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“All models are wrong, 
but some are useful”.

George Box, 1978



• Dynamical: Tracking how things change in time 
• Mechanistic: Having equations or computer rules that explicitly 

describe how things happen

Dynamical mechanistic models

Within dynamical models, two broad classes are distinguished: 
• Deterministic: Assumption that the future is entirely predicted 

(determined) by the model
• Stochastic: Assumption that random (stochastic) events affect 

the biological system, in which case a model can only predict 
the probability of various outcomes in the future



The models we’ll be 
focusing on, formulated 
as Ordinary Differential Equations

Compartmental « Agent-based
Discrete time « Continuous time
Deterministic « Stochastic
Homogeneous « Spatial
Memory-less « With memory
Small « Big
Data-free « With data
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Many types of Dynamical Models exist



Modeling

5Dym and Ivey 1980

The real world         The conceptual world

Observations

Model (analyses)

Predictions

Phenomena



Malthusian growth model (1798)
(a simple exponential growth model)

Thomas	Robert	Malthus	(1766-1834)

discrete-time bacterial growth model

Total	number	of	
bacteria	right	now	

term	describes	how	change	
happens	(the	mechanisms)

deathbirth

Total	number	of	
bacteria	at	the	
next	time	step

time	step
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Dynamical models are very common in biology as they provide insight into how various forces act to change
a cell, an organism, a population, or an assemblage of species. Within dynamical models, two broad classes
are distinguished: deterministic and stochastic. “Deterministic” models are based on the assumption that the
future is entirely predicted (determined) by the model. “Stochastic” models are based on the assumption
that random (stochastic) events a�ect the biological system, in which case a model can only predict the
probability of various outcomes in the future. We will focus on deterministic models.
1. Simple exponential growth model

Historically, the first attempts to describe the biological processes were the population dynamics models.
One of the famous model is Malthusian growth model (1798), sometimes called a simple exponential growth
model. This model is essentially exponential growth based on a constant rate.
Let ‘B’ be, for example, the size of a population of bacteria that can change with time. If we assume that the
rate of growth of the population is proportional to the size of the population, it will give rise to the following
equation:

B
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+ (bB
t
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t

+ gB
t

·
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dt
= gB

where g is the growth rate of the population. The solution to this is

B(t) = B(0)egt

You can verify that this is the solution.
We can plot the population size B(t) as a function of g. Before you look at the plots, think of what you
might expect.
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Discrete-time bacterial growth model

deathbirth
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• Assume b=12/hour, d=2/hour, t=1 hour.
• B at start (t=0) = 100
• What do we get after 1,2,3,4,… hours?

Bacteria, B
gB
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Notice:

1. Populations can change over many orders of magnitude. It is useful to plot populations on a log scale.
2. The relationship between the growth rate g and the dynamics of population growth:

• g = 0 corresponds to a stable population

• g > 0 generates an exponentially increasing population (proliferation)
• g < 0 generates an exponentially declining population (extinction)

2. Growth of human population

Simple exponential growth model can describe the reproduction of bacteria, but in the case of sexual
reproduction the underlying mechanism (and corresponding equation) is di�erent. The sexual reproduction
depends on the interaction of two sexes or genders. The reproduction will be proportional to the number of
interactions between two sexes and, thus, the population growth will be proportional to the B to the power
of two:

dB

dt
= gB2

The solution is:
B(t) = 1

g(T0 ≠ t)
where

T0 = 1
gB(0)

Notice:

1. In the previous model the population increases to infinity as time goes to infinity.
2. In the current model, the productivity rate is itself increasing with time, and the population size

increases to infinity in finite time. The growth curve is displaying “superexponential” growth and has a
vertical asymptote.
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Malthusian growth model 

Introduction to Dynamical models

Veronika Zarnitsyna

6/14

Dynamical models are very common in biology as they provide insight into how various forces act to change
a cell, an organism, a population, or an assemblage of species. Within dynamical models, two broad classes
are distinguished: deterministic and stochastic. “Deterministic” models are based on the assumption that the
future is entirely predicted (determined) by the model. “Stochastic” models are based on the assumption
that random (stochastic) events a�ect the biological system, in which case a model can only predict the
probability of various outcomes in the future. We will focus on deterministic models.

1. Simple exponential growth model

Historically, the first attempts to describe the biological processes were the population dynamics models.
One of the famous model is Malthusian growth model (1798), sometimes called a simple exponential growth
model. This model is essentially exponential growth based on a constant rate.

Let ‘B’ be, for example, the size of a population of bacteria that can change with time. If we assume that the
rate of growth of the population is proportional to the size of the population, it will give rise to the following
equation:

B
t+·

= B
t

+ (bB
t

≠ dB
t

)· = B
t

+ gB
t

·

B
t+·

= B
t

+ gB
t

·

B
t+·

≠ B
t

·
= gB

t

dB

dt
= gB

where g is the growth rate of the population. The solution to this is

B(t) = B(0)egt

You can verify that this is the solution.

We can plot the population size B(t) as a function of g. Before you look at the plots, think of what you
might expect.

