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“All models are wrong,
but some are useful.

George Box, 1978




Dynamical mechanistic models

* Dynamical: Tracking how things change in time

* Mechanistic: Having equations or computer rules that explicitly
describe how things happen

Within dynamical models, two broad classes are distinguished:

* Deterministic: Assumption that the future is entirely predicted
(determined) by the model

« Stochastic: Assumption that random (stochastic) events affect
the biological system, in which case a model can only predict
the probability of various outcomes in the future



Many types of Dynamical Models exist

Compartmental «» Agent-based
Discrete time <> Continuous time

Deterministic <> Stochastic The models we'll be
Homogeneous <> Spatial «—— focusing on, formulated
Memory-less <« With memory as Ordinary Differential Equations
Small < Big

Data-free < With data



Modeling

The real world

The conceptual world
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Dym and Ivey 1980



Malthusian growth model (1798)
(a simple exponential growth model)

Thomas Robert Malthus (1766-1834)

discrete-time bacterial growth model

birth death
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Discrete-time bacterial growth model

birth death

N/

Bt—|—7' = Bt -+ (bBt — dBt)T — Bt -+ gBtT
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Bacteria, B

« Assume b=12/hour, d=2/hour, t=1 hour.
« B at start (t=0) = 100
* What do we get after 1,2,3,4,... hours?



Ordinary Differential Equations (ODE)

Bir = B+ 9B . D= B g,
rewrite T
By, — By dB
T It T—0 dt g

Solution: B(t) = B(0)e"
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Notice:

1. Populations can change over many orders of magnitude. It is useful to plot populations on a log scale.

Time
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Malthusian growth model

Time

2. The relationship between the growth rate g and the dynamics of population growth:

e g = 0 corresponds to a stable population

o g > 0 generates an exponentially increasing population (proliferation)
o g < 0 generates an exponentially declining population (extinction)



Hyperbolic growth of the world population
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Heinz von Foerster (1911-2002)

Doomsday: Friday,
13 November, A.D. 2026

At this date human population will approach infinity
if it grows as it has grown in the last two millenia.

Heinz von Foerster, Patricia M. Mora, Lawrence W, Amiot

Among the many different aspects
which may be of interest in the study
of biological populations (/) is the one
in which attempts are made to estimate
the past and the future of such a popu-
lation in terms of the number of its
elements, if the behavior of this popula-
tion is observable over a reasonable
period of time.

All such attempts make use of two
fundamental facts concerning an in-
dividual element of a closed biological
population—namely, (i) that each ele-
ment comes into existence by a sexual
or asexual process performed by an-
other element of this population
(“birth”), and (ii) that after a finite
time each element will cease to be a
distinguishable member of this popula-

4 NOVEMBER 1960

tion and has to be excluded from the
population count (“death”).

Under conditions which come close
to being paradise—that is, no environ-
mental hazards, unlimited food supply,
and no detrimental interaction be-
tween elements—the fate of a biologi-
cal population as a whole is completely
determined at all times by reference to
the two fundamental properties of an
individual element: its fertility and its
mortality. Assume, for simplicity, a fic-
titious population in which all elements
behave identically (equivivant popula-
tion, 2) displaying a fertility of yo off-
spring per element per unit time and
having a mortality 6o = 1/t=, derived
from the life span for an individual ele-
ment of = units of time. Clearly, the

A 1960 November issue of Science

rate of change of N, the number of
elements in the population, is given by

AN N—6N=aN o)

dt
where @ = yo — 6o may be called the
productivity of the individual element.
Depending upon whether a. = 0, inte-
gration of Eq. 1 gives the well-known
exponential growth or decay of such
a population with a time constant of
1/ ao.

In reality, alas, the situation is not
that simple, inasmuch as the two param-
eters describing fertility and mortality
may vary from element to element and,
moreover, fertility may have different
values, depending on the age of a par-
ticular element.

To derive these distribution func-
tions from observations of the behavior
of a population as a whole involves the
use of statistical machinery of consider-
able sophistication (3, 4).

However, so long as the elements
live in our hypothetical paradise, it is
in principle possible, by straightforward
mathematical methods, to extract the
desired distribution functions, and the
fate of the population as a whole, with
all its ups and downs, is again de-
termined by properties exclusively at-
tributable to individual elements. If
one foregoes the opportunity to de-
scribe the behavior of a population in
all its temporal details and is satisfied

The authors are members of the staff of the de-
partment of electrical engineering, University of
Illinois, Urbana.
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Logistic growth model

How could we implement saturating growth?
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Logistic growth model
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Logistic growth model

iB B iB .
—_— = > - — B — 5B
dt g B (1 Bma:c > rewrite dt g

) is a coefficient for intraspecific competition

Members of the same species compete for limited essential resources,
for example, for food, space, mates or any other resource which is
required for survival or reproduction.



Lotka—Volterra equations (predator—prey model)

dB

dl
predator o = rBI —dI

Alfred James Lotka (1880 —1949) Vito Volterra (1860 —1940)

1.
2.
3.
4.

Prey grows exponentially in the absence of the predator

Predator finds and eats prey (law of mass action)

The rate of increase in the predator population depends on how many prey are consumed.
Predators have a fixed death rate



Lotka—Volterra equations (predator—prey model)

dB

dl
predator o = rBI —dIl

barameter |Desarpion o

g

Represent the reproduction rate of the prey. The greater g is, the more rapidly the prey 1/time
reproduces.
Represents the death rate of the prey due to the presence of the predator. The greater k is, 1/time

the greater the death of the prey is due to predation and the more effective the predator is
killing the prey.

Represents the reproduction rate of the predator. The greater r is, the more rapidly the 1/time
predator reproduces and the more effectively the prey is able to nourish the predator.

Represents the death rate of the predator. 1/time



Lotka—Volterra equations (predator—prey model)
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What is the effect of changing initial conditions?



Addition of carrying capacity to the prey
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Thought experiment

dB B
— =gB(1 — — kBI
Pest =4 ( Bmm)
dl
Predator of pest o= rBI —dI

What will be the effect of pesticide on parameters?

« decrease the growth rate of the prey g
 increase the death rate of predator d

Consider a reduction in g and an increase in d by a factor 1 and run the simulations



Addition immune response to
bacteria growth model

max

dB B
bacteri — =gBb |1
acteria =9 ( I )
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Immune d—:TB[—dI

response t

What is missing?



Addition immune response to
bacteria growth model
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