Turing, Church, Gödel, Computability, Complexity and Logic, a Personal View

Michael O. Rabin Hebrew University, Harvard University

Alan M. Turing Conference – Boston University

Origins

- <u>Hilbert 1928</u>: Find an automatic computational procedure to determine if **S** is a theorem.
- Mathematical logic begets computability
- <u>Turing 1936</u>: What does automatically computable mean?
- <u>Church</u>: Lambda Calculus.
- <u>Gödel</u>: (Primitive) Recursive Functions.

Mystery Of The Little Engine That Could

How can one build a machine performing 10⁹ different operations per second?

The instruction cycle

Instruction cycle:

- Read memory cell
- Change state
- Read instruction
- Change state
- Write memory cell repeat

Turing – Church thesis: f:N→ N computable ⇔ ∃ TM computing f.

Elgot Robinson ~1960: Address register TMs

Instruction cycle:

- Read memory cell
- Change state
- Read instruction
- Change state
- Write memory cell repeat

Turing – Church thesis: f:N→ N computable ⇔ ∃ TM computing f.

Elgot Robinson ~1960: Address register TMs

Instruction cycle:

- Read memory cell
- Change state
- Read instruction
- Change state
- Write memory cell repeat

Turing – Church thesis: f:N→ N computable ⇔ ∃ TM computing f.

Elgot Robinson ~1960: Address register TMs

Basic features of TMs

- 1. Memory tape / Alphabet
- 2. Finite / small control (# of states <100 suffice)
- 3. Instruction Cycle
- 4. Stored program device
- **5.** *Universal* computing machine: one machine programmable to compute every computable function

Kolmogorov Complexity and Proofs of Gödel's First and Second Incompleteness Theorems (Chaitin 1971 Kritchman, Raz 2010)

String x = 011011100...10 Length(x) = n

TM fixed Universal Turing Machine

K(x) = length of shortest program P written in 0,1such that TM programmed by P prints out x. By counting: Most strings x of length n have $K(x) \ge n$. Chaitin's First Incompleteness Theorem. No Liar's Paradox

- Let AX be a rich axiom system, sufficient to express arithmetic and Gödel numbering
- Let M be size of a TM program that recognizes strings which are formal proofs in AX. We may assume M = 9,000.
- *Theorem*. If AX is consistent then for no string x is the statement $K(x) \ge 10,000$ provable in AX.

Computing → New Proof Concepts

- Proof by Randomization
- Non-Transferable Proofs
- Interactive Proofs

Randomized Proofs of Polynomial Identities

$$6(x_1^2 + x_2^2 + x_3^2 + x_4^2)^2 = (x_1 + x_2)^4 + (x_1 + x_3)^4 + (x_2 + x_3)^4 + (x_1 + x_4)^4 + (x_2 + x_4)^4 + (x_3 + x_4)^4 + (x_1 - x_2)^4 + (x_1 - x_3)^4 + (x_2 - x_3)^4 + (x_1 - x_4)^4 + (x_2 - x_4)^4 + (x_3 - x_4)^4$$

- Teacher: Prove the above identity!
- Naïve Student: Substitute x₁ = 37, x₂ = 9211, x₃ = 590, x₄ = 103. Use Notebook Computer: 7259482876354801 = 7259482876354801 QED
- Student does not understand example is not a proof!
- Grade: F

Randomized Proof Continued

- Theorem: Let F be a field. f(t₁, . . ., t_k) polynomial of total degree d.
- Let S subset F, card(S) finite.

If $f \neq 0$, then

Pr[f(a₁, . . ., a_k) = 0] ≤
$$d/card(S)$$

where a₁, . . ., a_k <----- S

- Student used S = {1, 2, . . ., 10007}
- $Pr[f(a) = 0] \le 16 / 10007 < 0.0016$

Randomized Proof Continued

- Theorem: Let F be a field. f(t₁, . . ., t_k) polynomial of total degree d.
- Let S subset F, card(S) finite.

