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The last three lines are a derivative d
dx .

On its face, an equation Euler or Lagrange could have written.

Direct consequence of additivity, chain rule, and integration by parts.

In several independent variables those lines become a sum:
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Noether’s Aj are not functions. They are differential operators.
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Noether thought in formulas (always).

1918: not symmetry, but transforming
variables: x1, . . . , xn → y1, . . . , yn.

1918: defines a divergence as a kind
of “expression” – for good reasons we
will see.

She (like Klein) put “conservation laws” in quote marks.

Thus Noether’s originality, generality, simplicity.
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Background.

Euler and Lagrange knew roughly: Symmetry↔ conservation.
Hamilton’s whole method of “ignorable coordinates.”

Noether cites complicated derivations of SR and Newtonian
mechanics from symmetries; extremely specific on-going GR.

Her breakthrough: Utter generality. It is all simply:
A combination of the methods of the formal calculus of vari-
ations with those of Lie’s group theory. (Noether 1918)

Merely put the two together: the result lies on the page before you.

(Vast generality→ unforeseen applications. Not Noether’s concern.)
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A combination of the methods of
the formal calculus of variations
with those of Lie’s group theory.

Has been interpreted as modesty.

It is not.

Noether knew Lie never saw this.

No one before her saw it – though several had applied Lie’s ideas to
calculus of variations and conservation laws.

“Formal calculus of variations” did not exist before Noether.
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Noether’s proofs were (and remain) startling in their simplicity.
— Nathan Jacobson

I Her life.
I 1913 Erlangen research program.

I Her mature program for mathematics.
I Why did she not pursue the Conservation

Theorems?
I Noether calculates variance and

divergence.
I What did “Formal” mean to Noether in

1918?
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old-fashioned Erlangen.



She already had a notable career in Nineteenth Century Erlangen.

1905 1916

The long Nineteenth Century, in comfortable and distinctly
old-fashioned Erlangen.



Noether:

I Dissertation 1908 with Gordan.

I Circolo Matematico di Palermo 1908.
I Deutsche Mathematiker-Vereinigung 1909.
I Supervised Hans Falckenberg dissertation 1911 (with E.

Schmidt).

Reliable, traditional even by Erlangen standards. Nothing that people
today recall.
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Life in Erlangen
Weyl’s eulogy: “There was nothing rebellious in her nature; she was
willing to accept conditions as they were.”

1933

This is probably from little brother Fritz.

Likely true, in Erlangen, before 1915.
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Erlangen: Compare Max and Emmy Noether on Paul Gordan:

I He never did justice to developing concepts from the
fundamentals (Grundlagen gehenden Begriffsentwicklungen).

I His lectures entirely avoided fundamental conceptual definitions,
even such as limit.

I His lectures rested on lively expression and the power gained
from his own studies, rather than on logic and rigor (Systematik
und Strenge).

(Indeed this was standard in calculus of variations, for Noether 1918,
and long after. Notations not standardized, definitions not given.)
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Noether’s 1913 Erlanger Programme.

Programme= a new professor’s declaration of research plans.

Noether’s Fields of Rational Functions was this, in effect (1913
Jahresbericht der Deutschen Mathematiker-Vereinigung).

To bring Gordan’s perspective to Dedekind/Weber/Hilbert algebra.

Anyone might have found it very ambitious.

Fulfilled by a series of four papers to 1926, then far surpassed.
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By 1913 Max and Fritz (and teacher/colleague Ernst Fischer) proudly,
happily aware that Emmy is on a level they are not,

and few have ever
been.

Paul Gordan. 

Von 

MAx N OETHER in Erlangen. 

(Mit Unterstützung von Felix Klein in Göttingen und von Emmy Noether in Erlangen.)*) 

*) Von Ersterem wurde ich in der Gesamtwürdigung , von Letzterer in der 
Würdigung der algebraischen Arbeiten wesentlich unterstützt. 
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The Twentieth Century came on fast.

Erlangen August 8, 1914, one week after Germany declared war.



1914–1918: 2 million German soldiers die in war, a half million
civilians in famine.

German Revolution 1918–1919.

Berlin, early March 1919, 1200 workers and protesting soldiers killed,
1600 arrested. Nearly as many killed as arrested.

Noether joins the Independent Social Democrats (USPD).

(By 1920s, Noether well known to colleagues as pro-Soviet.)

