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THE LONG VIEW OF HISTORY

True story. Henry Kissinger was in China in 1972, laying the groundwork for
President Nixon’s visit. At a meeting with Chinese prime minister Chou En-
Lai, Mr. Kissinger asked the prime minister if he believed whether the 1789
French Revolution benefited humanity. After mulling over the question for a
few minutes, Chou En-Lai replied, "It’s too early to tell." (J. Lau, cited from
<www.yellowbridge.com/humor/chinaamerica.html>)

FIGURE 1. Kissinger – Chou-En-Lai

Chou En-Lai, heir to a 5000-year old civilization, was obviously trying to "put in his
place" the upstart from the barely-200-years-old United States. Yet his answer contains
a good deal of wisdom. Often, the historical evaluation of the significance of some
important event can change long after the event occurred.
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Here is an example from the history of science that is relevant to my topic: the case of
Euclid, who flourished about 300 BCE. For over three millennia, if anyone asked the
question "What was Euclid’s major scientific contribution?", the answer was something
like: "He codifiedthegeometry of space." While I have placed emphasis on the singular,
until the beginning of the 19th century there was no need to do so because there simply
was no other geometry. As late as 1772, the renowned English philosopher David Hume
wrote:

Though there never were a circle or triangle in nature, the truths demonstrated by
Euclid would forever retain their certainty and evidence. (An Enquiry Concerning
Human Understanding, Section IV).

But, beginning with the work of Carl Friedrich Gauss, who coined the term "non-
Euclidean geometry," it became clear that consistent alternative geometries could be
developed that differed from Euclid’s by negating his famous fifth or parallel postulate:

If a straight line crossing two straight lines makes the interior angles on the same side
less than two right angles, the two straight lines, if extended indefinitely, meet on
that side on which are the angles less than the two right angles. (Elements, Book I)

It is easier to formulate the alternatives to this postulate if we use this equivalent form:

Given any straight line and a point not on it, there exists one and only on straight
line that passes through the point and never intersects the first line, no matter how
far it is extended.

Gauss considered a geometry in which there could bemore than onesuch parallel line,
but did not publish his results

for I fear the cry of the Bœotians [i.e., the philistines] which would arise should I
express my whole view on this matter (letter to Bessel, 1829).

Results similar to Gauss’ were soon published by János Bolyai (1831) and Nikolai
Lobachevski (1829). Some years later, Bernhard Riemann described a second non-
Euclidean geometry, in which there areno parallel lines(1854 lecture, 1868 posthumous
publication).
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As was soon discovered, two-dimensional Gauss-Bolyai-Lobachevski geometry can be
interpreted as the geometry of a space of constant negative curvature (the surface of
a hypersphere) embedded (locally) in three-dimensional Euclidean space; while two-
dimensional Riemannian geometry can be interpreted as the geometry of a space of
constant positive curvature (the surface of a sphere) embedded (globally) in three-
dimensional Euclidean space. In both cases, "straight line" is to be interpreted as a
geodesic (shortest curve between two points) of the surface.

In all three of these geometries, space is homogeneous and isotropic. Henri Poincaré de-
veloped what he called a "fourth geometry, as coherent as those of Euclid, Lobachevski
and Riemann" (Sur les hypothèses fondamentales de la géométrie, 1887). The parallel
postulate holds in this geometry and space is homogeneous; but it is no longer isotropic.
In this two-dimensional version, the straight lines through any point fall into two classes;
any line in one class can be "pseudo-rotated" into any other in the same class, but no

FIGURE 4. Minkowski space in 2 dimensions



"pseudo-rotation" can take a line of one class into a line of the other. The two classes are
separated by a pair of straight lines, each of which is orthogonal to itself. With hindsight,
we can see that this is a description of two-dimensional Minkowski space-time, the two
classes consisting of the time-like and space-like lines, separated by a pair of null lines
(see the next section); but no one seems to have realized this until long after the passing
of Poincaré and Minkowski.

The four geometries mentioned were only the first of a host of new geometries invented
since the floodgates were opened by Gauss. (Later, I shall discuss Weyl’s definition
of a geometry). Clearly, in the face of this profusion, the old answer to the question of
Euclid’s major contribution is unacceptable. A modern answer is given inThe Dictionary
of Scientific Biography:

TheElements. . . most remarkable feature is the arrangement of the matter so that
one proposition follows on another in a strict logical order, with the minimum
of assumptions and very little that is superfluous. . . . The significance of Euclid’s
Elementsin the history of thought is twofold. In the first place, it introduced into
mathematical reasoning new standards of rigor which . . . have been equaled again
only in the past two centuries. In the second place, it marked a decisive step in the
geometrization of mathematics ("Euclid,"DSB, vol. IV).

Euclid’s work has served as a model for many later attempts to logically organize other
branches of science, and even philosophy (see Spinoza’sEthica Ordine Geometrico
Demonstrata[Ethics Demonstrated in Geometric Order]

What About Einstein?

Having adopted the long view of history, we are ready to consider the question: "How
will Einstein be viewed at the end of the next millennium?" In 3005 (assuming humanity
survives until then- and given the current state of the world, this is a big assumption),
what will physicists regard as his major contribution?

Today, just once century after 1905, we can already see a sifting out of certain items
of his total œuvre as most significant. Were we to listall his accomplishments, the list
would be long indeed. Such a list would certainly include:

• His estimate of molecular size based on the change in viscosity of a liquid when
particles are suspended in it.

• His demonstration, based on the first theory of a stochastic process, that micro-
scopic fluctuation phenomena can be observed in Brownian motion.

• His development of a new kinematics in the special theory of relativity, and the
deduction from it of such remarkable features as:
- The path dependence of proper time intervals (twin-paradox")
- The equivalence of mass and energy ("E = mc2").



FIGURE 5. Einstein

• His development of general relativity, still the best theory of gravitation that we
have.

• His proposal of the light quantum hypothesis, which developed into the theory of
the photon, the first elementary particle to be given a quantum treatment.

• His quantum theory of solids, which provided the basis for explaining the anoma-
lous low-temperature behavior of crystalline solids.

• His explanation of Planck’s law based on the introduction of theA & B coefficients,
which placed the concept of transition probabilities at the center of atomic physics.

• The Einstein-Podolsky-Rosen "paradox," which highlighted the nature of the quan-
tum entanglement of two or more systems.

• His work on Bose-Einstein statistics, leading to his prediction of the existence of
Bose-Einstein condensates, only recently confirmed.

• The Einstein-Infeld-Hoffmann derivation of the equations of motion of massive
bodies from the field equations of general relativity – the list could go on indefi-
nitely.

But from the perspective of 2005, most physicists would probably agree that a list of the
works that did the most to change the domain of physics must include:

• The light quantum hypothesis and quantum theory of solids, which ultimately led
to the fulfillment of Einstein’s early prediction that neither classical mechanics
(including its special-relativistic modifications) nor classical electrodynamics could
survive the onslaught of the quantum of action. Of course the form taken by the
fulfillment– non-relativistic quantum mechanics and (special-)relativistic quantum



field theory– left Einstein quite dissatisfied. This question is discussed in a later
section.

• Special relativity (SR), which led to a realization that all of physics, including the
future theory of elementary particles (and excluding only gravitation), would have
to be reformulated in terms of representations of the Poincaré (or inhomogeneous
Lorentz) group.

• General relativity (GR), which provides a theory of the inertio-gravitational field.
It goes beyond the special theory by turning all space-time structures into dynamic
fields. GR has survived 90 years of theoretical challenges and experimental tests,
both local and astronomical, and forms the basis for current treatments of cosmol-
ogy.

