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Foundations of the statistical estimation problem

• Observed data: Realizations of random variables with a
probability distribution.

• Statistical model: Set of possible distributions for the
data-generating distribution, defined by actual knowledge
about the data. e.g. in an RCT, we know the probability of
each subject receiving treatment.

• Statistical target parameter: Function of the
data-generating distribution that we wish to learn from the
data.

• Estimator: An a priori-specified algorithm that takes the
observed data and returns an estimate of the target
parameter. Benchmarked by a dissimilarity-measure (e.g.,
MSE) w.r.t target parameter.

• Inference: Establish limit distribution and corresponding
statistical inference.



Causal inference

• Non-testable assumptions in addition to the assumptions
defining the statistical model. (e.g. the “no unmeasured
confounders” assumption).

• Defines causal quantity and establishes identifiability under
these assumptions.

• This process generates interesting statistical target
parameters.

• Allows for causal interpretation of statistical
parameter/estimand.

• Even if we don’t believe the non-testable causal assumptions,
the statistical estimation problem is still the same, and
estimands still have valid statistical interpretations.



Targeted learning

• Define valid (and thus LARGE) statistical semi parametric
models and interesting target parameters.

• Exactly deals with statistical challenges of high dimensional
and large data sets (Big Data).

• Avoid reliance on human art and nonrealistic (e.g.,
parametric) models

• Plug-in estimator based on targeted fit of the (relevant part
of) data-generating distribution to the parameter of interest

• Semiparametric efficient and robust
• Statistical inference
• Has been applied to: static or dynamic treatments, direct and

indirect effects, parameters of MSMs, variable importance
analysis in genomics, longitudinal/repeated measures data
with time-dependent confounding, censoring/missingness,
case-control studies, RCTs, networks.



Targeted Learning Book
Springer Series in Statistics
van der laan & Rose
targetedlearningbook.com



• First Chapter by R.J.C.M. Starmans ”Models, Inference, and
Truth” provides historical philosophical perspective on
Targeted Learning.

• Discusses the erosion of the notion of model and truth
throughout history and the resulting lack of unified approach
in statistics.

• It stresses the importance of a reconciliation between machine
learning and statistical inference, as provided by Targeted
Learning.
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Two stage methodology

• Super learning (SL) van der Laan et al. (2007),Polley et al.
(2012),Polley and van der Laan (2012)

• Uses a library of candidate estimators (e.g. multiple parametric
models, machine learning algorithms like neural networks,
RandomForest, etc.)

• Builds data-adaptive weighted combination of estimators using
cross validation

• Targeted maximum likelihood estimation (TMLE) van der
Laan and Rubin (2006)

• Updates initial estimate, often a Super Learner, to remove bias
for the parameter of interest

• Calculates final parameter from updated fit of the
data-generating distribution



Super learning

• No need to chose a priori a particular parametric model or
machine learning algorithm for a particular problem

• Allows one to combine many data-adaptive estimators into
one improved estimator.

• Grounded by oracle results for loss-function based
cross-validation (Van Der Laan and Dudoit (2003),van der
Vaart et al. (2006)). Loss function needs to be bounded.

• Performs asymptotically as well as best (oracle) weighted
combination, or achieves parametric rate of convergence.



Super learning

Figure: Relative Cross-Validated Mean Squared Error (compared to main
terms least squares regression)



Super learning



TMLE algorithm



TMLE algorithm: Formal Template
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General Longitudinal Data Structure

We observe n i.i.d. copies of a longitudinal data structure

O = (L(0), A(0), . . . , L(K ), A(K ), Y = L(K + 1)),

where A(t) denotes a discrete valued intervention node, L(t) is an
intermediate covariate realized after A(t − 1) and before A(t),
t = 0, . . . , K , and Y is a final outcome of interest.

For example, A(t) = (A1(t), A2(t)) could be a vector of two binary
indicators of censoring and treatment, respectively.



Likelihood and Statistical Model

The probability distribution P0 of O can be factorized according to
the time-ordering as

P0(O) =
K+1∏
t=0

P0(L(t) | Pa(L(t)))
K∏

t=0
P0(A(t) | Pa(A(t)))

≡
K+1∏
t=0

Q0,L(t)(O)
K∏

t=0
g0,A(t)(O)

≡ Q0g0,

where Pa(L(t)) ≡ (L̄(t − 1), Ā(t − 1)) and
Pa(A(t)) ≡ (L̄(t), Ā(t − 1)) denote the parents of L(t) and A(t) in
the time-ordered sequence, respectively. The g0-factor represents
the intervention mechanism: e..g, treatment and right-censoring
mechanism.
Statistical Model: We make no assumptions on Q0, but could
make assumptions on g0.



Statistical Target Parameter: G-computation Formula for
Post-Intervention Distribution

• Let

Pd(l) =
K+1∏
t=0

Qd
L(t)(̄l(t)), (1)

where Qd
L(t)(̄l(t)) = QL(t)(l(t) | l̄(t − 1), Ā(t − 1) = d̄(t − 1)).

• Let Ld = (L(0), Ld(1), . . . , Y d = Ld(K + 1)) denote the
random variable with probability distribution Pd .