Weyl calls the USPD “close to the Social Democrats.” Like calling
Students for a Democratic Society “close to the Democratic Party.”
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Weyl beautifully describes her “fundamental characteristic:”

the ability to find the formulation which reveals the essen-
tial logical nature of the question, stripped of any incidental
peculiarities which complicate matters and obscure the fun-
damental point.

But he is quite wrong to write of:
Emmy Noether, the ardent foe of computation and algorithms
in mathematics.

Noether disparaged idle, wasted calculation, as did Gordan, as does
everyone who wants actual calculated answers to problems.
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Philosophic point:

constructive mathematics “finding solutions in
principle,” turns out surprisingly irrelevant to applied mathematics
which needs solutions in fact.

Kronecker really only cared about solutions in principle.

Much of his work remained purely “principled” until 1950s when
Noether’s student/ colleague Olga Taussky-Todd used computers to
apply it.

Gordan, Dedekind, Noether (inter alios) wanted solutions in fact.

Noether was constructive when that helped, and non-constructive
when that helped.
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In 1915, Noether notes she has outdone one of Hilbert’s results by
Gordan’s perspective:

The following is an entirely elementary finiteness proof ...
for the invariants of a finite group, which at once supplies
an actual statement of a complete system of invariants while
the usual proof using the Hilbert basis theorem is only an
existence proof. *(See for example Weber, Lehrbuch der
Algebra §57.)

Weber’s existence proof took 3pp. after Hilbert’s Theorem.

Noether gives two independent explicit calculations, each 1/2 page.
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In 1926, Hilbert’s Göttingen, at the peak of her commutative algebra,
with Gordan’s framed picture in her study, Noether supervises her first
official doctoral dissertation.



Grete Hermann: The question of finitely
many steps in the theory of polynomial ideals.

Hermann was the first to realize: To effectively
verify a routine you should find “an upper
bound for the number of calculations needed”
for the routine (as a function of input size).

Did this for routines giving Noether’s primary decompositions in the
polynomial case.

Noether enthusiastically promoted Hermann’s work.

Still cited today. “The foundational paper in computer algebra.”
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Two related points: Noether’s mature/Göttingen program, and why
she abandoned her conservation theorems.



With all the fervor of her nature, she was herself ready to for-
get what had been done in the first years of her mathematical
activity, considering these results as standing apart from her
true mathematical path—the creation of a general abstract
algebra. (Alexandroff, 1981, p. 101)

Alexandroff, Brouwer, Urysohn in Laren,
Holland 1922?. Noether also visited
and talked about topology.

Her “true path” was in no way limited to her specific theorems.
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Not everybody trusted that her achievements
were what they were later accepted to be. She
irritated people by bragging about them.
– Olga Taussky-Todd (1981, p. 84)

Noether’s student/colleague in Göttingen
and Bryn Mawr.

Everyone did trust Noether’s theorems!

Not her vision of algebraizing all mathematics. Yet it happened.
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I Abstract algebra – beginning with van der Waerden Moderne
Algebra.

I Later the whole Elements of Bourbaki.
I Topology – beginning with Alexandroff and Hopf Topologie.

I Later differential geometry, notably via fiber bundles.
I Algebraic geometry – beginning with van der Waerden.

I Later Weil, Serre, Grothendieck.
I Arithmetic – beginning with Artin, Herbrand, Brauer.

I Then another Artin, Chevalley.
I All of these (plus complex analysis) unified in cohomology –

beginning when her student Saunders Mac Lane “did not
understand” factor sets.
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Noether did not pursue her Conservation Theorems for long.

She did not long pursue any of her ideas (except her 1913 program in
finite group representations, over the rest of her life).

She had people do that.

Hermann began in computational algebra – then left math for politics
and philosophy.

Bessel-Hagen began in Conservation Theorems.

Then turned to history of math.
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theory and view of the Conservation Theorems.

Updated by fiber bundle methods,
and cohomology, both descended
from her commutative algebra.
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Divergences are, and for Noether can only be:

Expressions ∂A1
∂x1 + · · · + ∂An

∂xn where A is linear in δu and its
derivatives. From this follows: Σψiδui = δL + DivA.

Partials only at independent variables, while the Ai depend on much
more. (Choose values of the dependent variables u, and a symmetry
x, u: this gives a vector field on the independent variables x and its

ordinary divergence is Noether’s divergence for those choices.)

Clever, crucial use of “linear in δu.”
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Other authors of the time made divergences geometric in terms of
vector fields (vektorfelden),

summing one partial for each variable.