Given this 2005 perspective, perhaps it not excessivehubris to raise the question of
how matters will look from the perspective of 3005. Clearly by then, most of the details
mentioned above will have faded from sight; but I shall propose that Einstein’s work
on space-time structures provides clues suggesting a plausible guess about what will
survive. However, before gazing into the crystal ball of prophecy, we need to look back
at the history of the development of the concept of space-time in physics and discuss
some philosophical controversies about its nature.

HISTORICAL SECTION

It has long been clear that space and time are intimately related in physics. Kinematics,
the description of motion as change of place over time, involves both, as was already
clear to Aristotle:

Evidently time does not exist without a motion or change . . . it must be something
belonging to a motion . . . "motion" in its most general and primary sense is change
of place, which we call "locomotion" . . . time is continuous because a motion is
continuous (Aristotle,Physica, ca. 350 BCE, Book IV).

But the modern concept of a union of space and time in one abstract space, now called
space-time, only developed in the 20th century (some 18th century anticipations are
discussed below). In addition to the development of the various geometries discussed in
the previous section, a number of other developments contributed to our current concept
of space-time and its diagrammatic representation. I shall single out a few other crucial
developments. Underlying the possibility of any further developments was:

0. The ability to create symbolic representations.
1. Representation of spatial intervals, and later other, non-spatial (concrete) magni-

tudes, by lengths (one dimensional diagrams).
2. Representation of (abstract) time intervals by lengths;
3. Combination of one-dimensional representations of spatial and temporal intervals

in a single, two-dimensional diagram;



4. The representation of motion in two- and three-dimensional diagrams and coordi-
natization of two- and three-dimensional Euclidean space using mutually perpen-
dicular axes

5. Recognition that two such coordinatizations are related by a coordinate transfor-
mation representing a rotation (orthogonal transformation).

6. Generalization of the concept of space beyond its use to describe three-dimensional
physical space to higher-dimensional spaces, in particular the concept of time as a
fourth dimension.

7. Formulation of the concept of affine spaces of arbitrary dimension and their use to
formulate the principle of inertia.

8. The four-dimensional generalization of Poincaré’s fourth geometry.
9. Formulation of the concept of Riemannian spaces of variable curvature, both in

the metric sense (geodesics, Gaussian curvature) and in the affine sense (parallel
transport, affine curvature);

I shall briefly indicate, to the best of my knowledge, when each of these concepts was
introduced.

Perhaps the most extraordinary step on the road to the concept of space-time was step
2, the representation of a time interval by a length, which has been called the spatial
representation of time by Henri Bergson (seeDurée et simultanéité, 1922) and the
spatialization of time by Émile Meyerson (seeLa déduction relativiste, 1925). It was
the culmination of several preceding developments.

FIGURE 6. Wounded bison attacking a man – c. 15,000 - 10,000 BC. Bison length: 43 in. (110 cm).
Lascaux, France



FIGURE 7. Cuneiform tablet

0) Underlying the possibility of any further developments is the ability to create
symbolic representations. Until this uniquely human faculty to create pictorial and other
lasting symbolic representations developed, no further progress was possible in the
production of shared abstract concepts. The earliest preserved pictorial representations
are the cave drawings and paintings, which are at most about 40,000 years old. Any cave
art much older than that would have deteriorated beyond recognition, so it is hard to say
just when the human ability to create such representations arose.

The earliest surviving examples include both abstract symbolic and naturalistic repre-
sentational elements. Implicit in such drawings, especially in the naturalistic ones, is the
concept of representation of the spatial dimensions and relations of external objects by
lines in the drawing. This already manifests a considerable power of abstraction.

1A) In some of the abstract drawings, one finds geometrical patterns involving
straight lines. In more naturalistic drawings, one finds representations of straight objects,
such as spears or arrows, by straight lines (Fig. 6).

1B) I shall now jump forty millennia to something at an even higher level of
abstraction: the first representation of a non-length by a length: Jens Høyrup has cited the
earliest preserved instances of such representations from ca. 1800 BCE in clay tablets of
the Mesopotamian scribal school (Fig. 7). Here,

a length is taken to represent something different from itself, viz. an area...[S]ince
other (slightly later) Old Babylonian texts use lengths and widths to represent pure
numbers, prices or complex arithmetical expressions, the step is real, no mere
accident. . . . This is one of the great steps in the history of mathematics, one of the



very greatest, and whoever feels a chill when faced with intellectual progress should
feel it here (seeLengths, Widths, Surfaces/A Portrait of Old Babylonian Algebra and
Its Kin, 2002).

2) Only a millennium-and-a-half later is this method of representation applied to
the concept of time: "The application of the concept of continuum to time and process
does not appear to have taken place before the middle of the fourth century BC"
(Hans-Joachim Waschkies,Von Eudoxos zu Aristoteles/Das Fortwirken der Eudoxischen
Proportionentheorie in der Aristotelischen Lehre vom Kontinuum, 1977).

It was Aristotle who, in his analysis of Zeno’s paradoxes of motion, first represented
a continuous time interval by a length. He utilized geometrical representations of both
spatial and temporal intervals by one-dimensional line segments, placed parallel to one
another, in order to compare the two (Physica, Book VI, Chapter 2). His example was
followed by Archimedes, who employed similar diagrams (On Spirals, Propositions.I &
II, ca. 225 BCE), an interesting case of a mathematician imitating a philosopher.

3A) Neither Aristotle, Archimedes, nor any of their successors for two millen-
nia, combined the representations of temporal and spatial intervals into a single, two-
dimensional diagram. The first to use time as part of a two-dimensional diagram ap-
pears to have been Nicholas Oresme in the mid-fourteenth century. To use somewhat
anachronistic language, he plotted time against velocity, not distance (Tractatus de con-
figurationibus qualitatum et motuum, ca. 1370; Marshall Clagett, ed. & transl.,Nicholas
Oresme and the Medieval Geometry of Qualities and Motions, 1968. For the claim that
Giovanni di Casali preceded Oresme by a few years, see Marshall Clagett,The Science
of Mechanics in the Middle Ages, 1961).

Nicholas Oresme (1321-1382)
“Tractatus de configurationibus”
The ordinate denotes the time, the
abcissa denotes the velocity.

FIGURE 8.

4A) René Descartes used two-dimensional spatial diagrams, with the points of a
curve referred to two orthogonal spatial axes, (La Geométrie, 1637), and when he had
to represent motion in three dimensions, he did so by projecting it onto several two-
dimensional diagrams.

6A) The conjunction of time and space in a two-dimensional diagram took another
half-century. However, Descartes did give a definition ofdimensionthat justifies the
spatial representation ofanyquantifiable property of a system:



By dimension, we understand nothing but the mode and reason, according to
which some subject is considered to be measurable; so that not only length, breadth
and depth are dimensions of a body, but in addition its gravity [i.e., weight] is a
dimension, in accord with which subjects are weighed, its velocity is the dimension
of motion, and an infinity of others of this type (Regulae ad directionem ingenii
[Rules for the direction of the understanding], written between 1619-1628, first
published in Dutch translation in 1684).

That for Descartes, time constitutes one such dimension is clear from the succeeding
discussion.

Pierre Varignon (1654-1722)
actually plotted position, time
and velocity on the same dia-
gram.

FIGURE 9.

