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Plan 
 

Primer: High Resolution Climate Projection 
 

Part I – The Perils of Model Error 
 

à  Laplace’s Demon and the Adventures of His Apprentices, in Philosophy 
of Science 81(1), 2014, 31–59, with Seamus Bradley, Hailiang Du and 
Leonard A. Smith. 

 

Part II – The Limits of Post-Processing 
à  Short: The Myopia of Imperfect Climate Models: The Case of UKCP09, 

Philosophy of Science 80(5), 2013, 886–897, with David A. Stainforth 
and Leonard A. Smith. 

à  Long: An Assessment of the Foundational Assumptions in High-
Resolution Climate Projections: The Case of UKCP09. Under review. 

 

Outlook: What next? 



3 

Plan 
 

Primer: High Resolution Climate Projection 
 

Part I – The Perils of Model Error 
 

à There is some recognition that models are not truthful 
reflections of their targets, but there does not seem to 
be an appreciation of the systematic problem and the 
extent to which it can affect predictive accuracy. 

 

Part II – The Limits of Post-Processing 
à Post processing of model outputs with multi-model 

ensemble methods won’t make these problems go 
away. 

 

Outlook: What next? 
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Primer 
 

High-Resolution Climate 
Projections 



8 

Climate Change Is Real 

Sources: genlovers.blogspot.com; coastalcare.org; weather.com; uttendorf.com 
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Climate Change Is Man-Made 

Sources: driverside.com; china-acm.com; interestingenergyfacts.blogspot.com; climateaudit.org   
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IPCC AR5: 
 

Models reproduce: 
•  “Observed continental-scale surface 

temperature patterns”. 
•  “Trends over many decades”. 
•  “More rapid warming since the mid-20th 

century”. 
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One would like to know how the local 
climate changes because policy is made at 
the local level. 
 

Make provisions:  
 

•  Adaption: flood walls, water provision, 
etc. 

•  Mitigation: implement changes and 
ideally stop bad things from happening. 
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Concrete example: UKCP09 

The United Kingdom Climate Impacts 
Program’s UKCP09 project aims to answer 
questions about the local impact of global 
climate change by making high resolution 
forecasts of the local climate out to 2100.  

The declared aim and purpose of UKCP09 
is to provide decision-relevant forecasts, 
on which industry and policy makers can 
base their future plans. 
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The launch document says:  
 

‘The projections have been designed as input to 
the difficult choices that planners and other 
decision-makers will need to make, in sectors 
such as transport, healthcare, water-resources 
and coastal defences, to ensure that UK is 
adapting well to the changes in climate that have 
already begun and are likely to grow in 
future.’ (Jenkins et al 2009, 9) 
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The launch document says:  
 

‘The projections have been designed as input to 
the difficult choices that planners and other 
decision-makers will need to make, in sectors 
such as transport, healthcare, water-resources 
and coastal defences, to ensure that UK is 
adapting well to the changes in climate that have 
already begun and are likely to grow in 
future.’ (Jenkins et al 2009, 9) 
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In concrete terms: 
Probabilistic predictions are given on a 25km 
grid for finely defined events such as  
-  Change in mean daily maximum 

temperature 
-  Changes in precipitation 
 

It is projected, for instance, that under a 
medium emission scenario the probability for 
a 20-30% reduction in summer mean 
precipitation in central London in 2080 is 0.5  
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25km grid 

Source: UKCP09 Briefing Report, p. 32.  

 



20 

How are these Result Generated?  
 

1.  GCM: approx. 300 runs of HadCM3/
HadSM3. 

2.  Post-process the GCM outputs and 
downscale to obtain local predictions on 
25km grid. 
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How are these Result Generated?  
 

1.  GCM: approx. 300 runs of HadCM3/
HadSM3. 

2.  Post-process the GCM outputs and 
downscale to obtain local predictions on 
25km grid. 

 
Question:  
Are these results decision-relevant? 
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GCM: two points matter: 
 1.  Strong 

simplifications are 
made to construct 
the model. So we 
are faced with 
model error.  

2. As a matter of fact 
the dynamics is 
nonlinear.  
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Central Question:  
(a)  Are the outcomes of nonlinear models 

with structural model error trustworthy 
and reliable? 

(b)  Can the outputs of nonlinear models 
with structural model error form the 
basis of responsible policy making? 
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Central Question:  
(a)  Are the outcomes of nonlinear models 

with structural model error trustworthy 
and reliable? 