In Noether’s calculations the variables in A include “δu and their
derivatives” – which no one at the time could define.

Her favorite source, Kneser, gives as a typical “formal fundamental
property (formale Grundeigenschaft) of the sign δ:”

δy =
(∂y
∂t

)
t=0
dt where δy, ∂y, ∂t, dt are all “small.”

“Formal fundamental” = a basic calculating rule, not a consequence of
any analytic or geometric definition.
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Noether 1918 writes a linear combination of variations δui of the
dependent variables u1, . . . , uµ:

(4) Σψiδui = δL − d
dx

(
Σ
∂L
∂u′i

δui
)
,

(
u′i =

du
dx

)
.

Uses the familiar Lagrangian expressions:

ψi =
∂L
∂ui
− d

dx
∂L
∂u′i

.

But instead of cancelling each δui and solving each equation ψi = 0;
algebraist Noether calculates formally with Σψiδui = 0.

The calculations are like the classical – except Noether does not use
the “fundamental theorem of calculus of variations” to cancel the δui!
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A powerful idea to this day,

not unique to Noether but central to her
heritage.

Calculations with formal linear combinations can be a powerful tool to
1. help find actual solutions to equations; or
2. provide some information when solutions cannot be found; or
3. provide information you actually want, when you do not require a

specific solution anyway.

E.g. existence of stable equilibria for a family of ODEs where you are
not especially interested in any one equation – let alone in locating its
precise stable equilibria.
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This is one half of cohomology.

The other half was even more crucial
to Noether: quotienting out (or modding out) suitable cases.

From number theory, to connections on fiber bundles (gauge theories),
to complex analysis (conformal field theories), to the variational
complex (Vinogradov, Olver, others).

Olver uses this to clarify Noether’s Theorems I and II.

Noether 1918 ignores some (somehow trivial) symmetries.

Olver forms equivalence classes of symmetries/conservation laws by
modding out the trivial in a precise sense.
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A decisive mathematician, with lifelong ardent support from family
and all the world’s best placed mathematicians – set out to change the
course of mathematics and succeeded beyond her or anyone’s dreams
– yet never held a secure job, nor even a salary.



Not modest, and not wrong, writing
to Helmut Hasse, December, 1931:

My methods are working- and
conceptual-methods and so they
penetrate everywhere anonymously.
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I. If the integral I is invariant under Gρ, then ρ linearly independent
combinations among the Lagrangian expressions become divergences
— and conversely, that implies I is invariant under some Gρ.

No solutions to the Euler-Lagrange equations.

Does not call Gρ a group! (Often just a local group.)
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The eulogy of Gordan

I “He compiled volumes of formulas, very well ordered but
providing a minimum of text.

I His mathematical friends undertook to prepare the text for
press. . . .

I They could not always produce a fully correct conception.”

“Only a few of his publications, and especially the earliest, express
Gordan’s specific style: bare, brief, direct, uninterrupted theorems one
after the other.”



Olga Taussky worked with Noether in
Göttingen and Bryn Mawr.

Emmy was not uninterested in the problems
women face. She was concerned already
in Göttingen. I think it was through her,
but am not completely certain about it,
I learned about the IFUW,. . . of which the
AAUW is a branch. In 1932 she attended
one of their meetings when they invited her, or maybe she only
mentioned the invitation to me. In any case I do recall that she said
that one ought to attend such functions.
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She said women should not try to work as hard as men. She remarked
that she, on the whole, only helped young men to obtain positions so
they could marry and start families. She somehow imagined all
women were supported.



Hel Braun’s student-eye view.

Number theory at Frankfurt University 1933. Student of Carl Ludwig
Siegel. Habilitated Göttingen 1940.



Saw the spread of Göttingen methods:

I “This largely goes back to the algebraists.

I University mathematics became, so to say, more ‘logical.’

I One learns methods and everything is put into a theory.

I Talent is no longer so extremely important.”

“Perhaps I exaggerate but this is the impression I have when I
compare the lectures of that time to later ones.”
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Or again:

I “Still in my student days university mathematics rested strongly
on mathematical talent.

I Logic and notation were not so well established.

“The days are gone when one affectionately described one’s professor
with ‘He said A, wrote B, meant C, and D is correct’...”
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Does Emmy Noether use limits in her “formale Variationsrechnung”?

Not obvious.

Her reference, Kneser 1900, gives dx, x, ∂x, δx distinct roles,

Defined only as “small.” Kneser 1900 was a noted advance in rigor.
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