
'

&

$

%

A Manufacturing System as a Hybrid System

Shirantha Welikala, Christos G. Cassandras

June-2019

Boston University

Division of Systems Engineering

Technical Report

BOSTON
UNIVERSITY

http://www.bu.edu/codes/simulations/shiran27/HSSim/

A Manufacturing System as a Hybrid System

Shirantha Welikala, Christos G. Cassandras

Boston University

Division of Systems Engineering

15 Saint Mary’s Street

Boston, MA 02215

www.bu.edu/se

June-2019

Technical Report

http://www.bu.edu/codes/simulations/shiran27/HSSim/

This report serves as a reference manual to the hybrid system simulator
available at http://www.bu.edu/codes/simulations/shiran27/HSSim/. This
contains a brief problem formulation section and a summary of the so-
lution technique used along with some key references. Also, this report
explains each and every component of the simulator and provides few
illustrative examples on the usage of the simulator.

http://www.bu.edu/codes/simulations/shiran27/HSSim/

Contents

1 Problem Formulation and Solution 1
1.1 Generalized problem formulation . 1
1.2 Generalized solution technique . 2
1.3 The specific problem considered in the simulator 4
1.4 The solving technique used in the simulator 5

2 The Developed Simulator 7
2.1 Component wise details of the simulator 7
2.2 Some generated results . 10
2.3 Conclusions . 13

4

1

1 Problem Formulation and Solution

In this work, a single server queuing system model with service times determined by
time driven dynamics is used to model a typical single stage manufacturing system.
Due to the simultaneous operation of both event-driven dynamics and the time-driven
dynamics, this manufacturing system model as shown in 1 is essentially a hybrid
system.

In section 1.1, we will present the considered problem in a more general setting.
The consequent section 1.2 discuss the solution technique in a general sense. Then in
the section 1.3, the specific problem that has been implemented in the simulator is
presented. Section 1.4 then presents the details of the solution scheme implemented
in the simulator.

1.1 Generalized problem formulation

A sequence of N jobs denoted by C1, C2, · · · , CN are assigned by an external source to
arrive for processing at known (arrival) times a1, a2, · · · , aN . The jobs are processed
in a first-come-first-serve (FCFS) basis by a work conserving and non-preemptive
server. The service time of the job Ci is si(ui), which is a function of the control
input ui and the specific job Ci itself. In this analysis, the control input applied to a
job is constrained to be a constant over the duration of its service period. However,
the server is allowed to use different control inputs for different jobs.

Time driven dynamics. Each job (say Ci) at some common initial time t = x0 is
considered to be at a certain physical state ζ. This can be expressed as zi(x0) = zetai
where zi denotes the time varying physical state of the job. Subsequently, this physical
state zi(t) of the job Ci evolves according to the time driven dynamics given by,

żi(t) = gi(zi, ui, t), with zi(x0) = ζi. (1)

Event driven dynamics. The completion time (or the departure time) of the each
job is denoted by xi and it is given by the standard Lindley’s equation for a FCFS

Figure 1: Single Server Queuing System

https://en.wikipedia.org/wiki/Work-conserving_scheduler

2

non-preemptive queue [1]:

xi = max{xi−1, ai}+ si(ui), with x0 = −∞ (2)

Note that the control input choice ui affects both the physical state zi and the
next temporal state xi. In this framework, a job Ci is considered to require a service
time si(ui) such that its physical state zi reaches a certain quality level denoted by
qi. Therefore, the processing time required for a job can be formally defined as,

si(ui) = min{t ≥ 0 : zi(x0 + t) =

∫ x0+t

x0

gi(zi, ui, τ)dτ + zi(x0) ∈ qi}. (3)

Objective function. For the considered hybrid system defined by the equations
(1), (2) and (3), our aim is to find the control sequence {u1, u2, · · · , cN} which mini-
mizes the objective function of the form

J =
N∑
i=1

[φi(xi) + ui(ui)]. (4)

Regarding this objective function format, one important thing to notice is that
it does not explicitly involve the continuously varying physical state variables zi(t).
However, note that the terminal physical state of each job plays a role in defining the
service time (in (3), si(ui) is such that zi(xi) ∈ qi), and hence it indirectly directly
affects the departure time xi. Therefore, by appropriately choosing the functions φi(·)
and si(·) we can indirectly impose a cost on the physical state.

Optimal control problem. For this problem framework, the complete optimal
control problem, denoted by P can be stated in the following form:

P : min
u1,u2,··· ,uN

{
J =

N∑
i=1

{
φi(xi) + θi(ui)

}}
Subject to

xi = max{xi−1, ai}+ si(ui), for i = 1, 2, · · · , N and,

si(ui) ≥ 0 for i = 1, 2, · · · , N.