(b)  Can the outputs of nonlinear models 
with structural model error form the 
basis of responsible policy making? 

 
Preview: not without may qualifications 
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Part I 

 
The Perils of Model Error 
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Preview 
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The Question 
A dynamical model has structural model 
error (SME) if its time evolution is relevantly 
different from that of the target system, 
possibly due to simplifications and  
idealisations. 
 

Question: what are the consequences of 
SME for a model’s predictive capacity? 
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Take-Home Message - Part 1 
If chaotic models have even the slightest 
SME, their capacity to make meaningful 
forecasts is seriously compromised. 
 

This has dramatic consequences for our 
ability to make the kind of forecasts about 
the future that policy makers would like to 
have.  
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Attention: not the same old story.  
 

So far chaos has been studied in 
connection with uncertainty about initial 
conditions. 
 

We ask what happens if we are uncertain 
about the correct model structure. 
 

These are completely different problems! 
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Butterfly effect:  
Error in initial 
conditions 



31 

Butterfly effect:  
Error in initial 
conditions 

Hawkmoth Effect: 

Error in the model 
structure (equations) 



32 

Take-Home Message – Part 2 
We can mitigate against the butterfly effect 
by making probabilistic predictions rather 
than point forecasts.  
This route is foreclosed in the case of the 
hawkmoth effect: nothing can mitigate 
against that effect! 
So structural model error and not 
uncertainty in the initial conditions is what 
truly limits predictive power. 
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Or: butterflies are pretty; hawkmoths are ugly. 
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Let’s get started 
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A Primer on Models 

Dynamical system 
 
 

),,( µφtX
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A Primer on Models 

Dynamical system 
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A Primer on Models 

Dynamical system 
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Simple example: stone falling from tower 
          

Position x 

momentum p 
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Simple example: stone falling from tower 
          

),,( µφtX p 

x 
Lebesgue 

Measure 
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Difficult example: global climate model 
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Difficult example: global climate model 
          

),,( µφtX

Literally 10,000s of climate 
variables for the entire world 
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Difficult example: global climate model 
          

),,( µφtX

Literally 10,000s of climate 
variables for the entire world 
 

The evolution of these 
variables over time 
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Difficult example: global climate model 
          

),,( µφtX

Literally 10,000s of climate 
variables for the entire world 
 

The evolution of these 
variables over time 
 

The so-called invariant 
measure of the dynamics 
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Locating the Issues 
Dynamical system 
 
 

),,( µφtX
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Locating the Issues 
Dynamical system 
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Locating the Issues 
Dynamical system 
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Initial Condition Error (ICE) 
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Locating the Issues 
Dynamical system 
 
 

),,( µφtX

Initial Condition Error (ICE)  
 



Locating the Issues 

Initial condition error 
 
 
Butterfly Effect 
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Locating the Issues 
Dynamical system 
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Locating the Issues 
Dynamical system 
 
 

),,( µφtX

φt

φt
*



54 

Locating the Issues 
Dynamical system 
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Locating the Issues 
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Structural Model Error 
 
 
Hawkmoth Effect 
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ICE versus SME 
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Meet Laplace’s Demon 

1.  Unlimited computational 
power 

2.  Unlimited dynamical 
knowledge 

3.  Unlimited observational 
power 

(Laplace 1814) 
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The Demon knows everything.  
Laplace: ‘nothing would be 
uncertain and the future, as the 
past, would be present to [his] 
eyes’.  
 

So the Demon’s model of the 
world’s climate would be 
trustworthy because it provides the 
full truth.  
 

But what happens if we are less 
capable than the Demon? 
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1.  Unlimited computational 
power 

2.  Unlimited dynamical 
knowledge 

3.  No unlimited 
observational power 

Meet the Senior Apprentice 
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How could the limitation of 
not having unlimited 
observational power be 
overcome?  
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X 

How could the limitation of 
not having unlimited 
observational power be 
overcome?  
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Generate probabilistic predictions by 
moving the initial probability distribution 
forward in time:  
 

Time 

X 



Implications for prediction? 
 Time 

X 
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Implications for prediction? 
 Time 

X 
Time 

X 

à Dispersion. 
 



Distributions become uninformative as 
time passes, but they do not become 
misleading. 
 

The Senior Apprentice realises that this is 
the limitation that she has to accept. 
 

It is the price to pay for not having 
unlimited observational power.  
 