3B) The first two-dimensional graphic representation of a one-dimensional motion,
plotting distance and time as orthogonal coordinates, was done by Pierre Varignon near
the turn of the 18th century (Règle générale pour toutes sortes de mouvements de vitesse
quelconques variées à discrétion, 1698). Varignon actually plotted position, time, and
velocity on the same diagram. Indeed, he first defined the concept of instantaneous
velocity, and so may be said to have introduced extended configuration space as well.
He saw the conceptual problem raised by this work:

Space and time being heterogeneous magnitudes, it is not properly they that are
compared with each other in the relation called speed, but only the homogeneous
magnitudes that express them; which here are, and will always be in what follows,
either two lines, or two numbers, or two of any other homogeneous magnitudes
that one wishes (Des mouvements variés à volonté, comparés entre eux et avec les
uniformes, 1707).

About fifty years later, this problem was discussed in more detail by Jean le Rond
d’Alembert:



Descartes d’Alembert Euler Lagrange

FIGURE 10.

One cannot compare with each other two things of a different nature, such as space
and time; but one can compare the relation of portions of time with that of the
portions of the space traversed. By its nature, time flows uniformly and mechanics
assumes this uniformity. In addition, without knowing time in itself and without
having a precise measure of it, we cannot represent the relation of its parts more
clearly that by that of portions of an indefinite straight line. Now, the analogy that
exists between the parts of such a line and that of the space traversed by a body
that moves in any sort of way, can always be expressed by an equation: one may
thus imagine a curve, theabcissaeof which represent the portions of time that
have elapsed since the start of the motion, the corresponding ordinates representing
the spaces traversed during these portions of time: the equation of this curve will
express, not the relation of the times to the spaces, but, if one may so put it, the
relation of the relation that the parts of time have to their unit, to that [relation] that
the parts of space have to their unit (D’Alembert,Traité de Dynamique, 1743).

4B) Leonhard Euler appears to have been the first to use three-dimensional diagrams
to represent motions, and to resolve forces and motions into their components along
three mutually perpendicular axes (Recherches sur le mouvement des corps célestes en
général, 1749;Découverte d’un nouveau principe de mécanique,1750)

5) Euler also realized that these three orthogonal axes could be chosen in many
ways, each related to the other by a rigid rotation; and worked out the transformation
between the two sets of Cartesian coordinates of a point (see, e.g.,Recherches sur la
connoissance mécanique des corps, 1758)

6B) D’Alembert was the first to discuss the concept of time as a fourth dimension:

Above I said that it is not possible to conceive of more than threedimensions.
A clever man of my acquaintance [d’Alembert himself?] believes that nevertheless
one may regard duration as a fourthdimension, & that the product of time multiplied
by solidity would be in some way a product of fourdimensions. ("Dimension" in the
Encylopédie, vol. 4, 1754)

Half a century later, Lagrange was less hesitant, affirming that:

One may regard mechanics as a four-dimensional geometry, and mechanical analysis
[i.e., analytical mechanics] as an extension of geometrical analysis (Théorie des
fonctions analytiques, 1797)



6C) Euler used six coordinates to treat the six degrees of freedom of a rigid body
–three for translation, three for rotation (Theoria motus corporum solidorum seu rigi-
dorum[Theory of the motions of solid or rigid bodies], 1765). Lagrange introduced the
idea of treating all the degrees of freedom of a mechanical system, however many, as
abstract dimensions (Mécanique analytique, 1788). But he prided himself on having no
diagrams in his book.

Diagrams involving such quantities as pressure and volume were introduced in the nine-
teenth century. As so often in thermodynamics, the idea was adapted from engineering
practice: James Watt and John Southern used indicator diagrams to calculate the work
done by a steam engine. Originally regarded as a trade secret, such diagrams were not
published until 1822. Émile Clapeyron used such a diagram to represent the Carnot cycle
(Mémoire sur la puissance motrice de la chaleur, 1834) and the idea passed into general
usage in thermodynamics.

Mathematicians and physicists thus became accustomed to Descartes’ idea (see 6A
above) that any magnitude may be treated as a dimension, and any number of such
magnitudes represented by an abstract space of higher dimension.

7) Hermann Grassmann abstracted the concept of parallelism from its metrical
associations in Euclidean geometry and developed the concept of an affine geometry,
and applied it to any number of dimensions (Die lineale Ausdehnungslehre, 1844, 2nd
ed. 1878). He applied this concept to a number of problems in mechanics; but only much
later was it realized that a four-dimensional affine space is the proper geometric setting
for the law of inertia (Hermann Weyl,Raum-Zeit-Materie, 1918).

8) In 1905, Poincaré introduced the concept of a four-dimensional representation
of the Lorentz transformations (Sur la dynamique de l’électron), quite independently of
his earlier work in 1887 (see the opening section). In 1907, Hermann Minkowski real-
ized that such a four-dimensional unification of space and time is particularly suited to
the visualization of the Lorentz transformations (Das Relativitätsprinzip). He adapted a
four-dimensional coordinate system similar to Poincaré’s, and carried its geometrical in-
terpretation further. He introduced the termspace-timeand (rather pretentiously) named
special-relativistic space-time "die Welt" [ the universeor world], leading to such terms
as world point, world line and world tube. Like Poincaré, he represented the temporal co-
ordinate by an imaginary number, so that Lorentz transformations could be interpreted
geometrically as rotations in a four-dimensional (but complex) Euclidean space. It is
more common now to use a real time coordinate and pseudo-rotations in a real but non-
Euclidean space-time.

9) Riemann generalized Gauss’ theory of surfaces of variable curvature to spaces
of any number of dimensions that are locally flat (Euclidean) but globally non-flat, i.e.
having a curvature that varies from point to point. What does curvature mean here?
Riemann defined a fourth rank tensor, now called the Riemann curvature tensor, as
a generalization of the Gaussian curvature (Habilitationsschrift, 1854, posthumously
published in 1868).

The concept of parallel transport in such a Riemannian space was not introduced until
1916 by Tullio Levi-Civita (Nozione di parallelismo in una varietà qualunque e con-



sequente specificazione geometrica della curvatura Riemanniana, 1917), in response
to the formulation of general relativity. Hermann Weyl (Reine Infinitesimalgeometrie,
1918) soon generalized his work by defining the concept of a non-flat affine geometry.
Locally it is an affine-flat space, but globally non-flat in a new sense: In such a space,
parallel transport of a vector around a closed curve results in a different vector, the affine
curvature tensor being a measure of the difference This concept led to a deeper under-
standing of the relation between affine connection and inertio-gravitational field in both
Newtonian and general relativity theory (see below).

Space-Time Structures

Before turning to S-R space-time, I shall discuss the concept of Galilei-Newtonian (G-
N) space-time, the space-time associated with the Galileian law of inertia and Newtonian
dynamics. Logically it comes before SR space-time, although in actuality its four-
dimensional version was only developed afterwards. One reason for this is that the
mathematical structure of G-N space-time crucially involves the concept of an affine
space (see above).

There are two distinct types of space-time structure inherent in both G-N and S-R space-
time:

1) Thechrono-geometrical structure, which determines the behavior of (ideal) mea-
suring rods (geometry) and clocks (chronometry); and

2) The inertial structure, which governs the behavior of free particles (i.e., particles
subject to no external forces);

3) there are alsocompatibility conditionsbetween the two.

The S-R inertial structure (and later the inertio-gravitational structure in GR) is rep-
resented mathematically by an affine connection. This connection is usually derived
from the chronogeometry, which is represented mathematically by a pseudo-metric, and
treated as secondary if mentioned at all. But I shall emphasize the connection for two
reasons:

1) Much recent progress in GR has come from emphasis on its primary role in the
most fruitful formulations of the theory in preparation for canonical quantization;

2) It illuminates the connection (pun intended) as well as the contrast between GR and
Yang-Mills gauge theories.