• This is the so called G-computation formula for the
post-intervention distribution corresponding with the dynamic
intervention d .



Example: When to switch a failing drug regimen in
HIV-infected patients

• Observed data on unit

O = (L(0), A(0), L(1), A(1), . . . , L(K ), A(K ), A2(K )Y ),

where L(0) is baseline history, A(t) = (A1(t), A2(t)), A1(t) is
indicator of switching drug regimen, A2(t) is indicator of
being right-censored, t = 0, . . . , K , and Y is indicator of
observing death by time K + 1.

• Define interventions nodes A(0), . . . , A(K ) and interventions
dynamic rules dθ that switch when CD4-count drops below θ,
and enforces no-censoring.

• Our target parameter is defined as projection of
(E (Y dθ(t)) : t, d) onto a working model mβ(θ) with
parameter β.



A Sequential Regression G-computation Formula (Bang,
Robins, 2005)

• By the iterative conditional expectation rule (tower rule), we
have

EPd Y d = E . . . E (E (Y d | L̄d(K )) | Ld(K − 1)) . . . | L(0)).

• In addition, the conditional expectation, given L̄d(K ) is
equivalent with conditioning on L̄(K ), Ā(K − 1) = d̄(K − 1).



• In this manner, one can represent EPd Y d as an iterative
conditional expectation, first take conditional expectation,
given L̄d(K ) (equivalent with L̄(K ), Ā(K − 1)), then take the
conditional expectation, given L̄d(K − 1) (equivalent with
L̄(K − 1), Ā(K − 2)), and so on, until the conditional
expectation given L(0), and finally take the mean over L(0).

• We developed a targeted plug-in estimator/TMLE of general
summary measures of ”dose-response” curves (EYd : d ∈ D)
(Petersen et al., 2013, van der Laan, Gruber 2012).



Outline

1 Targeted Learning

2 Two stage methodology: Super Learning+ TMLE

3 Definition of Estimation Problem for Causal Effects of Multiple
Time Point Interventions

4 Variable importance analysis examples of Targeted Learning

5 Scaling up Targeted Learning to handle Big Data

6 Concluding remarks



Variable Importance: Problem Description (Diaz, Hubbard)

• Around 800 patients that entered the emergency room with
severe trauma

• About 80 physiological and clinical variables were measured at
0, 6, 12, 24, 48, and 72 hours after admission

• Objective is predicting the most likely medical outcome of a
patient (e.g., survival), and provide an ordered list of the
covariates that drive this prediction (variable importance).

• This will help doctors decide what variables are relevant at
each time point.

• Variables are subject to missingness
• Variables are continuous, variable importance parameter is

Ψ(P0) ≡ E0{E0(Y | A + δ, W )− E0(Y | A, W )}

for user-given value δ.



Variable Importance: Results
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TMLE with Genomic Data

• 570 case-control samples on spina bifida
• We want to identify associated genes to spina bifida from 115

SNPs.
• In the original paper Shaw et. al. 2009, a univariate analysis

was performed.

• The original analysis missed rs1001761 and rs2853532 in
TYMS gene because they are closely linked with
counteracting effects on spina bifida.

• With TMLE, signals from these two SNPs were recovered.
• In TMEL, Q0 was obtained from LASSO, and g(W ) is

obtained from a simple regression of SNP on its two flanking
markers to account for confounding effects of neighborhood
markers.



TMLE p-values for SNPs
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Targeted Learning of Data Dependent Target Parameters
(vdL, Hubbard, 2013)

• Define algorithms that map data into a target parameter:
ΨPn : M→ IRd , thereby generalizing the notion of target
parameters.

• Develop methods to obtain statistical inference for ΨPn(P0) or
1/V

∑V
v=1 ΨPn,v (P0), where Pn,v is the empirical distribution

of parameter-generating sample corresponding with v -th
sample split. We have developed cross-validated TMLE for
the latter data dependent target parameter, without any
additional conditions.

• In particular, this generalized framework allows us to generate
a subset of target parameters among a massive set of
candidate target parameters, while only having to deal with
multiple testing for the data adaptively selected set of target
parameters.

• Thus, much more powerful than regular multiple testing for a
fixed set of null hypotheses.



Online Targeted MLE: Ongoing work

• Order data if not ordered naturally.
• Partition in subsets numbered from 1 to K .
• Initiate initial estimator and TMLE based on first subset.
• Update initial estimator based on second subset, and update

TMLE based on second subset.
• Iterate till last subset.
• Final estimator is average of all stage specific TMLEs.
• In this manner, for each subset number of calculations is

bounded by number of observations in subset and total
computation time increases linearly in number of subsets.

• One can still prove asymptotic efficiency of this online TMLE.
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Concluding remarks

• Sound foundations of statistics are in place (Data is random
variable, Model, Target Parameter, Inference based on Limit
Distribution), but these have eroded over many decades.

• However, MLE had to be revamped into TMLE to deal with
large models.

• Big Data asks for development of fast TMLE without giving
up on statistical properties: e.g., Online TMLE.

• Big Data asks for research teams that consists of top
statisticians and computer scientists, beyond subject matter
experts.

• Philosophical soundness of proposed methods are hugely
important and should become a norm.
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