65 
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Or: butterflies are pretty; hawkmoths are ugly. 
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Meet the Freshman Apprentice 

1.  Unlimited computational 
power 

2.  No unlimited dynamical 
knowledge 

3.  No unlimited 
observational power 
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The Freshman 
Apprentice now 
claims he can do 
everything that the 
Senior Apprentice 
can do, his 
additional 
limitation 
notwithstanding 
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Recall: The Freshman can’t formulate the 
exact dynamics of a system. 
Reaction: Distortions and idealisations of 
all kind are acceptable as long as the 
resulting model is close enough to the 
truth.  
 

This is the closeness-to-goodness link. 
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Recall: The Freshman can’t formulate the 
exact dynamics of a system. 
Reaction: Distortions and idealisations of 
all kind are acceptable as long as the 
resulting model is close enough to the 
truth.  
 

This is the closeness-to-goodness link. 
 

à  This is a crucial part! 
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That is, the Freshman claims that his 
probabilistic predications are as good as 
the Senior Apprentice’s because he can 
rely on the closeness to goodness link.  
 
Question: is the Apprentice right?  
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Population density: 
 
ρ = # fish / m3

#maxfish / m3
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Population density: 
 
ρ = # fish / m3

#maxfish / m3

ρ ∈ 0,1[ ]Hence:  
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Population density: 
 
ρ = # fish / m3

#maxfish / m3

ρ ∈ 0,1[ ]Hence:  

ρt+1 = 4ρt (1− ρt )
Model: 
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where ε = 0.1 

 
ρt+1 = 4 ρt (1− ε )(1− ρt )+ ε

16
5
ρt (1− 2 ρt

2 + ρt
3)
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The Apprentice remains defiant: 
 
                                 

Green – Apprentice and Red - Demon 
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Mathematically: 
 
                                + small perturbation 
 
  
 
 
 

)1(41 ttt ρρρ −=+

 
ρt+1 = 4 ρt (1− ε )(1− ρt )+ ε

16
5
ρt (1− 2 ρt

2 + ρt
3)
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Mathematically: 
 
                                + small perturbation 
 
  
 
 
 

)1(41 ttt ρρρ −=+

 
ρt+1 = 4 ρt (1− ε )(1− ρt )+ ε

16
5
ρt (1− 2 ρt

2 + ρt
3)

One step error: 0.001 
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Mathematically: 
 
                                + small perturbation 
 
  
 
 
 

)1(41 ttt ρρρ −=+

 
ρt+1 = 4 ρt (1− ε )(1− ρt )+ ε

16
5
ρt (1− 2 ρt

2 + ρt
3)

One step error: 0.001 

Closeness-to-goodness link: this is close 
enough and predictions are reliable. 



82 They all do the Calculation …. 
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t = 0 
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t = 2 
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t = 4 
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t = 8 
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If you use your model to offer predictions 
you get it completely wrong! 
 

•  You regard things that never happen as 
very likely. 

•  You regard things that happen very often 
as unlikely.  
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Relative Entropy of 2048 initial distributions (t=8) 
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Conclusion: 
Even though the model is very close to the 
truth, it provides ruinous predictions! 
Hence: If chaotic models have even the 
slightest model error, their capacity to 
make meaningful (and policy relevant!) 
probabilistic forecasts is lost. 
 

The closeness-to-goodness link is 
wrong! 
 
 

 
 



Written Version:  
Consequences of this for casino/insurance 
scenarios are disastrous. 

90 
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The failure of the closeness-to-goodness 
link gives raise to the hawkmoth effect: 
the smallest deviation in model structure 
leads to completely different results, both 
for deterministic and probabilistic forecasts. 
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Or: butterflies are pretty; hawkmoths are ugly. 
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Part II 

 
The Limits of  

Post- Processing 
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Fact: HadCM3 involves strong idealising 
assumptions  
 

à  It has structural model error.  

UKCP09 acknowledges the presence of 
model error and suggests a way of dealing 
with it.  
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The message is that the uncertainties due to 
SME can be estimated and taken into 
account in projections.  
 

UKCP09 do so with a complex 
computational scheme. 
 