1

Introduction to Dynamical models

Veronika Zarnitsyna

6/14

Dynamical models are very common in biology as they provide insight into how various forces act to change
a cell, an organism, a population, or an assemblage of species. Within dynamical models, two broad classes
are distinguished: deterministic and stochastic. “Deterministic” models are based on the assumption that the
future is entirely predicted (determined) by the model. “Stochastic” models are based on the assumption
that random (stochastic) events a�ect the biological system, in which case a model can only predict the
probability of various outcomes in the future. We will focus on deterministic models.

1. Simple exponential growth model

Historically, the first attempts to describe the biological processes were the population dynamics models.
One of the famous model is Malthusian growth model (1798), sometimes called a simple exponential growth
model. This model is essentially exponential growth based on a constant rate.

Let ‘B’ be, for example, the size of a population of bacteria that can change with time. If we assume that the
rate of growth of the population is proportional to the size of the population, it will give rise to the following
equation:

B
t+·

= B
t

+ (bB
t

≠ dB
t

)· = B
t

+ gB
t

·

B
t+·

= B
t

+ gB
t

·

B
t+·

≠ B
t

·
= gB

t

dB

dt
= gB

where g is the growth rate of the population. The solution to this is

B(t) = B(0)egt

You can verify that this is the solution.

We can plot the population size B(t) as a function of g. Before you look at the plots, think of what you
might expect.

1



Hyperbolic growth of the world population
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Solution:

ЛЕКЦИЯ 3 
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тем самооплодотворения (микроорганизмы). Если же в основе 
размножения лежит скрещивание, предполагающее встречи 
между особями разных полов одного и того же вида, то при-
рост будет тем выше, чем больше количество встреч между 
особями, а последнее пропорционально второй степени х. Та-
ким образом, для разнополой популяции в условиях неограни-
ченных ресурсов можно записать  

                                            2.dx rx
dt

=                                       (3.6) 

Решение этого уравнения 

                                      1

0

( )
( )

C
x t

r T t
=

−
                                   (3.7) 

имеет вертикальную асимптоту, то есть обращается в беско-
нечность в определенный момент времени t = T0. Такое пове-
дение системы, когда при приближении к определенному 
моменту времени величина переменной начинает лавинооб-
разно нарастать, называется режимом с обострением [26]. Ко-
нечно, такой рост в ограниченной среде не может соответст-
вовать реальности. С приближением момента обострения 
закон изменения численности с необходимостью меняется. 

Рост человечества 

Пример довольно длительного развития в соответствии 
с формулой (3.6) демонстрирует динамика общей численности 
человечества (рис. 3.7). Впервые обратил внимание на этот 
факт фон Фёрстер [6, 7], который обработал с помощью мето-

да наименьших квадратов данные о населении мира от Рождества Христова 
и получил эмпирическую формулу гиперболической зависимости. С 60-х годов 
ХХ века скорость роста человечества уменьшается — происходит так назы-
ваемый глобальный демографический переход. В древние времена возникнове-
ния и первоначального роста человеческого вида гиперболический закон (3.7) 
также не выполняется. 

В 1960 году в журнале Science Х. фон Ферстер опубликовал статью под назва-
нием «Судный день. Пятница, 13 ноября 2026 года». Именно этот день, по его рас-
четам, соответствует «моменту обострения» для кривой численности народонасе-
ления Земли (рис. 3.7). Качественно гиперболический рост численности населения 
Земли, наблюдавшийся вплоть до 1970-х годов, можно объяснить действием нели-
нейной положительной обратной связи, которая может быть схематически описана 
следующим образом: технологический рост — рост потолка несущей способности 
земли (расширение экологической ниши) — демографический рост — больше лю-
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дей — больше потенциальных изобретателей — ускорение тех-
нологического роста — ускоренный рост несущей способности 
земли — еще более быстрый демографический рост — и так 
далее (Коротаев и др., 2006). 

Закономерности роста человеческой популяции подробно 
обсуждаются в книгах «Общая теория роста человечества» 
С. П. Капицы [24] и «Биофизическая динамика продукцион-
ных процессов» Г. Ю. Ризниченко и А. Б. Рубина [29]. 
 

 
Рис. 3.7. Динамика численности человечества: 1 — население мира 
от 2000 г. д. н. э. до наших дней; 2 — модель гиперболического 
роста; 3 — область демографического перехода; 4 — предполагае-
мая стабилизация численности; 5 — древний мир; 6 — средние века; 
7 — новая история; 8 — новейшая история. N

∞
=12–13 млрд — пре-

дел роста (Biraben, 1979, цит. по Капица, 1999). 

Модели с наименьшей критической численностью 

Уравнение (3.6) хорошо описывает тот факт, что при низких плотностях по-
пуляций скорость размножения резко падает, так как вероятность встречи двух 
особей разных полов уменьшается при понижении плотности популяции пропор-
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ученый и обществен-
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I have tried here to put the emphasis
on those basic properties that are com-
mon to all semiconductors and that
distinguish them from other solids. It
is interesting as well as surprising to
see how the many and various semi-
conducting compounds are all governed
by the same simple chemical and struc-
tural rules. These rules present a chal-
lenge to the theoretician, who has yet
to interpret them in a rigorous way.
They present a challenge also to the
experimentalist because they introduce
him to large families of new and un-
explored semiconducting materials. And
the challenge is all the greater since it
is to be expected that, as our knowledge
of semiconductors and their properties
increases, the chemical and structural
rules will be reflected in at present
largely unknown but much-sought-for
relationships between the chemical com-

position and structure of semiconduc-
tors on the one hand and parameters
such as energy gap and charge-carrier
mobility on the other.
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rate of change of N, the number of
elements in the population, is given by

dN==YoN-Oo N = ao N
dt (1)

Doomsday: Friday,
13 November, A.D. 2026

At this date human population will approach infinity
if it grows as it has grown in the last two millenia.

