Multi-Agent Persistent Monitoring on Networks Simulator
Click here!
to read the technical manual.
Developped by:
Shirantha Welikala
.
Supervised by:
Prof. Christos G. Cassandras
.
Problem Configuration:
Start Modifying
Finish
Custom
1-Agent(3T)
2-Agent(5T)
1-Agent(5T)
1-Agent(4T)
1-Agent(9T)
1-Agent(9T)R
3-Agent(9T)
3-Agent(Maze)
3-Agent(General)
3-Agent(Room)
1-Agent(Room)
3-Agent(Blank)
Random
Targets:
Selected target:
Uncertainty Rate:
Max. Path Length:
Apply
Make fully connected:
Agents:
Selected agent:
Sensing Rate:
Run Simulations:
Θ
Time (t):
Cost (J):
t:
J
e
:
J
s
:
J
T
:
Δt=
Frame rate =
T =
IPA
Multiplier =
K =
IPA
Step Size =
Receding Horizon Control:
Control Method: (Add noise:
)
TCP Method (RHC disabled)
One step ahead (Greedy RHC)
Two steps ahead (Greedy RHC)
Event-Driven RHC-Fixed H
Event-Driven RHC
Event-Driven RHC-α
Event-Driven RHC-Two-Step
Event-Driven RHC-Two-Step-α-β
ED-ORHC (Second-Order Agents (SO*))
ED-ORHC (Second-Order Agents (SO#))
ED-ORHC (First-Order Agents (FO1))
ED-ORHC (First-Order Agents (FO2))
ED-ORHC (First-Order Agents (FO3))
Learned Classifiers
Random
Random-RL
Event-Driven RHC with RL
Event-Driven RHC with Approx. RL
Brute Force
Learn TCP via RHC
Learn Classifi. via RHC
Datapoints/Iterations:
Learn Classif./RL Offline
α =
;(
Override:
)
β =
α
u
=
;(
Fix:
)
v
max
=
u
max
=
Normli.:
Discount:
Step Val.:
Type:
Constant
Diminishing
Sq. Summable
Ran. Ex.:
Real. Fr.:
Depth (Num. of Hops):
Width (Storage Size):
Solve Brute Force
Plan. Horizon H =
Auto-Tune
Act.v
max
:
Act.u
max
:
Open Trajectory Plots
Plot Cost Vs Paramter
Parameter:
T
H
α
β
ζ
v
max
α
u
Start:
Resol.:
End:
Noise in A_i(t):
Max. % Devia.:
%
Noise in V_ij:
Max. % Devia.:
%
Noise in Y_i(t):
Boundary:
Magnitude:
Noise in R_i(t_event):
Mean Int.:
Magnitude:
Noise in R_j:
Magnitude:
Spectral Graph Clustering Parameters:
Similarity measure based on:
Shortest path length d(T_i,T_j)
Minimum mean cycle uncertainty J(cyc ϶{T_i,T_j})
Neighborhood width (σ):
Auto Tune
Spectral clustering method:
Unnormalized (L = D-W)
Normalized-I (L_
rw
)
Normalized-II (L_
sym
)
K-M. Steps:
Greedy TCP Construction:
1. Cluster Targets:
Cluster !
Reset Clusters
2. Generate Cycles:
Search !
Reset Cycles
Allow Multiple Visits to a Target on the Cycle:
3. Auto-Adjust Cycles:
Adjust !
4. Compute Thresholds:
Apply !
Theo.:
Boosting Menu:
Boosting method:
Disabled
Neighbor
Arc
Random
Split
Exploration
Step sizes:
Constant
Diminishing
Sq. Summable
Boosting coefficient α
B
:
Switching threshold α
S
:
Boost
Best cost found so far:
J
min
:
Rollback !
Randomly perturb thresholds:
Noise Level:
Perturb
Uncertainty Rates:
Sensing Rates:
Target Uncertainties R
i
(t):
Rand.
0
Update
Target Prioritization Policy (Based on):
Minimum Distance:
Maximum Uncertainty:
Threshold generation (from cycles) parameter:
Blocking Threshold:
More detailed data plots:
Generate Additional Data plots:
Agent threshold values θ
ij
(a)
:
Rand.
Update
Agent threshold sensitivity values: J w.r.t. θ
ij
(a)