Geometry

In both G-N and S-R space-times, the geometry of the relative space of each inertial
frame is Euclidean; it can be measured with (ideal) measuring rods at rest in that frame,
for example. The distance along any spatial path depends on the path taken, and the



shortest distance(geodesic) is along thestraightest path. Mathematically an inertial
frame is represented by afibration of space-time; that is, a family of parallel time-
like straight lines that fills the space-time, each line of which transvects the space-like
hyperplanes of simultaneity (see below).

G-N Chronometry and Chrono-Geometry

In G-N kinematics, the chronometry is independent of the geometry: The time isab-
soluteanduniversal, and space-time divides naturally into events that aresimultaneous
(i.e., occur at the same absolute time). Mathematically, the absolute time is represented
by afoliation of space-time; that is, a family of parallel space-like hyper-planes of equal
global time. A four-dimensional G-Nchrono-geometricstructure can be defined, which
splits naturally into a unique chronometry (unique foliation) – time is absolute – and
a three-parameter family of relative geometries (three-parameter family of fibrations) –
space is relative to the choice of inertial frame.

S-R Chrono-Geometry

In contrast, S-R space and time are united in one absolute chrono-geometrical structure,
represented mathematically by a flat four-dimensional pseudo-metric ("pseudo" because
it has a non-definite signature, usually called Lorentzian), often called the Minkowski
metric. This results in the existence at each point of space-time of a double null cone
(consisting of a forward and backward cone) of events that have a null (i.e., zero) sep-
aration from the event in question. Anull separationbetween two events is interpreted
as the possibility of connecting them by a light signal (or any zero-rest mass particle);
which way the signal can pass depends on which event is in the forward light cone of
the other.

S-R Chronometry

Both geometryandchronometryare nowrelative. This results in a big difference be-
tween the two chronometries:

In G-N chronometry, as noted above, the absolute time along any path between two non-
simultaneous events is independent of the path. All (ideal) clocks measure this absolute,
universal time.

In S-R chronometry, the time along a path between any two events with a time-like
separation (i.e., each one is within the forward or backward light cone of the other),
usually called theproper time, depends on the time-like pathtaken between them. In this
respect, S-R time is more like space, but there is still a big difference: Thelongest time



FIGURE 11. Minkowski space in 4 dimensions

intervalbetween two events is along thestraightest pathbetween them (this observation
is the essence of the "twin paradox").

Inertial Structure

The use of the termsstraightestandparallel actually encroaches upon the domain of the
second type of space-time structure: theinertial structure, which determines the motion
of freely-falling(i.e., net force-free) structureless bodies ("particles").

In both G-N and S-R space-times, such particles follow the time-like straightest inertial
paths of space-time – straight lines for the flat space-times of both classical and special-
relativistic physics, with the affine parameter coinciding with the absolute time in the
first case, and with the proper time in the second. This is the mathematical expression
of the law of inertia, common to both G-N and S-R space-times because it depends only
on their common affine structure.

Affine Spaces

We shall only be concerned with torsion-free affine spaces.

Mathematically, to define the inertial structure, all we need is the concept of an affine
space, for which parallelism and the ratio of parallel intervals are meaningful concepts.
The affine structure defines the concept of parallelism for two vectors at neighboring



points of space-time. In an affine space, a curve isstraight in the sense that its tangent
vector always remains parallel to itself as it is parallel-transported along the curve.

Affine space: Parallel intervals Ratio of parallel vectors

FIGURE 12.

Compatibility Conditions

The two space-time structures – chrono-geometry and inertial structure – arecompatible
with each other. Mathematically this compatibility is expressed by the vanishing of
the covariant derivative of the chrono-geometry. This has a number of kinematical
consequences. For example:

1) Theextremal paths(geodesics) as defined by the pseudo-metric (shortest paths for
space-like curves, longest paths for time-like curves), coincide with thestraightest
paths, as defined by the inertial structure.

2) Freely falling rods and clocks, as defined by parallel transport with the inertial
structure, continue to measureproper space and time intervalsrespectively, as
defined by the chrono-geometry.

The Relativity Principle

Unless the relativity principle is taken into account, the combination of spatial and
temporal dimensions in a single diagram shares a feature with the combination of such
heterogeneous dimensions as pressure, volume and temperature in diagrams used to
picture thermodynamic relations: While the three spatial coordinates in a given frame of
reference (e.g. an inertial frame) can be mixed among themselves by rigid rotations (as
noted above, a technique introduced in rigid body dynamics by Euler), the spatial and
temporal coordinates of that frame can no more be mixed than canp, V andT.



Galilean Relativity

It follows from the laws of Newtonian mechanics, that nomechanicalexperiment can
distinguish between any two inertial frames of reference. As long as it was believed
that all physical phenomena could ultimately be reduced to mechanical interactions (the
mechanical world view), this restriction seemed harmless.

Once thisGalilean relativity principleis taken into account, the situation changes: Now,
the Galilei transformations, which relate the Cartesian coordinates of an event with
respect to two inertial frames of reference in relative motion with relative velocityV,
allow us to mix spatial and temporal coordinates:

r ′ = r −Vt,

wherer ′, r are the Cartesian coordinate vectors relative to the origins of the respective
inertial frames, andt is the absolute time (assuming the origins to coincide at timet = 0).
Of course in classical (G-N) kinematics, time is absolute, and to emphasize this we must
add

t ′ = t

to our transformation equations. Again one sees that space is relative to choice of an
inertial frame of reference, but time remains universal and absolute.

Relativity Principle and Optics

With the rise of the wave theory of light and then Maxwell’s explanation of light as a type
of electromagnetic wave, the mechanical world view seemed to demand introduction of
a mechanical medium-the ether- in which such waves would propagate. All attempts
to detect the motion of the earth through the ether by optical or other electromagnetic
phenomena failed.

The relativity principle seemed to apply to all these phenomena independently of the
hypothetical ether. In 1874, Eleuthère Elie Nicolas Mascart formulated what we might
call the Optical Principle of relativity, based on experimental tests of order (v/c), where
v is the presumed velocity of the earth through the ether:

No optical experiment can detect the motion of the earth through the ether. The
earth’s translational motion does not have a measurable influence on optical phe-
nomena produced by a terrestrial source . . . [T]hese phenomena do not provide us
with a way to determine the absolute motion of a body and . . . relative motions are
the only ones that we are able to determine. (Modifications qu’éprouve la lumière
par suite du mouvement de la source lumineuse et mouvement de l’observateur
(deuxième partie), 1874).

Yet optical and later electromagnetic theory predicted the existence of such effects.



To explain this apparent paradox, Hendrik Antoon Lorentz and then Poincaré introduced
the concept of local time and the length-contraction hypothesis, which they interpreted
as dynamical "compensations" for the expected effects of motion through the ether.
They introduced what Poincaré named the Lorentz transformations from the unprimed
coordinates in the ether frame to the primed coordinates in the moving frame:

r ′ = γ(r −Vt)+(1− γ)[r − (V.r)V/V2]
t ′ = γ[t − (V.r)/c2],

whereγ = [1− (V/c)2]1/2.