Heinz von Foerster, Patricia M. Mora, Lawrence W. Amiot

Among the many different aspects
which may be of interest in the study
of biological populations (1) is the one
in which attempts are made to estimate
the past and the future of such a popu-
lation in terms of the number of its
elements, if the behavior of this popula-
tion is observable over a reasonable
period of time.

All such attempts make use of two
fundamental facts concerning an in-
dividual element of a closed biological
population-namely, (i) that each ele-
ment comes into existence by a sexual
or asexual process performed by an-
other element of this population
("birth"), and (ii) that after a finite
time each element will cease to be a
distinguishable member of this popula-
4 NOVEMBER 1960

tion and has to be excluded from the
population count ("death").

Under conditions which come close
to being paradise-that is, no environ-
mental hazards, unlimited food supply,
and no detrimental interaction be-
tween elements-the fate of a biologi-
cal population as a whole is completely
determined at all times by reference to
the two fundamental properties of an
individual element: its fertility and its
mortality. Assume, for simplicity, a fic-
titious population in which all elements
behave identically (equivivant popula-
tion, 2) displaying a fertility of /0 off-
spring per element per unit time and
having a mortality Oo = l/tm, derived
from the life span for an individual ele-
ment of tm units of time. Clearly, the

where ao = yo - Oo may be called the
productivity of the individual element.
Depending upon whether ao : 0, inte-
gration of Eq. 1 gives the well-known
exponential growth or decay of such
a population with a time constant of
l/ao.

In reality, alas, the situation is not
that simple, inasmuch as the two param-
eters describing fertility and mortality
may vary from element to element and,
moreover, fertility may have different
values, depending on the age of a par-
ticular element.
To derive these distribution func-

tions from observations of the behavior
of a population as a whole involves the
use of statistical machinery of consider-
able sophistication (3, 4).

However, so long as the elements
live in our hypothetical paradise, it is
in principle possible, by straightforward
mathematical methods, to extract the
desired distribution functions, and the
fate of the population as a whole, with
all its ups and downs, is again de-
termined by properties exclusively at-
tributable to individual elements. If
one foregoes the opportunity to de-
scribe the behavior of a population in
all its temporal details and is satisfied

The authors are members of the staff of the de-
partment of electrical engineering, University of
Illinois, Urbana.
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Logistic growth model 

3. Assumption of unconstrained growth. Of course, most populations are constrained by limitations on
resources – even in the short run – and none is unconstrained forever.

3. Logistic growth model

Another classical example is the model of logistic growth. In 1838 the Belgian mathematician Verhulst
introduced the logistic equation, which is a kind of generalization of the equation for exponential growth but
with a maximum value for the population. The continuous time logistic growth model can be formulated as:

dB

dt
= gB

3
1 ≠ B

B
max

4

This is a non-linear first order di�erential equation where B
max

is a carrying capacity.

It is easiest to look at its behavior by using a computer to plot B(t) as a function of t for di�erent growth
rates g and initial conditions B(0). How can we compute B(t)? One way is to find the analytical solution,
which is possible in this case.

B(t) = B(0)B
max

egt

B
max

≠ B(0) + B(0)egt

However, in general, it is not possible to find the analytical solution of non-linear di�erential equations, so we
will briefly describe how we can do so using corresponding simulations.

We will use a package ‘deSolve’ to find solutions.

require(deSolve) # loading required package

## Loading required package: deSolve

## Warning: package �deSolve� was built under R version 3.3.2

logistic.model <- function(t, y, parms) {

with(as.list(c(y,parms)),{

dB = g*B*(1-B/Bmax)

dy=c(dB)

return(list(dy))

})

}

# Model parameters

parameters=list(g=2,Bmax=10^5,tmax=10) # time in days

# Initial conditions

Bini=c(B=1)

# Run simulation

time.points = seq(0, parameters$tmax, parameters$tmax/100) # timepoints for output

Bsolution=ode(y=Bini, time=time.points, logistic.model, parms=parameters)

# plot timecourse of infection

# 1st plot with number on y axis

plot(Bsolution[,1],Bsolution[,2], ylim=c(0,2*10^5), log="", type="l", xlab="Time (days)",

3

How could we implement saturating growth?

Bacteria, B

gB(1-B/Bmax)
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3. Assumption of unconstrained growth. Of course, most populations are constrained by limitations on
resources – even in the short run – and none is unconstrained forever.

3. Logistic growth model

Another classical example is the model of logistic growth. In 1838 the Belgian mathematician Verhulst
introduced the logistic equation, which is a kind of generalization of the equation for exponential growth but
with a maximum value for the population. The continuous time logistic growth model can be formulated as:
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This is a non-linear first order di�erential equation where B
max

is a carrying capacity.