à “Long paper” for details. 
à  Here focus only on the crucial 

assumptions. 
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Introduce a so-called discrepancy term: 
 
 
 

World               Model            Discrepancy 

c =ϕ(x0,α*)+ d
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The discrepancy 
‘measures the difference between the climate 
model and the real climate […]. Such 
differences could arise from processes which 
are entirely missing from the climate model, or 
from fundamental deficiencies in the 
representation of processes which are included 
[…]’  
(Sexton et al, 2012, 2515, emphasis added)  
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The discrepancy 
‘measures the difference between the climate 
model and the real climate […]. Such 
differences could arise from processes which 
are entirely missing from the climate model, or 
from fundamental deficiencies in the 
representation of processes which are included 
[…]’  
(Sexton et al, 2012, 2515, emphasis added)  
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Therefore, the discrepancy term tells us 
 

‘what the model output would be if all the 
inadequacies in the climate model were 
removed, without prior knowledge of the 
observed outcome’ (Sexton et al., 2012, 2515).  
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Therefore, the discrepancy term tells us 
 

‘what the model output would be if all the 
inadequacies in the climate model were 
removed, without prior knowledge of the 
observed outcome’ (Sexton et al., 2012, 2515). 
 

 Recall  
 
 
à Calculate d and add it to model outputs.  

c =ϕ(x0,α*)+ d
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A different route: 

Assume Gaussianity: d is Gaussian  

à Determine: mean and the covariance 
matrix of the distribution.  

Two assumptions needed to do so: 

1.  Proxy 

2. Informativeness 
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The Proxy Assumption 
 

Not being omniscient, a proxy is introduced: 
‘Our key assumption is that sampling the effects of 
structural differences between the model […] and 
alternative models provides a reasonable proxy for the 
effects of structural errors in the chosen model relative to 
the real world.’ (Sexton et al 2012, 2516; emph. added) 
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The Proxy Assumption 
 

Not being omniscient, a proxy is introduced: 
‘Our key assumption is that sampling the effects of 
structural differences between the model […] and 
alternative models provides a reasonable proxy for the 
effects of structural errors in the chosen model relative to 
the real world.’ (Sexton et al 2012, 2516; emph. added) 
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This is because: 
‘the effects of structural differences between models can 
be assumed to provide reasonable a priori estimates of 
possible structural differences between HadSM3 and the 
real world.’ (Murphy et al. 2010, 64) 

Therefore: 
Discrepancy term: ‘an appropriate means of quantifying 
uncertainties in projected future changes’ (ibid, 66) 
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Specifically:  
Multi Model Ensemble with 12 models. 
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Specifically:  
Multi Model Ensemble with 12 models. 
Main steps: 
-  Determine the best HadSM3 analogue for 

each model in the ensemble.  
-  For each model, calculate the error (the 

difference between the two model outputs). 
-  From these the mean and the covariance 

matrix of are determined.  
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The Informativeness Assumption 

This is the assumption that  
‘that the climate model is informative about the real 
system’ (Sexton et al 2012, 2521).  
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The Informativeness Assumption 

This is the assumption that  
‘that the climate model is informative about the real 
system’ (Sexton et al 2012, 2521).  

And for the best input parameter α*: 
‘[α*] is not just a ‘statistical parameter’, devoid of 
meaning: it derives its meaning form the physics in the 
climate model being approximately the same as the 
physics in the climate.’ (Rougier 2007, 253) 
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Question: 

How good are these assumptions?  

à Take Gaussianity for granted. 

à Scrutinise proxy and informativeness 
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Scrutinising the Proxy Assumption 

First argument in support: 
‘Indeed, the multimodel ensemble mean has been 
shown to be a more skilful representation of the 
present-day climate than any individual 
member’ (Sexton et al 2012, 2526)  
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Scrutinising the Proxy Assumption 

First argument in support: 
‘Indeed, the multimodel ensemble mean has been 
shown to be a more skilful representation of the 
present-day climate than any individual 
member’ (Sexton et al 2012, 2526)  

But this is sleight of hand:   
-  Is “more skilful” close to being “skilful”? 
-  No evidence is given that this is the case. 
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Second argument in support: 
‘the structural errors in different models can be taken to 
be independent’ (Sexton et al 2012, 2526.) 

This is needed to avoid that models in the 
ensembles have systematic bias. 
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Second argument in support: 
‘the structural errors in different models can be taken to 
be independent’ (Sexton et al 2012, 2526.) 

This is needed to avoid that models in the 
ensembles have systematic bias. 

But: Models aren’t independent, and 
common errors are widely acknowledged 
(Knutti, Parker, Bishop and Abramowitz, 
Jun, …)  
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Further worry: 

-  Current MME’s ‘ensembles of 
opportunity’, grouping together existing 
models.  

-  They are not designed to systematically 
explore all possibilities.  