If $f \neq 0$, then

Pr[f(a₁, . . ., a_k) = 0] ≤
$$d/card(S)$$

where a₁, . . ., a_k <----- S

- Student used S = {1, 2, . . ., 10007}
- $Pr[f(a) = 0] \le 16 / 10007 < 0.0016$

Simplified Computation

- Actually, 10007 is prime, so Z mod 10007 is a field of 10007 elements. Theorem hold for Z mod p, p prime.
- Now clever student computes mod 10007, gets same probabilistic proof for the identity, without computing with long integers.
- Method applicable to identities as yet not provable by classical methods. For such identities, only non-transferable proofs.
- Open question.

Back to Mathematical Logic

- Language $L \subseteq N$ has solvable decision problem if $f:N \rightarrow \{0,1\}, \forall n \in L f(n)=1 \text{ and } \forall n \notin L f(n)=0 \text{ is Turing/Church/Gödel computable/solvable/recursive}$
- <u>Turing</u>: Language HALT (halting problem) is unsolvable

 \rightarrow word problem for semi-groups, *unsolvable*.

- <u>Turing/Church</u>: Decision problem for First-order logic, *unsolvable*.
- <u>Turing/Church/Gödel</u>: Decision problem for almost any axiomatic theory, *unsolvable*.

From Unsolvability to Complexity

- Turing degrees of unsolvability.
- <u>Reduction</u>: Let $R_1, R_2 \subseteq N$ be Recursively enumerable, unsolvable (non-recursive) sets.
- $R_1 < R_2$ if $\exists g: N \rightarrow N$ recursive function s.t. $n \in R_1$ iff $g(n) \in R_2$
- deg $R_1 < deg R_2$ if $R_1 < R_2$ but $R_2 < R_1$.
- <u>Friedberg, Mucnik 1957</u>: ∃ r.e. R₁, R₂ s.t. deg R₁ < deg R₂

Degrees of Difficulty of Computing a Function (R. 1958)

- Responding to a question by John McCarthy about passwords, R. asked:
 - What does it mean that computable function g:N \rightarrow {0,1} is more difficult to compute than computable function f:N \rightarrow {0,1}?
- <u>Theorem:</u>

For every recursive set $R_1 \subseteq N$, \exists recursive set $R_2 \subseteq N$ s.t. decision problem for R_2 absolutely more difficult than decision problem for R_1 .

Complexity of Computations enables Modern cryptography

Complexity of Theorem Proving

Presburger Arithmatic

- Alphabet 0, 1, +, =, $\tilde{}$, \land , \lor , \exists , \forall , x, y,...
- Domain N = $\{0, 1, 2, ...\}$
- All true sentences:

 $\forall x \forall y[x+y=y+x], \forall x \forall y \exists z [x+z=y \lor y+z=x], etc.$

• <u>*Theorem*</u> [Presburger, 1929]: **PA**- The set of all true first-order sentences about addition of natural numbers, is *decidable*.

Presburger Arithmatic is Double Exponentially Hard <u>Theorem</u> [M. Fischer, R., 1973] $\exists \alpha (\geq 0.1)$ such that: for every decision algorithm *AL* for **PA**, $\exists n_0 = n_0(AL) = O(|AL|), \forall n > n_0, \exists S, |S|=n,$ <u>STEPSAL(S) $\geq 2^{2^{\alpha n}}$ </u>

Theorem. For every axiomatic theory AX for PA $\exists n_0 = n_0(AX), \forall n > n_0, \exists true S, |S|=n,$ *LengthShortestProof*(S) $\geq 2^{2^{\alpha n}}$

Beyond Turing Computability

- R.S. 1957 : Non-Deterministic computation
- Non-Deterministic → Cook, Karp, Levin (1971)
 P=NP?
- R. 1963, R. 1976, Solovay, Strassen 1977: Randomized Algorithms
- Parallel and Distributed computing
- Computation and Communication networks
- Quantum Computing (?)