It is easiest to look at its behavior by using a computer to plot B(t) as a function of t for di�erent growth
rates g and initial conditions B(0). How can we compute B(t)? One way is to find the analytical solution,
which is possible in this case.

B(t) = B(0)B
max

egt

B
max

≠ B(0) + B(0)egt

However, in general, it is not possible to find the analytical solution of non-linear di�erential equations, so we
will briefly describe how we can do so using corresponding simulations.

We will use a package ‘deSolve’ to find solutions.

require(deSolve) # loading required package

## Loading required package: deSolve

## Warning: package �deSolve� was built under R version 3.3.2

logistic.model <- function(t, y, parms) {

with(as.list(c(y,parms)),{

dB = g*B*(1-B/Bmax)

dy=c(dB)

return(list(dy))

})

}

# Model parameters

parameters=list(g=2,Bmax=10^5,tmax=10) # time in days

# Initial conditions

Bini=c(B=1)

# Run simulation

time.points = seq(0, parameters$tmax, parameters$tmax/100) # timepoints for output

Bsolution=ode(y=Bini, time=time.points, logistic.model, parms=parameters)

# plot timecourse of infection

# 1st plot with number on y axis

plot(Bsolution[,1],Bsolution[,2], ylim=c(0,2*10^5), log="", type="l", xlab="Time (days)",

3

g=2 
Bmax=105

ylab="B", col="red", lwd=2)

# change initial conditions

Bini=c(B=1000)

Bsolution=ode(y=Bini, time=time.points, logistic.model, parms=parameters)

lines(Bsolution[,1],Bsolution[,2], col="red",lty=2,lwd=2)

# change initial conditions

Bini=c(B=7*10^4)

Bsolution=ode(y=Bini, time=time.points, logistic.model, parms=parameters)

lines(Bsolution[,1],Bsolution[,2], col="red",lty=3,lwd=2)

# change initial conditions

Bini=c(B=2*10^5)

Bsolution=ode(y=Bini, time=time.points, logistic.model, parms=parameters)

lines(Bsolution[,1],Bsolution[,2], col="red",lty=4,lwd=2)

abline(h=parameters$Bmax, col="black", untf=TRUE, lty=2, lwd=2)

abline(h=parameters$Bmax/2, col="black", untf=TRUE, lty=2, lwd=1)

legend("topright", c("B(t=0)=1", "B(t=0)=10^2", "B(t=0)=10^4", "B(t=0)=2*10^5"), lty=c(1,2,3,4), col="red")
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Notice: the logistic growth equation has an important feature. If initial value of population B(t = 0) is small,
the size of population B will increase. If initial value of B(t = 0) is large, the size of population B will
approach to the limit B

max

.
We can rescale B as a fraction of the carrying capacity B

max

to get

dB

dt
= gB(1 ≠ B)

require(deSolve) # loading required package

logistic.model2 <- function(t, y, parms) {

with(as.list(c(y,parms)),{

dB = g*B*(1-B)

dy=c(dB)

4

Bmax

Bmax/2

Introduction to Dynamical models

Veronika Zarnitsyna

6/14

Dynamical models are very common in biology as they provide insight into how various forces act to change
a cell, an organism, a population, or an assemblage of species. Within dynamical models, two broad classes
are distinguished: deterministic and stochastic. “Deterministic” models are based on the assumption that the
future is entirely predicted (determined) by the model. “Stochastic” models are based on the assumption
that random (stochastic) events a�ect the biological system, in which case a model can only predict the
probability of various outcomes in the future. We will focus on deterministic models.

1. Simple exponential growth model

Historically, the first attempts to describe the biological processes were the population dynamics models.
One of the famous model is Malthusian growth model (1798), sometimes called a simple exponential growth
model. This model is essentially exponential growth based on a constant rate.

Let ‘B’ be, for example, the size of a population of bacteria that can change with time. If we assume that the
rate of growth of the population is proportional to the size of the population, it will give rise to the following
equation:

B
t+·

= B
t

+ (bB
t

≠ dB
t

)· = B
t

+ gB
t

·

B
t+·

= B
t

+ gB
t

·

B
t+·

≠ B
t

·
= gB

t

1
g

ln(B
max

≠ B(0)
B(0) )

dB

dt
= gB

where g is the growth rate of the population. The solution to this is

B(t) = B(0)egt

You can verify that this is the solution.

We can plot the population size B(t) as a function of g. Before you look at the plots, think of what you
might expect.

1
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3. Assumption of unconstrained growth. Of course, most populations are constrained by limitations on
resources – even in the short run – and none is unconstrained forever.

3. Logistic growth model

Another classical example is the model of logistic growth. In 1838 the Belgian mathematician Verhulst
introduced the logistic equation, which is a kind of generalization of the equation for exponential growth but
with a maximum value for the population. The continuous time logistic growth model can be formulated as:

dB
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= gB
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max
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This is a non-linear first order di�erential equation where B
max

is a carrying capacity.

It is easiest to look at its behavior by using a computer to plot B(t) as a function of t for di�erent growth
rates g and initial conditions B(0). How can we compute B(t)? One way is to find the analytical solution,
which is possible in this case.