-  There could be vast classes of models 
that produce entirely different results.   
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Notice:  
-  The IPCC acknowledge this limitation and 

downgrade the assessed likelihood of 
ensemble-derived confidence intervals. 

-  Example: the 5-95% range of model 
results for GMT change in 2100, under 
forcing scenario RCP8.5 (2.6 to 4.8 
degrees) is not deemed “very likely” (90% 
chance), which would correspond to a 
direct use of model frequencies as 
probabilities; instead, it is deemed only 
“likely” (66% chance).   
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Hence: 
-  Ensemble information is used, but 

supplemented with expert judgement 
about the chance that models are 
misinformative. 

-  In effect, 24% of the probability mass has 
been reassigned in an undetermined 
manner, which we might interpret as a 1-
in-4 chance that something occurs which 
the models are incapable of simulating. 

-  (NB: This is for GMT!) 
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Conclusion: 
-  For these reasons, the assumption that 

the use of an MME will accurately 
quantify the distance to our true target is 
unjustified. 

-  It produces a distribution that is more 
consistent with the diversity of current 
models, but which need not reflect the 
uncertainty in the true future climate. 
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-  Worry: the distribution may simply be in 
the wrong place. 

-  Analogy: Trying to predict the true climate 
with structurally wrong models is like 
trying to predict the trajectory of Mercury 
with Newtonian models. These models 
will invariably make false projections for 
some lead time, and these errors cannot 
be removed by adding linear discrepancy 
term derived from other Newtonian 
models. 
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Scrutinising Informativeness 

Recall that is the assumption that  
‘that the climate model is informative about the real 
system’ (Sexton et al 2012, 2521).  

And for the best input parameter α*: 
‘[α*] is not just a ‘statistical parameter’, devoid of 
meaning: it derives its meaning form the physics in the 
climate model being approximately the same as the 
physics in the climate.’ (Rougier 2007, 253) 
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Recall that is the assumption that  
‘that the climate model is informative about the real 
system’ (Sexton et al 2012, 2521).  

And for the best input parameter α*: 
‘[α*] is not just a ‘statistical parameter’, devoid of 
meaning: it derives its meaning form the physics in the 
climate model being approximately the same as the 
physics in the climate.’ (Rougier 2007, 253) 



125 

Scrutinising Informativeness 

Recall that is the assumption that  
‘that the climate model is informative about the real 
system’ (Sexton et al 2012, 2521).  

And for the best input parameter α*: 
‘[α*] is not just a ‘statistical parameter’, devoid of 
meaning: it derives its meaning form the physics in the 
climate model being approximately the same as the 
physics in the climate.’ (Rougier 2007, 253) 

à Closeness-to-goodness link! 
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Statistics “backup”: CPI (Murphy et al 2004) 
-  Take 32 climate variables (precipitation,…) 
-  For each variable there is a time series of 

past observations. 
-  Calculate mean and variance.  
-  Make 53 runs of HadCM3 retrodicting the 

values of the 32 variables. 
-  Calculate how many standard deviations 

the model is away from the observations.  
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CPI = average for the 32 variables of the 
difference between model and data 
 

Finding:  
-  For all 53 runs CPI is between 5 and 8 
-  Model runs for individual variables can be 

as much as much as 24 standard 
deviations away from observations.  

 

à Is this really informative? 
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Further Assumptions in the scheme: 
•  Use of an Emulator 
•  Choice of a trapezoid prior probability 

distributions: 
 - Principle of indifference 
 - Robustness of posteriors 

•  Downscaling 
•  Initial condition uncertainty 

  

 
 
 



Conclusion 
•  There is no evidence for interpreting 

UKCP09’s projections as trustworthy 
information for quantitative decision 
support. 

•  NB: questioning the evidence for a result 
does not amount to proving it wrong 

•  The concern is that the premises of the 
argument do not warrant trust in the 
results. 
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Outlook 

 
What next? 

 
 
 



Observations 

•  Better decisions could be made with better 
understanding of the scientific 
uncertainties even if they were presented 
in a less quantitative fashion. 

•  The detailed probabilistic projections might 
be expected to change substantially in 
future assessments, thus undermining the 
user communities trust in scientific 
outputs. 

 131 
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Think Different 
For Science: 
•  Don’t aim to reduce uncertainty. 
•  Instead better understand, classify and 

communicate uncertainty. 

For Policy: 
•  Renounce the first-predict-then-act rule. 
•  Decisions  can be made under uncertainty. 