Neither Lorentz nor Poincaré realized the fundamental kinematical significance of these
transformations; they interpreted them within the framework of N-G kinematics and
the ether theory: Due to their motion through the ether, clocksreally slow down and
rigid rodsreally contract. There is a distinction between the "apparent," primed space
and time coordinates of an event, as measured in a moving frame of reference by the
slowed-down clocks and contracted measuring rods, and the "true," unprimed spatial
and temporal coordinates as defined by clocks and rods at rest in the ether.

FIGURE 13. “On the Electrodynamics of Moving Bodies”



Special Relativity

It was Albert Einstein (Zur Elektrodynamik bewegter Körper, 1905) who first realized
the need to replace such ideas, based on classical kinematics, with a new kinematics
based on four key ideas:

• 1. Omit all reference to the hypothetical ether frame;
• 2. Take the failure of all attempts to detect absolute motion at face value, and

postulate the relativity principle (all inertial frame of reference are equivalent) for
all physical phenomena;

• 3. Add the well-tested postulate that the speed of light is independent of that of its
source;

• 4. Combining 1, 2 and 3, one can derive the Lorentz transformations between
any two inertial frames of reference. Interpret the measured spatial and temporal
coordinates occurring in them as the "true" spatial and temporal coordinates of
each inertial frame of reference; these transformations then form a group that does
not single out any inertial frame.

The derivation of the Lorentz transformations requires that simultaneity of distant events
bedefinedwith respect to each inertial frame of reference in such a way as to make the
speed of light the same in every inertial frame and independent of position and direction
in that frame. It is important to realize that, if the concept of distant simultaneity is to
be introduced at all, some definition always is needed. No physical result can depend
on this definition; and it is even possible to dispense with such a definition. Bondi’s K-
calculus, for example, can treat the special theory without introducing such a definition
(see, e.g., Hermann Bondi,Relativity and Common Sense, 1964).

In 1905 Einstein formulated his insights largely in ignorance of the most recent results
of Lorentz and Poincaré, and treated space and time separately, rather than combined
into space-time. But, since Einstein’s new kinematics mixed both spatialand temporal
coordinates in the transformation from one frame to another, the adoption of the space-
time viewpoint, once suggested, was irresistible.

Global vs. Local Time: Newtonian Identity

The Newtonian absolute time is bothglobalandlocal. It is:

Global, because it can be used for defining distant simultaneity in each inertial
frame, and even universal, because this definition will give the same result for two
events, no matter in which inertial frame the definition is used.
Local, because it provides the readings of any good clock along its world line, and
absolute because the time difference read between any two events will be the same
for all world lines.



Global vs. Local Time: Special-Relativistic Splitting

In SR, the global and local concepts of time, which coincide in Newtonian kinematics,
split apart:

Global Time: No matters of fact can depend on the definition of global time (see
above); but various definitions may be useful in different contexts. For example, the
retarded time along the light cones emanating from some world line (as utilized in
the K-calculus) will give the same global time for all world lines passing through
any one event, but different global times for the same event as defined by different
but parallel world lines. Since it depends only on a single world line, this definition
may be extended to general relativity.

The Poincaré-Einstein convention is the most useful for an inertial frame of ref-
erence. It leads to different global times for the same event as defined in different
inertial frames; but all world lines in the same inertial frame define the same global
time for any event. Since it depends on distant parallelism that is independent of
path, it cannot be extended to general relativity.
Local Time: The concept of local time is now the proper time along any time-
like world line. It is absolute(i.e., frame-independent) like the Newtonian time,
but unlike it in beingpath-dependent. As noted above the local time is more like
the spatial distance: a good clock is more like a good pedometer than previously
thought.

The Moral of This Tale

Loose talk about "space" and "time" being "relative" is just that, and often leads to
serious philosophical misinterpretations. To sum up the moral again. In SR:

The global space(fibration of S-T) andglobal time (foliation of S-T) are both
relative, butnothing physically significantdepends on them.
Local space(integral along a space-like path) andlocal time(integral along a time-
like path) are absolute, but both arepath dependent

Curvature

In N-G and S-R space-times, both the chrono-geometrical and the inertial structures are
flat, in the sense that:

Forchronogeometry, there is noGaussian curvature, defined by the pseudo-metric
and associated with any of the two-sections through a point.
For the inertial field, there is noaffine curvatureassociated with the parallel trans-
port of a vector through space-time. Any vector parallel-transported around any
closed curve coincides with itself when it returns to its starting point.



Osculating circle Gaussian curvature
FIGURE 14.

Gaussian Curvature

The curvature of a plane curve at any of its points is the inverse of the radius of the
osculating circle at that point.

At any point of a surface, each plane through that point intersects the surface in a plane
curve. Take the maximum and minimum curvatures of these plane curves as the plane is
varied. Their product is the Gaussian curvature of the surface at that point.
This definition depends on the embedding of the surface in Euclidean three-space. But
Gauss showed that the Gaussian curvature is an intrinsic property of the surface. He
proved that is can be expressed in terms of the metric components in the expression for
the distance between two neighboring points of the surface in Gaussian (curvilinear)
coordinates, the line elementds(Theorema Egregium):

ds2 = g11(dx1)2 +2g12(dx1)(dx2)+g22(dx2)2.

FIGURE 15. Line element



Locally, this line element expresses Euclidean geometry. It is just Pythagoras’ Theorem
expressed in curvilinear coordinates. The Riemann curvature tensor generalizes Gaus-
sian curvature to a space of any number of dimensions.

Parallel transport Affine curvature
FIGURE 16.

Affine Curvature

Given a vector at any point in an affinely-connected space, the connection enables us
to define the vector parallel to it at a neighboring point. By iterating this procedure, we
may parallel transporta vector along any curve: What happens to a vector when it is
transported parallel to itself around a closed curve? If there are any closed curves, for
which the parallel-transported vector does not coincide with the original vector, one says
the space is affinely curved. By taking a set of infinitesimal closed curves, one can define
the components of theaffine curvature tensor.

FIGURE 17. Geodesic deviation



Equation of geodesic deviation

The affine curvature tensor has another application that is especially important for its
physical interpretation. Consider an infinitesimal displacement vector connecting two
neighboring affinely straight lines (i.e., curves such that the tangent vector field along
the curve is parallel transported into itself). The affine curvature tensor is a measure of
how this displacement vector changes as a function of the affine parameter as we proceed
along the two straight lines. If the displacement vector change is accelerated, then the
affine curvature has a non vanishing component related to the direction of the lines and
of the displacement vector.

Physically, an affine straight line corresponds to the path of a freely falling body, and
the equation of geodesic deviation measures whether there is any relative acceleration
between two nearby freely-falling bodies. Mathematically, the amount of such relative
acceleration in various directions is a measure of the components of the affine curvature
tensor; physically, it is a measure of the gravitational tidal forces.

FIGURE 18. Tidal forces

Newtonian Gravitation

Special-relativistic space-time proved sufficient for the analysis of all physical phenom-
ena, for which gravitation may be neglected. But it must be modified to include gravita-
tion, because of:



The Equivalence Principle

Because inertial and gravitational mass are equal, there is no (unique) way to separate
the effects of inertia and gravitation on a "freely-falling" body. Once this is understood,
even at the Newtonian level, gravitation can no longer be treated as an external force
acting on bodies, but must be regarded as a modification of the hitherto fixed inertial
structure of space-time. This structure now becomes dynamical, aninertio-gravitational
field.

While the inertial structures of both GN and SR space-times are associated with a flat
affine connection, the inertio-gravitational field is associated with an affine structure that
is no longer flat. Theaffine curvatureassociated with the Newtonian inertio-gravitational
field describestidal gravitational forces. This curvature obeys field equations that reduce
to the field equations for the Newtonian gravitational "force" in any non-rotating frame
of reference.