B(t) = B(0)B
max

egt

B
max

≠ B(0) + B(0)egt

However, in general, it is not possible to find the analytical solution of non-linear di�erential equations, so we
will briefly describe how we can do so using corresponding simulations.

We will use a package ‘deSolve’ to find solutions.

require(deSolve) # loading required package

## Loading required package: deSolve

## Warning: package �deSolve� was built under R version 3.3.2

logistic.model <- function(t, y, parms) {

with(as.list(c(y,parms)),{

dB = g*B*(1-B/Bmax)

dy=c(dB)

return(list(dy))

})

}

# Model parameters

parameters=list(g=2,Bmax=10^5,tmax=10) # time in days

# Initial conditions

Bini=c(B=1)

# Run simulation

time.points = seq(0, parameters$tmax, parameters$tmax/100) # timepoints for output

Bsolution=ode(y=Bini, time=time.points, logistic.model, parms=parameters)

# plot timecourse of infection

# 1st plot with number on y axis

plot(Bsolution[,1],Bsolution[,2], ylim=c(0,2*10^5), log="", type="l", xlab="Time (days)",

3

rewrite

# Plot with number on y axis

plot(Bsolution[,1],Bsolution[,2], ylim=c(0.0,max(Bsolution[,2],Bsolution[,3])), log="", col="green", lwd=2, type="l", xlab="time (years)",

ylab="number", main="predator-prey model")

lines(Bsolution[,1],Bsolution[,3], col="red", lwd=2)

legend("topright", legend=c("Prey", "Predator"), lty=1, lwd=2, col=c("green", "red") )

plot(Bsolution[,2],Bsolution[,3], type="b", xlab="Prey", ylab="Predator")
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# install.packages(�devtools�)

# library(�devtools�)

# install_github(�ahgroup/DSAIRM�)

# library(�DSAIRM�)

# dsairmmenu()
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# Plot with number on y axis

plot(Bsolution[,1],Bsolution[,2], ylim=c(0.0,max(Bsolution[,2],Bsolution[,3])), log="", col="green", lwd=2, type="l", xlab="time (years)",

ylab="number", main="predator-prey model")

lines(Bsolution[,1],Bsolution[,3], col="red", lwd=2)

legend("topright", legend=c("Prey", "Predator"), lty=1, lwd=2, col=c("green", "red") )

plot(Bsolution[,2],Bsolution[,3], type="b", xlab="Prey", ylab="Predator")
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# install.packages(�devtools�)

# library(�devtools�)
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# library(�DSAIRM�)

# dsairmmenu()
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is a coefficient for intraspecific competition 

Members of the same species compete for limited essential resources, 
for example, for food, space, mates or any other resource which is 
required for survival or reproduction.



Lotka–Volterra equations (predator–prey model) 

# change initial conditions

Bini=c(B=0.1)

Bsolution=ode(y=Bini, time=time.points, logistic.model2, parms=parameters)

lines(Bsolution[,1],Bsolution[,2], col="red",lty=2,lwd=2)

# change initial conditions

Bini=c(B=0.5)

Bsolution=ode(y=Bini, time=time.points, logistic.model2, parms=parameters)

lines(Bsolution[,1],Bsolution[,2], col="red",lty=3,lwd=2)

# change initial conditions

Bini=c(B=2)

Bsolution=ode(y=Bini, time=time.points, logistic.model2, parms=parameters)

lines(Bsolution[,1],Bsolution[,2], col="red",lty=4,lwd=2)

legend("topright", c("B(t=0)=0.001", "B(t=0)=0.1", "B(t=0)=0.5", "B(t=0)=2"), lty=c(1,2,3,4), col="red")
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Notice: the logistic growth equation has an important feature. If initial value of population B(t = 0) is small,
the size of population B will increase. If initial value of B(t = 0) is large, the size of population B will
approach to the limit B

max

.
4. Lotka–Volterra equations, also known as the predator–prey model

Let us consider a simple predator-prey model with B now being the prey and I being the predator.
From Biology to Model.

1. Prey grows exponentially in the absence of the predator
2. Predator finds and eats prey (law of mass action)
3. The rate of increase in the predator population depends on how many prey are consumed.
4. Predators have a fixed death rate

prey dB

dt
= gB ≠ kBI

predator dI

dt
= rBI ≠ d

I

I

5

Alfred	James	Lotka (1880 –1949) Vito	Volterra (1860	–1940)	

# change initial conditions
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Lotka–Volterra equations (predator–prey model) 

# change initial conditions
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Let us consider a simple predator-prey model with B now being the prey and I being the predator.
From Biology to Model.

1. Prey grows exponentially in the absence of the predator
2. Predator finds and eats prey (law of mass action)
3. The rate of increase in the predator population depends on how many prey are consumed.
4. Predators have a fixed death rate

prey dB
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predator dI
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Parameter Description Units
g Represent	the	reproduction	rate	of	the	prey.	The	greater	g	is,	the	more	rapidly	the	prey	

reproduces.
1/time

k Represents	the	death	rate	of	the	prey	due	to	the	presence	of	the	predator.	The	greater	k	is,	
the	greater	the	death	of	the	prey	is	due	to predation	and	the	more	effective	the	predator	is	
killing	the	prey.	

