again: we here set aside the heuristic function of dualities.

| agree that maybe one could treat the two string theories, not as
theories of everything (TOEs, 'toy cosmologies'), but as both true in a
single cosmos/possible world with, say a 10-dimensional space.

Namely: the type IIA describes one compact dimension as radius R,
and the type |IB describes another compact dimension as radius 1/R.

This turns the duals’ disagreement into a case of (Diff), not (Contr).
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Emergence beside dualities

Forgive me, O guru from lllinois...

Huggett (2017) takes the two duals to agree. He writes:

[He concedes that it] would not be a logical fallacy, nor
[contravene] unavoidable semantic or ontological principles, [to
deny that] the duals describe the same physical possibility. [But
...] from a practical scientific point of view, it makes sense to
treat those differences as non-physical . . . long established
well-motivated scientific reasoning should lead us to think that
dual total theories represent the same physical situation (2017:
86).

He goes on to address the resulting question: how can we make sense of
the ‘appearance’ that the dual theories contradict each other about the
radius of space?

He distinguishes two answers, called ‘interpretation one’ (p. 84) and
‘interpretation two' (p. 85), and argues in favour of the second ...
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