(5)

1.2 Generalized solution technique

Sub-optimal problem. In the works [2] and [3], an algorithm named Forward
Algorithm (which will be presented later) is proposed to solve the above optimal
control problem P. This is achieved by iteratively solving a separate sub-problem
denoted by Q(k, n) (also called the sub-optimal problem) which intends to find the

3

control inputs ui (or the service times si(ui)) for the jobs Ck, Ck+1, · · · , Cn−1, Cn. This
sub-optimal problem is given by,

Q(k,n) : min
uk,··· ,un

{
J(k, n) =

n∑
i=k

{
φi(xi) + θi(ui)

}}
Subject to

xi =ak +
i∑

j=k

sj(uj), for i = k, k + 1, · · · , n,

xi ≥ai+1, for i = k, k + 1, · · · , n− 1 and,

si(ui) ≥0, for i = k, k + 1, · · · , n.

(6)

The constraints of this sub optimal problem implies that jobs Ck, Ck+1, · · · , Cn−1
should arrive during the server is busy. However the job Cn is not constrained in a
such manner, therefore, it can either end the busy period (i.e. xn < an+1) or continue
it (i.e. if xn ≥ an+1). Since this xn represents a part of the optimal solution of Q(k, n),
it is more formally denoted as x∗n(k, n).

Also, note that all the xi terms can be replaced by control input ui terms using the
first equality constraint. Therefore, the problem Q(n, k) can be written in a compact
form (such that it only involves the si(ui) terms) as,

Q(k,n) : min
uk,··· ,un

{
J(k, n) =

n∑
i=k

{
φi(ak +

i∑
j=k

sj(uj)) + θi(ui)
}}

Subject to

ak +
i∑

j=k

sj(uj) ≥ai+1, for i = k, k + 1, · · · , n− 1 and,

si(ui) ≥0 for i = k, k + 1, · · · , n.

(7)

The forward algorithm. In order to solve the problem P stated in (5), the sim-
ulator uses the “Forward Algorithm 1” proposed in the work [2]. It is shown in
Algorithm 1. Also, it is important to point out that we need to make a few basic
assumptions for this method to work. Those assumptions are typically related to the
shape of the objective function components φi(·) and θi(·). More details can be found
in [2].

In there, the step 5 shows how the optimal control inputs u∗1, u
∗
2, · · · , u∗N are found

via solving multiple Q(k, n) sub-optimal problems. Note that the solution of sub-
optimal problem Q(k, n) is typically denoted as u∗k(k, n), u∗k+1(k, n), · · · , u∗n(k, n).

It should be noted that there are execution time wise improved versions of this
algorithm such as the “Forward Algorithm 2” found in the same work [2] and the
two algorithms proposed in [3]. However, all of these algorithms essentially use the

4

Algorithm 1 Forward Algorithm 1

1: Initialize with k = 1, n = 1, aN+1 =∞, x0 = −∞;
2: while n ≤ N do
3: Solve sub-optimal problem Q(k, n);
4: if x∗n(k, n) < an+1 then
5: u∗j ← u∗j(k, n) for j = k, · · · , n
6: k ← n+ 1
7: end if
8: n← n+ 1
9: end while

same sub-optimal problem Q(k, n) stated in (7) to get to the optimal control policy.
Therefore, solving the sub-optimal problem plays a key role in implementation.

1.3 The specific problem considered in the simulator

In this section, we introduce the specific form of the problem which is addressed by
the developed simulator.

Time driven dynamics. The time driven dynamics, in other words, the nature of
the evolution of the physical state zi with respect to the control input ui is given by,

żi(t) = ui with zi(xi − si(ui)) = 0 and zi(xi) = qi. (8)

This represents a situation where the physical state zi of the job Ci increases at a rate
determined by the control input ui. The initial and terminal conditions for zi are 0
and qi. And those happens respectively at the beginning of the service time (i.e. at
t = xi − si(ui)) and at the departure time (i.e. at t = xi).

Event driven dynamics. The relationship between the service time si(ui) of a job
Ci and its control input ui is taken to have the form,

si(ui) =
qi
ui

(9)

Here the qi term (which we also saw in (8)) represents a pre-assigned parameter
which can be thought of as the “Required Quality Level” of the job Ci. From (9)
it is clear that the service time is proportional to the required quality level and it is
inversely proportional to the control input. Therefore it is a realistic situation.

Now, the Lindley’s equation can be written as,

xi = max{xi−1, ai}+
qi
ui

with, x0 = −∞. (10)

5

Objective function. In the simulator, the considered objective function takes the
form,

J =
N∑
i=1

{αx2i + βu2i + γw2
i }, (11)

where α, β and γ stands for the penalty coefficients on departure times (xi), control
inputs (ui) and waiting times (wi). The waiting time was taken as wi = xi − ai.

Optimal control problem. The complete optimal control problem, denoted by P
can be stated in the following form:

P : min
u1,u2,··· ,uN

{
J =

N∑
i=1

{
αx2i + βu2i + γw2

i

}}
Subject to

xi = max{xi−1, ai}+
qi
ui
, for i = 1, 2, · · · , N and,

qi
ui
≥ 0 for i = 1, 2, · · · , N.