1/time

r Represents the	reproduction	rate	of	the	predator.	The	greater	r	is,	the	more	rapidly	the	
predator	reproduces	and	the	more	effectively	the	prey	is	able	to	nourish	the	predator.

1/time

d Represents the	death	rate	of	the	predator.	 1/time



Lotka–Volterra equations (predator–prey model) 

Steady states

We can look for steady states of the model by setting dB/dt and dI/dt to zero. There are two steady states.
One has no predator or prey (B=I=0) and in the other the numbers or densities of predator and prey are:

Bú = d

r
Iú = g

k

Lets do a thought experiment using the equations of predator–prey model. Consider the use of a pesticide to
control an agricultural pest B which has a natural predator I.

1. Prey = pest, Predator = natural predator of pest

2. E�ect of pesticide on parameters?

• decrease the growth rate of the prey g
• increase the death rate of predator d

I

Consider a reduction in g and an increase in d
I

by a factor f > 1. The new equilibrium density Bú will be f
times as high as the one prior to use of the pesticide and the density of its natural predator a factor f lower.

require(deSolve)

# the equations for the predator-prey model area here

pp.model <- function(t, y, parms) {

with(as.list(c(y,parms)), # allows you to refer to parameters and state variables by name

{

dB = g*B - k*B*I # prey

dI = r*B*I - d*I # predators

dy=c(dB, dI)

return(list(dy))

})

}

#model parameters

parameters=list(g=2,k=0.5,r=0.5/3,d=0.6)

# initial conditions

init.cond=c(B=.1,I=.1)

#Time points to run the simulation

tmax=50

npoints=1000

time.points = seq(0, tmax, tmax/npoints) # timepoints for output

Bsolution=ode(y=init.cond, time=time.points, pp.model, parms=parameters)

par(mfcol=c(1,2))

# Plot with number on y axis

plot(Bsolution[,1],Bsolution[,2], ylim=c(0.0,max(Bsolution[,2],Bsolution[,3])), log="", col="green", lwd=2, type="l", xlab="time (years)",

ylab="number", main="predator-prey model")

lines(Bsolution[,1],Bsolution[,3], col="red", lwd=2)

legend("topright", legend=c("Prey", "Predator"), lty=1, lwd=2, col=c("green", "red") )

plot(Bsolution[,2],Bsolution[,3], type="b", xlab="Prey", ylab="Predator")
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What is the e�ect of changing the initial conditions?

What will be the e�ect of introducing a carrying capacity to prey? How will it change the steady states?

require(deSolve)

# the equations for the predator-prey model area here

pp.model2 <- function(t, y, parms) {

with(as.list(c(y,parms)), # allows you to refer to parameters and state variables by name

{

dB = g*B*(1-B/Bmax) - k*B*I # prey

dI = r*B*I - d*I # predators

dy=c(dB, dI)

return(list(dy))

})

}

#model parameters

parameters=list(g=2,k=0.5,r=0.5/3,d=0.6, Bmax=40)

# initial conditions

init.cond=c(B=.1,I=.1)

#Time points to run the simulation

tmax=50

npoints=1000

time.points = seq(0, tmax, tmax/npoints) # timepoints for output

Bsolution=ode(y=init.cond, time=time.points, pp.model2, parms=parameters)

par(mfcol=c(1,2))

7

Steady state:

What is the effect of changing initial conditions?

# change initial conditions

Bini=c(B=0.1)

Bsolution=ode(y=Bini, time=time.points, logistic.model2, parms=parameters)

lines(Bsolution[,1],Bsolution[,2], col="red",lty=2,lwd=2)

# change initial conditions

Bini=c(B=0.5)

Bsolution=ode(y=Bini, time=time.points, logistic.model2, parms=parameters)

lines(Bsolution[,1],Bsolution[,2], col="red",lty=3,lwd=2)

# change initial conditions

Bini=c(B=2)

Bsolution=ode(y=Bini, time=time.points, logistic.model2, parms=parameters)

lines(Bsolution[,1],Bsolution[,2], col="red",lty=4,lwd=2)

legend("topright", c("B(t=0)=0.001", "B(t=0)=0.1", "B(t=0)=0.5", "B(t=0)=2"), lty=c(1,2,3,4), col="red")
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1.
0
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B

B(t=0)=0.001
B(t=0)=0.1
B(t=0)=0.5
B(t=0)=2

Notice: the logistic growth equation has an important feature. If initial value of population B(t = 0) is small,
the size of population B will increase. If initial value of B(t = 0) is large, the size of population B will
approach to the limit B

max

.
4. Lotka–Volterra equations, also known as the predator–prey model

Let us consider a simple predator-prey model with B now being the prey and I being the predator.
From Biology to Model.