Although its symmetry group is enlarged to include all linearly-accelerated frames
(this is the equivalence principle), the classical Newtonian chrono-geometrical struc-
tures are unmodified. The chrono-geometrical and inertio-gravitational structures re-
main compatible: ideal measuring rods and clocks still remain such in the presence of
any inertio-gravitational field. But the compatibility conditions do not uniquely deter-
mine the inertio-gravitational field: Just enough freedom is left to introduce gravitational
fields that reduce to the gradient of the Newtonian potential in non-rotating frames of
reference.

FIGURE 19. Take a ride on the Einstein elevator



General-Relativistic Space-Time

But special-relativistic chrono-geometry is no longer compatible with the dynamical
inertio-gravitational field: The flat Minkowski metric is not compatible with the non-
flat affine structure. To restore compatibility, the chrono-geometry must be modified:
The pseudo-metric must become a non-flat, dynamical field that plays a dual role.
In addition to determining the chrono-geometry, it also serves as the potentials that
uniquely determine the inertio-gravitational field.

While the inertio-gravitational field traditionally was derived from the chrono-geometry,
we favor the modern approach, which treats both as logically independent before the
imposition of the field equations. One set of field equations then relates the inertio-
gravitational field to all other matter and fields (the sources) by equating the contracted
affine curvature tensor of the inertio-gravitational field to the stress-energy tensor of the
sources. The other set of field equations are the compatibility conditions imposing the
unique relation between chrono-geometry and inertio-gravitational field.

To succeed in formulating the special theory, Einstein had to attach physical significance
to the coordinate system. To succeed in formulating general relativity, Einstein had to
learn that coordinates have no inherent physical significance (see discusson below).

PHILOSOPHICAL SECTION

Two Concepts of Space: Absolute vs. Relational

Historically, since (at least) ancient Greek times, there has been a conflict between two
views of the nature of space:

• Theabsoluteconcept: Space is a container, in which matter moves about. This view
was espoused by Demokritos (and the Greek and Roman atomists):

By convention are sweet and bitter, hot and cold, by convention is color; in truth are
atoms and void" (Fr. 589, ca. 430 BCE. G. S. Kirk and J.E. Raven,The Presocratic
Philosophers, 1957)

This is sometimes paraphrased as "Nothing exists but atoms and void. All else is mere
opinion." Aristotle criticized the concept of a void:

The believers in its reality present it to us as if it were some kind of receptacle
or vessel, which may be regarded as full when it contains the bulk of which it is
capable, and empty when it does not (Physica, Book VI).

• The relational concept: Space has no independent existence. It is just a certain set of
positional relations between material entities. There cannot be a vacuum –the world is a
plenum. Aristotle’s doctrine is really a doctrine ofplacerather thanspace.

The physicist must have a knowledge of Place ... because ’motion’ in its most
general and primary sense is change of place, which we call ’locomotion’... the



Demokritos Aristotle Voltaire Newton Leibniz
FIGURE 20.

motions of simple bodies (fire, earth, and so forth) show not only that place is
something but that place has some kind of power [dunamin] (Physica, Book IV).

Aristotelianism triumphed and atomism vanished from the Western philosophical tra-
dition for almost two millennia. With its revival in early modern times and subsequent
adoption by Newton, the conflict between the absolute and relational concepts was re-
newed in the 17th and 18th centuries in the battle between Newtonianism and Cartesian-
ism (the philosophy of Rene Descartes). As Voltaire wittily observed:

A Frenchman who arrives in London, will find philosophy, like everything else,
very much changed there. He had left the world a plenum, and he now finds it a
vacuum (Lettres philosophiques., ca. 1778, “Letter XIV, On Descartes and Sir Isaac
Newton”).

This time it was the absolute, Newtonian conception of space that triumphed in spite of
the cogent arguments of Leibniz and Huygens against it:

In fine, the better to resolve, if possible, every difficulty, he [Newton] proves, and
even by experiments, that it is impossible there should be a plenum; and brings
back the vacuum, which Aristotle and Descartes had banished from the world (ibid.,
"Letter XV, On Attraction").

As Euler emphasized, absolute space seemed to be necessary if one wanted to use
Newtonian dynamics (Réflexions sur l’espace et le temps, 1748).

Absolute versus Relational Concepts of Space and Time

Einstein summarized the situation in these words:

Two concepts of space may be contrasted as follows:
(a) space as positional quality of the world of material objects;
(b) space as container of all material objects.

In case (a), space without a material object is inconceivable. In case (b), a material
object can only be conceived as existing in space; space then appears as a reality
which in a certain sense is superior to the material world. ("Foreword" to Max
Jammer,Concepts of Space, 1954).



Things versus Processes

The old emphasis on space and time favors the concept ofthings, which occupy regions
of space at moments of time, but changing over (absolute) time. The new emphasis on
space-time favors the concept ofprocesses, which occupy regions of space-time, or even
– with the development of the field concept – all of space-time. (Eventsare then defined
as limiting case of processes, occupying vanishingly small regions of space-time.) We
must now discuss the extension of our previous discussion of things in space to processes
in space-time.

Two Concepts of Space-Time: Absolute vs. Relational

Theabsolute: Space-time is an independent container, in which processes take place. In
addition to ponderable matter, such processes now include fields (e.g., the electromag-
netic field) that may fill all space-time.

The relational: Space-time has no independent existence. It is just as certain set of
relations between the elements of processes. There cannot be an empty space-time.

Pre-general Relativistic Situation

In the case of both Galilei-Newtonian and special-relativistic space-times, it was possible
to hold either of these viewpoints although there were serious problems for the relational
viewpoint:

1) The possible existence of regions of space-time that are devoid of all matter and
fields.

2) The fact that the space-time structures remain the same, regardless of all the varying
physical processes that can take place within them.

3) The fact that the space-time structures influence all physical processes (e.g.,
through the law of inertia), but are not influenced by them. This is a general
problem with any fixed, background structures introduced into physics.

Fixed, Background Space-Time Structures

In the case of space-time, we refer to such structures as fixed, background space-time
structures. Thus, we may sum up our previous discussion by saying that both GN and
SR theories are based on fixed, background space-time structures.

Theories with background space-time structures have a kinematics that is logically prior
to and independent of all dynamical physical theories. The slogan is:Kinematics first,



then dynamics!The background space-time is a stage, upon which various dynamical
dramas can be enacted.

Such background space-time structures are essential features of all current quantum
theories:

GN space-time is the stage for the quantum mechanics of non-relativistic quantum
systems.

SR space-time (Minkowski space) is the stage for relativistic quantum field theories as
all thoughtful workers on the subject recognize:

The basic concept[s] of the theory are quantum fields defined on space-time,
not particles. Space-time is assumed to be a four-dimensional real vector space
with given metrical properties and Einstein causality, such that the Poincaré group
(constituted by translations and Lorentz transformations) is implied as a symmetry
group. This space-time structure fixed in advance – called Minkowski space – forms
the register for recording physical events. The predictions of a relativistic quantum
field theory on the outcome of scattering processes are of probabilistic nature, in
this respect similar to those of (non-relativistic) quantum mechanics. However, a
novel feature occurs: in these processes particles can be created and annihilated. The
quantum fields, in terms of which the theory is constructed, are operators that depend
on space-time and act on the space of physical state vectors.(Hans Günther Dosch,
Volkhard F. Müller and Norman Sieroka, "Quantum Field Theory, Its Concepts
Viewed from a Semiotic Perspective", 2004).