 

  



Shifting Paradigm 

133 Sources: cnn.com, pike-health.org; jamesbondlifestyle.com; safetysunglasses.com  
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Expert Elicitation 

134 Sources: theresilientearth.com; eofdreams.com 

vs. 
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A Way Forward 
•  Better actionable information at local level.  

•  Cheaper and faster. 

•  Informs resilience planning. 
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Take Home Message 
For the purpose of local decision support: 

•  Climate model outputs can be misleading. 

•  New models and faster computers will not 
make the problem go away. 

•  We should focus on understanding and 
assessing uncertainty. 

•  This is best done using polling methods.  
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Thank you! 



Appendix 

138 



139 

And if you use your model to offer bets (or 
insurance policies) on certain events, you 
are losing money! 
 

Probability p on event E: p(E) 
Odds on E: o(E) = 1/p  à pay-out if E occurs 
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And if you use your model to offer bets (or 
insurance policies) on certain events, you 
are losing money! 
 

Probability p on event E: p(E) 
Odds on E: o(E) = 1/p  à pay-out if E occurs 
 

Example: coin 
p or heads is ½.  
Odds on heads is 2.  
If you bet £1 on heads and head occurs you 
get £2 back.  
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“Lower Half” against “Upper Half 

          L                        U 



“Lower Half” against “Upper Half 

Model:  p(U) = 0 and o(U) à ∞ 
System:  p(U) = 1 
 

So U happens with probability 1 and you have to 
pay out infinite gains!  
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The Pond Casino 
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Nine punters with £1000 each.  
In every round they bet 10% of their wealth 
on events with probability in the interval: 
1st Punter:  [1/2, 1] 
2nd Punter:  [1/4), 1/2) 
… 
9th Punter:  [0, 1/256) 
 
How are they doing?  
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Result:  
•  7 out of the 9 punters make enormous 

gains! 
•  The casino runs up huge losses. 
 
à Insurance companies …  
 
But: is this just a bad “bad luck event”?  
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Again 
 

Question: is this a special case?  
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Time to bust for 2048 casinos: 
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Reinventing the  
wheel? 
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ρt+1 = α ρt (1− ρt )

Parameter:  

α ∈[0,4]

Feigenbaum’s classical discussion: 
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Time series for different parameter values: 
 

α = 2.95



152 

Time series for different parameter values: 
 

α = 2.95

α = 3.5
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Time series for different parameter values: 
 

α = 2.95

α = 3.5

α = 4



α

X
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This is a study of parameter variation.  
 

It provides information about what happens 
if we are uncertain about parameter values. 
 

But: it provides no information about what 
happens when we are uncertain about 
the model structure. 
 

What if the true equation is not exactly 
                                  ?                                         ρt+1 = α ρt (1− ρt )
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Overselling  
an example? 
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Recall our conclusion: the closeness to 
goodness link is not an adequate means to 
deal with structural model error.  
 

Why is this a general problem and not just 
a problem of our example?  
 

There is an elaborate mathematical theory 
of structural stability: 
Andronov and Pontrjagin, Peixoto, Palis, 
Smale, Mañé, Hayashi. 
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But:  
 

Stability proofs are forthcoming only for 
two-dimensional flows!  
 

But that is a very special kind of system! 
 
In general the situation is more involved: 
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Axiom A: the system is uniformly hyperbolic. 
Strong transversality condition: stable and 

unstable manifolds must intersect 
transversely at every point. 

Palis and Smale (1970) conjectured that a 
system is structurally stable iff it satisfies 
Axiom A and the strong tranversality 
condition. 
Proofs:  
Mañé (1988) for maps  
Hayashi (1997) for flows. 
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What do Axiom A and 
the strong transversality 

condition mean for 
physical models? 
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What do Axiom A and 
the strong transversality 

condition mean for 
physical models? 

Physical models? What 
are you talking about?  
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But:  
Smale (1966): structural stability is not 
generic in the class of diffeomorophisms on a 
manifold: the set of structurally stable 
systems is open but not dense. 
Smith (2002) and Judd and Smith (2004): if 
the model’s and the system’s dynamics are 
not identical, then ‘no state of the model has 
a trajectory consistent with observations of 
the system’ (2004, 228).  
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Minimal conclusion: shift of the onus of proof!  
 

Those using non-linear models for predictive 
purposes owe us an argument that they are 
structurally stable, not vice versa! 