1. Prey grows exponentially in the absence of the predator
2. Predator finds and eats prey (law of mass action)
3. The rate of increase in the predator population depends on how many prey are consumed.
4. Predators have a fixed death rate

prey dB

dt
= gB ≠ kBI

predator dI

dt
= rBI ≠ dI
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Addition of carrying capacity to the prey 
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What is the e�ect of changing the initial conditions?
What will be the e�ect of introducing a carrying capacity to prey? How will it change the steady states?

prey dB

dt
= gB(1 ≠ B

B
max

) ≠ kBI

predator dI

dt
= rBI ≠ dI

require(deSolve)

# the equations for the predator-prey model area here

pp.model2 <- function(t, y, parms) {

with(as.list(c(y,parms)), # allows you to refer to parameters and state variables by name

{

dB = g*B*(1-B/Bmax) - k*B*I # prey

dI = r*B*I - d*I # predators

dy=c(dB, dI)

return(list(dy))

})

}

#model parameters

parameters=list(g=2,k=0.5,r=0.5/3,d=0.6, Bmax=40)

# initial conditions

init.cond=c(B=.1,I=.1)

#Time points to run the simulation

tmax=50

npoints=1000
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What is the e�ect of changing the initial conditions?
What will be the e�ect of introducing a carrying capacity to prey? How will it change the steady states?

prey dB

dt
= gB(1 ≠ B

B
max

) ≠ kBI

predator dI

dt
= rBI ≠ dI

require(deSolve)

# the equations for the predator-prey model area here

pp.model2 <- function(t, y, parms) {

with(as.list(c(y,parms)), # allows you to refer to parameters and state variables by name

{

dB = g*B*(1-B/Bmax) - k*B*I # prey

dI = r*B*I - d*I # predators

dy=c(dB, dI)

return(list(dy))

})

}

#model parameters

parameters=list(g=2,k=0.5,r=0.5/3,d=0.6, Bmax=40)

# initial conditions

init.cond=c(B=.1,I=.1)

#Time points to run the simulation

tmax=50

npoints=1000
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What is the e�ect of changing the initial conditions?
What will be the e�ect of introducing a carrying capacity to prey? How will it change the steady states?

prey dB

dt
= gB(1 ≠ B

B
max

) ≠ kBI

predator dI

dt
= rBI ≠ dI

require(deSolve)

# the equations for the predator-prey model area here

pp.model2 <- function(t, y, parms) {

with(as.list(c(y,parms)), # allows you to refer to parameters and state variables by name

{

dB = g*B*(1-B/Bmax) - k*B*I # prey

dI = r*B*I - d*I # predators

dy=c(dB, dI)

return(list(dy))

})

}

#model parameters

parameters=list(g=2,k=0.5,r=0.5/3,d=0.6, Bmax=40)

# initial conditions

init.cond=c(B=.1,I=.1)

#Time points to run the simulation

tmax=50

npoints=1000

7

time.points = seq(0, tmax, tmax/npoints) # timepoints for output

Bsolution=ode(y=init.cond, time=time.points, pp.model2, parms=parameters)

par(mfcol=c(1,2))

# Plot with number on y axis

plot(Bsolution[,1],Bsolution[,2], ylim=c(0.0,max(Bsolution[,2],Bsolution[,3])), log="", col="green", lwd=2, type="l", xlab="time (years)",

ylab="number", main="predator-prey model modified")

lines(Bsolution[,1],Bsolution[,3], col="red", lwd=2)

legend("topright", legend=c("Prey", "Predator"), lty=1, lwd=2, col=c("green", "red") )

plot(Bsolution[,2],Bsolution[,3], type="b", xlab="Prey", ylab="Predator")
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Lets do a thought experiment using the equations of predator–prey model. Consider the use of a pesticide to
control an agricultural pest B which has a natural predator I.

1. Prey = pest, Predator = natural predator of pest

2. E�ect of pesticide on parameters?

• decrease the growth rate of the prey g
• increase the death rate of predator d

Consider a reduction in g and an increase in d by a factor f > 1. The new equilibrium density Bú will be f
times as high as the one prior to use of the pesticide and the density of its natural predator a factor f lower.

Equations for the presentation slides

B
t+·

= B
t

+ (bB
t

≠ dB
t

)· = B
t

+ gB
t

·

8



Thought experiment
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What is the e�ect of changing the initial conditions?
What will be the e�ect of introducing a carrying capacity to prey? How will it change the steady states?

prey dB

dt
= gB(1 ≠ B

B
max

) ≠ kBI

predator dI

dt
= rBI ≠ dI

require(deSolve)

# the equations for the predator-prey model area here

pp.model2 <- function(t, y, parms) {

with(as.list(c(y,parms)), # allows you to refer to parameters and state variables by name

{

dB = g*B*(1-B/Bmax) - k*B*I # prey

dI = r*B*I - d*I # predators

dy=c(dB, dI)

return(list(dy))

})

}

#model parameters

parameters=list(g=2,k=0.5,r=0.5/3,d=0.6, Bmax=40)

# initial conditions

init.cond=c(B=.1,I=.1)

#Time points to run the simulation

tmax=50

npoints=1000
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What is the e�ect of changing the initial conditions?
What will be the e�ect of introducing a carrying capacity to prey? How will it change the steady states?

prey dB

dt
= gB(1 ≠ B

B
max

) ≠ kBI

predator dI

dt
= rBI ≠ dI

require(deSolve)

# the equations for the predator-prey model area here

pp.model2 <- function(t, y, parms) {

with(as.list(c(y,parms)), # allows you to refer to parameters and state variables by name

{

dB = g*B*(1-B/Bmax) - k*B*I # prey

dI = r*B*I - d*I # predators

dy=c(dB, dI)

return(list(dy))

})

}

#model parameters

parameters=list(g=2,k=0.5,r=0.5/3,d=0.6, Bmax=40)

# initial conditions

init.cond=c(B=.1,I=.1)

#Time points to run the simulation

tmax=50

npoints=1000
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Pest

Predator of pest

What will be the effect of pesticide on parameters?  