In short, both the formalism of quantum field theory and the measurement processes that
test its predictions presuppose the SR (Minkowski) space-time structure.

The General-Relativistic Revolution - The Triumph of Relationalism

As discussed above, in the general theory of relativity, both the inertio- gravitational and
the chrono-geometrical structures are dynamical fields. We speak of such theories, which
are free of any background space-time structures, as background free: In a background-
free theory, with no non-dynamical structures, kinematics and dynamics cannot be
separated. The slogan is:No Kinematics Without Dynamics!!!!

The problems for the relational viewpoint discussed above now disappear:

1) There are no "empty" regions of space-time: Wherever there is space and time
(chrono-geometric structure), there is always (at least) an inertio-gravitational field
(affine structure).

2) The space-time structures are not independent of the processes taking place within
them. Chrono-geometry and inertio-gravitation are dynamical fields, obeying field
equations that couple them to each other and to all other physical processes.

3) Thus, there is now reciprocal interaction between space-time and other processes.
Physical processes do not take placein space-time. Space-time is justan aspect of
the totality of physical processes.



Rosenfeld Bronstein
FIGURE 21.

General relativity more-or-less forces one to adopt the relational viewpoint.

On the basis of the general theory of relativity ... space as opposed to ‘what fills
space’ ... has no separate existence. If we imagine the gravitational field ... to be
removed, there does not remain a space of the type [of the Minkowski space of SR],
but absolutely nothing, not even a ‘topological space’ [i.e., a manifold]... There is no
such thing as an empty space, i.e., a space without field. Space-time does not claim
existence on its own, but only as a structural quality of the field (Einstein,"Relativity
and the Problem of Space," inRelativity: The Special and the General Theory, 1952
edition).

THE PROBLEM OF QUANTUM GRAVITY

The greatest challenge to theoretical physics today is: How to invent a theoretical
structure that encompasses both Quantum Field Theory (background-dependent) and
General Relativity (background-independent)? “That is the Question.”

Quantizing General Relativity

In 1916, Einstein stated that general relativity would require a quantum version for
the same reason that electromagnetism did: A gravitationally bound system would
ultimately radiate away all its energy unless it was quantized.

The earliest attempts to apply the methods of QFT, developed by Heisenberg and Pauli
in the late 1920s, to GR came in the early 1930s, first by Leon Rosenfeld (see John
Stachel, "The Early History of Quantum Gravity," in Bala Iyer and Biplap Bhawal, eds,
Black Holes, Gravitational Radiation and the Universe, 1998, pp. 525-534). The basic
philosophy behind this work was that only technical difficulties (the non-linearity of the
field equations) stand in the way of application of standard methods of QFT to GR, and
the way to begin was by quantizing the linearized approximation to the field equations.



In the 1930s, only one physicist realized that such attempts raised profound conceptual
problems due to the unique features of gravitation as compared to electromagnetism:
Matvei Petrovich Bronstein (see Gennady Gorelik, "First Steps of Quantum Gravity and
the Planck Values,"Studies in the history of general relativity[Einstein Studies, vol. 3],
1992, pp. 364-379). He was the only serious contender with Lev Davidovich Landau
for leadership of Soviet theoretical physics. Both were imprisoned during the Stalinist
purges of the mid-1930s: Landau survived, Bronstein perished.

In formal quantum electrodynamics, which does not take into consideration the
structure of the elementary charge, there is no consideration limiting the increase of
density .... With sufficiently high charge density in the test body, the measurement
of the electrical field may be arbitrarily precise. In nature, there are probably limits
to the density of the electrical charge... but formal quantum electrodynamics does
not take these limits into account .... The quantum theory of gravitation represents a
quite different case: it has to take into account the fact that the gravitational radius
of the test body ... must be less than its linear dimensions ... The elimination of the
logical inconsistencies connected with this requires a radical reconstruction of the
theory, and in particular, the rejection of a Riemannian geometry dealing, as we see
here, with values unobservable in principle, and perhaps also the rejection of our
ordinary concepts of space and time, modifying them by some much deeper and
nonevident concepts.Wer’s nicht glaubt, bezahlt einen Taler["Let him who does
not believe it pay a dollar" – finale of a Grimm fable]. (Bronstein,Quantentheorie
schwacher Gravitationsfelder, 1936)

There is no place here to say more about the history of quantum gravity (for the later
history, see Carlo Rovelli, "Appendix B History" inQuantum Gravity, 2004).

But it is relevant to note that the conflict between those who see only technical problems
in the application of existing techniques of QFT to general relativity and those who
see profound conceptual issues in the reconciliation of quantum theory and general
relativity, which started in the 1930s, continues to this day.

Background-Dependence versus Background-Independence

The first viewpoint is represented today mainly by people from the quantum field theory
community. Their approach is basically to keep a background space-time (of however
many dimensions), and somehow incorporate general relativity into the quantum for-
malism developed using this background structure. Currently, the strongest candidate
put forward by advocates of this approach is string theory, or some variation or exten-
sion of it such as the elusive M-theory.

The second viewpoint is represented today mainly by people from the general relativity
community. Their approach is to try to develop a background-independent formulation
of quantum theory and apply it to general relativity. Currently, the strongest candidate
put forward by advocates of this approach is loop quantum gravity (LQG), or some
extension of it such as spin-foam theory. Without going into any details, I want to



emphasize the importance of the connection in the LQG program. In contrast to previous
approaches to canonical quantization, such as geometrodynamics, which took the metric
as primary, the most important achievements of LQG are based on taking a particular
form of the connection as primary.

Being from this community myself, it is natural that I favor the background-independent
approach, but have a number of critical reservations about how it is currently carried
out (see John Stachel, "Structure, Individuality and Quantum Gravity," Steven French,
Dean Rickles and Juha Saatsi, eds.,The Structural Foundations of Quantum Gravity, to
appear). But, as I shall emphasize, there are people in the string community who also
favor this approach.

A New Formal Principle?

None of the current approaches has been completely successful in solving the basic
problem of quantum gravity: the reconciliation of QFT with GR. In 1905, Einstein faced
a similar situation in his attempts to reconcile Newtonian mechanics with Maxwell’s
electrodynamics. As he said much later:

Gradually I despaired of the possibility of discovering the true laws by means of
constructive efforts based on known facts. The longer and more desperately I tried,
the more I came to the conviction that only the discovery of a universal formal
principle could lead us to assured results (Autobiographical Notes, 1949)

Consideration of a striking common feature of QFT and GR has led me to propose a new
formal principle that might serve as a guide in the further quest for a theory of quantum
gravity, whatever direction(s) it may take.

From General Covariance to Permutation Invariance

What is the significance of the general covariance of the field equations of general rela-
tivity? If general covariance is given an active interpretation (as it should be – coordinate
transformations can never have a direct physical significance), it requires invariance of
the field equations under the diffeomorphism group acting on the underlying differen-
tiable manifoldM of space-time points. But what are diffeomorphisms? A little thought
shows that they are just fancy permutations (automorphisms) of the homogeneous ele-
ments ofM – permutations that are required to be continuous and differentiable because
they act on the elements of a differentiable manifold – but permutations nevertheless.

