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Origins

* Hilbert 1928: Find an automatic computational procedure
to determine 1f S 1s a theorem.

* Mathematical logic begets computability

* Turing 1936:
What does automatically computable mean?

e Church: Lambda Calculus.

* Godel: (Primitive) Recursive Functions.




Mystery Of The Little Engine That
Could

How can one build a machine performing 10°
different operations per second?

The 1nstruction cycle
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Program memory

Instruction cycle:
 Read memory cell
 Change state

* Read instruction
 Change state

* Write memory cell
repeat

Y
Data / computation memory

Turing — Church thesis:

f:N—-> N computable
=

3 TM computing f.

Elgot Robinson ~1960:
Address register TMs
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Basic features of TMs

1. Memory tape / Alphabet

2. Finite / small control (# of states <100 suffice)
3. Instruction Cycle

4. Stored program device

5. Universal computing machine: one machine
programmable to compute every computable function



Kolmogorov Complexity and Proofs of
Godel’s First and Second
Incompleteness Theorems (Chaitin 1971
Kritchman, Raz 2010)

String x =011011100...10 Length(x) = n
TM fixed Universal Turing Machine

K(x) = length of shortest program P written in 0,1
such that TM programmed by P prints out x.

By counting: Most strings x of length n have
K(x) = n.



Chaitin’s First Incompleteness
Theorem. No Liar’s Paradox

* Let AX be a rich axiom system, sufficient to
express arithmetic and Godel numbering

* Let M be size of a TM program that recognizes
strings which are formal proofs in AX. We
may assume M = 9,000.

* Theorem. If AX 1s consistent then for no string
X 18 the statement K(x) > 10,000 provable 1n
AX.



Computing =2 New Proof Concepts

* Proof by Randomization
* Non-Transferable Proofs
* |nteractive Proofs



Randomized Proofs of Polynomial Identities

6(X 2 + X2 + X324 X,2)% = (X + %)%+ (X + X3)* + (X, + X3)* + (X, +
Xg)*+ (X, + Xg)H+ (Xg + %)%+ (X - X,)% + (X - X3)* +
(X, - Xa)* + (Xg - X)*+ (X, - X))+ (X3 - X,)*

* Teacher: Prove the above identity!

* Naive Student: Substitute x, =37, x, = 9211, x; =
590, x, = 103. Use Notebook Computer:

7259482876354801 = 7259482876354801
QED
e Student does not understand example is not a proof!

e Grade: F



Randomized Proof Continued

Theorem: Let F be a field. f(t,, ..., t,)
oolynomial of total degree d.

et S subset F, card(S) finite.
ff=0, then
Prif(a,, ..., a,) =0] st/card(S)
where a,, ..., a, <----S
Studentused S=1{1, 2, ..., 10007}
Pr[f(a) =0] < 16 /10007 < 0.0016
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Simplified Computation

Actually, 10007 is prime, so Z mod 10007 is a
field of 10007 elements. Theorem hold for Z
mod p, p prime.

Now clever student computes mod 10007,
gets same probabilistic proof for the identity,
without computing with long integers.

Method applicable to identities as yet not
provable by classical methods. For such
identities, only non-transferable proofs.

Open question.



Back to Mathematical Logic

Language L. & N has solvable decision problem if
f:N-=2>{0,1}, VnEL f(n)=1 and Vn4L f(n)=0 is
Turing/Church/Godel computable/solvable/recursive

Turing: Language HALT (halting problem) is
unsolvable

—> word problem for semi-groups, unsolvable.

Turing/Church: Decision problem for First-order
logic, unsolvable.

Turing/Church/Godel: Decision problem for almost
any axiomatic theory, unsolvable.




From Unsolvability to Complexity

Turing degrees of unsolvability.

Reduction: Let Ry, R, & N be Recursively
enumerable, unsolvable (non-recursive) sets.

R; <R, if 3 g:N->N recursive function s.t.
n € R iff g(n) € R,
deg Ry <deg R, if R, <R, butR, < Ry.

Friedberg, Mucnik 1957: 3 r.e. Ry, R, s.t. deg R; <
deg R2




Degrees of Difficulty of Computing a
Function (R. 1958)

* Responding to a question by John McCarthy
about passwords, R. asked:

— What does 1t mean that computable function
g:N-2>1{0,1} is more difficult to compute than
computable function f:N->{0,1} ?

o Theorem:

For every recursive set Ry & N, 3 recursive set
R, & N s.t. decision problem for R, absolutely
more difficult than decision problem for R .



Complexity of Computations
enables Modern cryptography




Complexity of Theorem Proving

Presburger Arithmatic

* Alphabet0,1,+,=", A, V, 3, V, x,v.,...
* Domain N = {0,1,2,...}

* All true sentences:

VxVy[xty=y+x], VxVy3dz[xtz=y V ytz =
x|, etc.

o Theorem [Presburger, 1929]: PA- The set of all
true first-order sentences about addition of natural
numbers, 1s decidable.




Presburger Arithmatic is Double

Exponentially Hard
Theorem [M. Fischer, R., 1973]

o (>0.1) such that:
for every decision algorithm AL for PA,
dn,=ny,4L)=O(AL|), Vn>n,, IS, |S|=n,
STEPSAL(S) > 22"

Theorem. For every axiomatic theory AX for PA
dn,=ny(4X), Vn>n, 3 true S, |S|=n,
LengthShortestProof(S) > 22"



Beyond Turing Computability

R.S. 1957 : Non-Deterministic computation

Non-Deterministic = Cook, Karp, Levin (1971)
P=NP?

R. 1963, R. 1976, Solovay, Strassen 1977:
Randomized Algorithms

Parallel and Distributed computing
Computation and Communication networks

Quantum Computing (?)