• decrease the growth rate of the prey g
• increase the death rate of predator d

Consider a reduction in g and an increase in d by a factor f>1 and run the simulations



Addition immune response to 
bacteria growth model

3. Assumption of unconstrained growth. Of course, most populations are constrained by limitations on
resources – even in the short run – and none is unconstrained forever.

3. Logistic growth model

Another classical example is the model of logistic growth. In 1838 the Belgian mathematician Verhulst
introduced the logistic equation, which is a kind of generalization of the equation for exponential growth but
with a maximum value for the population. The continuous time logistic growth model can be formulated as:

dB

dt
= gB

3
1 ≠ B

B
max

4

This is a non-linear first order di�erential equation where B
max

is a carrying capacity.

It is easiest to look at its behavior by using a computer to plot B(t) as a function of t for di�erent growth
rates g and initial conditions B(0). How can we compute B(t)? One way is to find the analytical solution,
which is possible in this case.

B(t) = B(0)B
max

egt

B
max

≠ B(0) + B(0)egt

However, in general, it is not possible to find the analytical solution of non-linear di�erential equations, so we
will briefly describe how we can do so using corresponding simulations.

We will use a package ‘deSolve’ to find solutions.

require(deSolve) # loading required package

## Loading required package: deSolve

## Warning: package �deSolve� was built under R version 3.3.2

logistic.model <- function(t, y, parms) {

with(as.list(c(y,parms)),{

dB = g*B*(1-B/Bmax)

dy=c(dB)

return(list(dy))

})

}

# Model parameters

parameters=list(g=2,Bmax=10^5,tmax=10) # time in days

# Initial conditions

Bini=c(B=1)

# Run simulation

time.points = seq(0, parameters$tmax, parameters$tmax/100) # timepoints for output

Bsolution=ode(y=Bini, time=time.points, logistic.model, parms=parameters)

# plot timecourse of infection

# 1st plot with number on y axis

plot(Bsolution[,1],Bsolution[,2], ylim=c(0,2*10^5), log="", type="l", xlab="Time (days)",
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What is the e�ect of changing the initial conditions?
What will be the e�ect of introducing a carrying capacity to prey? How will it change the steady states?

prey dB

dt
= gB(1 ≠ B

B
max

) ≠ kBI

predator dI

dt
= rBI ≠ dI

require(deSolve)

# the equations for the predator-prey model area here

pp.model2 <- function(t, y, parms) {

with(as.list(c(y,parms)), # allows you to refer to parameters and state variables by name

{

dB = g*B*(1-B/Bmax) - k*B*I # prey

dI = r*B*I - d*I # predators

dy=c(dB, dI)

return(list(dy))

})

}

#model parameters

parameters=list(g=2,k=0.5,r=0.5/3,d=0.6, Bmax=40)

# initial conditions

init.cond=c(B=.1,I=.1)

#Time points to run the simulation

tmax=50

npoints=1000
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What is the e�ect of changing the initial conditions?
What will be the e�ect of introducing a carrying capacity to prey? How will it change the steady states?

prey dB

dt
= gB(1 ≠ B

B
max

) ≠ kBI

predator dI

dt
= rBI ≠ dI

require(deSolve)

# the equations for the predator-prey model area here

pp.model2 <- function(t, y, parms) {

with(as.list(c(y,parms)), # allows you to refer to parameters and state variables by name

{

dB = g*B*(1-B/Bmax) - k*B*I # prey

dI = r*B*I - d*I # predators

dy=c(dB, dI)

return(list(dy))

})

}

#model parameters

parameters=list(g=2,k=0.5,r=0.5/3,d=0.6, Bmax=40)

# initial conditions

init.cond=c(B=.1,I=.1)

#Time points to run the simulation

tmax=50

npoints=1000
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What is the e�ect of changing the initial conditions?
What will be the e�ect of introducing a carrying capacity to prey? How will it change the steady states?

prey dB

dt
= gB(1 ≠ B

B
max

) ≠ kBI

predator dI

dt
= rBI ≠ dI

require(deSolve)

# the equations for the predator-prey model area here

pp.model2 <- function(t, y, parms) {

with(as.list(c(y,parms)), # allows you to refer to parameters and state variables by name

{

dB = g*B*(1-B/Bmax) - k*B*I # prey

dI = r*B*I - d*I # predators

dy=c(dB, dI)

return(list(dy))

})

}

#model parameters

parameters=list(g=2,k=0.5,r=0.5/3,d=0.6, Bmax=40)

# initial conditions

init.cond=c(B=.1,I=.1)

#Time points to run the simulation

tmax=50

npoints=1000
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