I said above "the homogeneous elements ofM", and this is an important part of the
meaning of general covariance: the elements ofM are not distinguished from each other
unless and until some solution to the field equations is specified. Einstein’s 1913 hole
argument against general covariance was based on the tacit assumption that, just as in
SR, the points of the space-time manifold could be individuated independently of the
field, and it was only his realization in late 1915 that this assumption was untenable in



a background-independent theory that enabled him to justify his adoption of generally
covariant field equations (see John Stachel, "Einstein’s Search for General Covariance,
1912-1915" inEinstein and the History of General Relativity, 1989, pp. 63-100). Indeed
it is this question of individuation that distinguishes algebra from geometry.

Geometry vs Algebra

A geometryconsists of a set of elements, together with some relations between them,
such that all of the elements are homogeneous under the group of automorphisms
(permutations) that preserves all the relations. In such a case, since the relations are
primary, one may speak of "The things (elements) between the relations"

Example: Euclidean plane geometry, a manifold homeomorphic toR2, together with the
group of translations and rotations acting on the points of the manifold.

An algebraconsists of a set of elements, together with some relations between them,
such that each element is individuated independently of the relations between it and the
other elements. In such a case, since the elements are primary, one may speak of "The
relations between things (elements)."

Example: The plane rotation group, each element of which is characterized by an angle.

A representationof an abstract space (geometry) is calledalgebraicif it characterizes the
space by means of somecoordinatizationof its elements (points). A coordinatization is
a one-one correspondence between the elements of an algebra and those of a geometry.
Since any one coordinatization individuates the otherwise homogeneous elements of
a geometry, the only way to keep them homogeneous is to demand invariance of any
geometrically significant result underall admissible coordinatizations. These concepts
of geometry, and coordinatization are due to Hermann Weyl (seeThe Classical Groups,
1939). This concept of algebra is due to I. R. Shafarevich (seeBasic Notions of Algebra,
1997).

The coordinatization of a differentiable manifold is generally a local operation, since
usually, no one coordinatization can cover the entire manifold. One must carefully dis-
tinguish between coordinate transformations (re-coordinatizations of the differentiable
manifold), which are local, passive mathematical operations, needed to ensure that the
points of the manifold remain homogeneous, and having no physical significance; and
the diffeomorphisms of the manifold, which are global, active point transformations of
great potential physical significance as we shall see.

Background-Independent Theories and Diffeomorphisms

In a background-independent theory, there are no non-dynamical relations to be pre-
served on the set of space-time points; so all possible permutations of the points of
space-time are permissible. If one adds the demand that these permutations be continu-



ous (because space-time is a manifold) and differentiable (because it is a differentiable
manifold), one gets the diffeomorphism group. As noted above, in GR the points of
space-time have no inherent properties that individuate them. GR is a background inde-
pendent theory, or in my terminology a "things-between relations" theory.

The Principle of Maximal Permutability

FIGURE 22.
S. MacLane

One can thus express the concept of general covariance in GR in
the following form: The theory (GR) shall be invariant under all
possible permutations of the basic entities of the theory (elements
of space-time in GR) in the sense that any model of the theory (so-
lution to the field equations of GR) shall be physically equivalent to
any other model that results from it by such a permutation. In this
form the principle for diffeomorphisms in general relativity can be
bothgeneralizedandabstracted.

Generalization: "Generalization from cases refers to the way in
which several specific prior results may be subsumed under a single
more general theorem" (Saunders MacLane,Mathematics, Form
and Function, 1986).

One can generalize the principle of diffeomorphism invariance from the pseudo-metric
tensors and affine connections of general relativity to arbitrary geometric object fields,
also called natural objects (see John Stachel and Mihaela Iftime,Fibered Manifolds,
Natural Bundles, Structured Sets, G-Sets and All That: The Hole Story From Space Time
to Elementary Particles, 2005;The Hole Argument for Covariant Theories, 2005)

Abstraction: "Abstraction by deletion ... One carefully omits parts of the data describing
the mathematical concepts ... to obtain the more abstract concept" (Saunders MacLane,
ibid.).

By dropping the assumptions of differentiability, one can extend the principle from
theories based on differentiable manifolds to those based ontopological manifolds; and
by dropping the assumption of continuity the principle can be extended to theories based
onsets of discrete elements.

Even if the concepts of space, time and space-time have to be greatly modified; or
are themselves explained in terms of some more fundamental entities in some future
theoretical advance, it is hard to believe that one would retreat from the relational to
the absolute point of view concerning the fundamental entities, whatever their nature.
This suggests adoption of the principle ofmaximal permutability of the fundamental
constituentsas a "universal formal principle" in Einstein’s sense as a heuristic guide in
the search for a theory of quantum gravity – and even beyond.



Elementary Particles, Field Quanta

The heuristic force of this principle is reinforced by the observation that, like the points
of space-time, the particles of non-relativistic QM and the field quanta of special-
relativistic QFT also lack inherent individuality and hence obey the principle. They
are only individuated (to the extent that they are) by some process (Feynman’s word)
or phenomenon (Bohr’s word), in which they are involved. In any quantum system in
non-relativistic QM, both the bosons and the fermions of any species can be arbitrarily
permuted among themselves without changing the probability amplitude for any pro-
cess; so, like the points of space-time, they are also "things between relations". And in
QFT, the field quanta in any Fock space state are also completely indistinguishable.

A Background-Independent String Theory?

As currently constituted, string theory is based on a fixed, background space time struc-
ture on a manifold of some number of dimensions higher than four. Regardless of the
details of particular models, it is clear that the principle of maximal permutability is
violated: Only diffeomorphisms that are symmetries of the fixed, background structure
(usually a flat pseudo-metric) are permissible permutations of the elements of the mani-
fold.

FIGURE 23. B. Greene

Many string theorists are aware of this problem.
Brian Greene recently presented an appealing vision
of how a background-free string theory might look,
but he emphasized how far string theorists still are
from realizing this vision (The Fabric of the Cosmos
– Space, Time, and the Texture of Reality, 2004):

Since we speak of the "fabric" of spacetime,
maybe spacetime is stitched out of strings much
as a shirt is stitched out of thread. That is, much

as joining numerous threads together in an appropriate pattern produces a shirt’s
fabric, maybe joining numerous strings together in an appropriate pattern produces
what we commonly call spacetime’s fabric. Matter, like you and me, would then
amount to additional agglomerations of vibrating strings – like sonorous music
played over a muted din, or an elaborate pattern embroidered on a plain piece of
material – moving within the context stitched together by the strings of spacetime.
... [A]s yet no one has turned these words into a precise mathematical statement. As
far as I can tell, the obstacles to doing so are far from trifling. .... [T]o make sense
of this proposal, we would need a framework for describing strings that does not
assume from the get-go that they are vibrating in a preexisting spacetime. We would
need a fully spaceless and timeless formulation of string theory, in which spacetime
emerges from the collective behavior of strings... Many researchers consider the
development of a background-independent formulation to be the single greatest
unsolved problem facing string theory.



Einstein’s Greatest Contribution?

For reasons discussed above, I have been led to conjecture that, whatever form a future
fundamental physical theory (such as some version of quantum gravity, or something
even farther from our current conceptual framework) may take, there will be no absolute
elements in it. Rather, its basic entities – whatever their nature – will be embedded
in some discrete or continuous relational structure: The result will be a completely
background-independent physics.

If I am proved right, then a millennium from now (assuming humanity still exists and
has not relapsed into barbarism) then Einstein’s greatest contribution to physics will be
regarded as the development of the first, prototype background-independent physical
theory!

As I indicated earlier, it is always dangerous to try to predict the future; still, I can
draw wry comfort from the fact that – right or wrong – I shall not be around when my
prophecy is finally tested. But I hope some of you may.
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