(12)

1.4 The solving technique used in the simulator

Sub-optimal problem For the specific problem form discussed in section 1.3, as
a solving technique, we use the Forward Algorithm 1 proposed in [2]. This process
requires us to solve a sub-optimal problem denoted by Q(k, n) given by,

Q(k,n) : min
uk,··· ,un

{
J(k, n) =

n∑
i=k

{
αx2i + βu2i + γw2

i

}}
Subject to

xi =ak +
i∑

j=k

sj(uj), for i = k, k + 1, · · · , n,

xi ≥ai+1, for i = k, k + 1, · · · , n− 1 and,

si(ui) ≥0, for i = k, k + 1, · · · , n.

(13)

Since using sj(uj) =
qj
uj

can make the constraints non-linear, lets use sj = sj(uj)

as the program variable. Therefore note that ui = qi
si

. Now, the objective function of

6

Q(k, n) can simplified as,

J(k, n) =
n∑

i=k

{
αx2i + βu2i + γw2

i

}}
=

n∑
i=k

{
αx2i + β

q2i
s2i

+ γ(xi − ai)2
}}

=
n∑

i=k

{
α(ak +

i∑
j=k

sj)
2 + β

q2i
s2i

+ γ(ak +
i∑

j=k

sj − ai)2
}}

=
n∑

i=k

{
β
q2i
s2i

+ 2(αak − γ(ai − ak))
i∑

j=k

sj + (α + γ)

(i∑
j=k

sj

)2

+ γ(ai − ak)2 + αa2k
}}

. (14)

Now, J(k, n) is only a function of service times si for i = k, · · · , n. Note that
α, β, γ, {ai}ni=k and {qi}ni=k are all known values.

Now the sub-optimal problem can be written in a compact form as follows.

Q(k,n) : min
uk,··· ,un

J(k, n)

Subject to

ak +
i∑

j=k

sj ≥ai+1, for i = k, k + 1, · · · , n− 1 and,

si ≥0, for i = k, k + 1, · · · , n.

(15)

Projected gradient descent method. Notice that the objective function associ-
ated with the sub-optimal problem in (15) is convex (see (14)) and the constraints are
linear. Therefore, using the projected gradient descent method is the most straight-
forward way to reach the optimal solution: {s∗i }ni=k.

The gradient of the objective function J(k, n) given in (12) in the direction of sm
(where m ∈ {k, k + 1, · · · , n}) takes the form,

∂J(k, n)

∂sm
= −2β

q2m
s3m

+ 2(α + γ)
n∑

i=m

i∑
j=k

sj + 2(α + γ)(n−m+ 1)ak − 2γ
n∑

i=m

ai (16)

The projected gradient descent steps take the form,

s(l+1)
m =

∏
sm∈Bm

[
s(l)m − β

∂J(k, n)

∂sm

]
for m ∈ {k, k+ 1, · · · , n} and l = 0, 1, 2, · · · . (17)

Here, β denotes the step size, super script l denotes the update iteration number and
Bm represents the constrained space (for the projection) of the variable sm.

7

The used step size coefficient was β = 0.005 and typically the projected gra-
dient descent method takes l ' 90 iterations to converge to a condition where∑n

m=k ‖∂J(k, n)/∂sm‖2 < 0.001. The projection space can be defined more formally
as,

Bm =

{
[am+1 − ak −

∑m−1
j=k sj,∞] for m ∈ {k, k + 1, · · · , n− 1},

[0,∞] for m = n.
(18)

The initial condition for the projected gradient descent method was generated
using,

sm = am+1 − ak −
m−1∑
j=k

sj + ∆ for m ∈ {k, k + 1, · · · , n}, (19)

where ∆ should satisfy 0 ≤ ∆ so that the initial solution is feasible. In the imple-
mentation ∆ = 0.5 is used.

2 The Developed Simulator

2.1 Component wise details of the simulator

In this section, we will look at each and every component of the simulator and will
describe when and how to use those components. Main component names are labelled
in the Figure 2 and their respective main task is described in the table 1 along with
more detailed diagrams of each component (See Figures 3-6).

8

Figure 2: Main Components of the Simulator

9

Component Main Task
Title and Information Box Contains a summary of the underlying problem

formulation
Console Display Important information regarding the current state

of the simulator will be printed here.
Arrival time menu Specify the arrival times of the N jobs (i.e.

{ai}Ni=1) using this menu. There are multiple ways
to generating arrival times. See Figure 3 for more
details.

Quality Level Menu Specify the required quality levels of the N jobs
(i.e. {qi}Ni=1) using this menu. There are multiple
ways to generating these quality levels. See Figure
4 for more details.

Penalty Parameter Menu Specify the penalty parameters here (to penalize
departure times, control inputs and waiting times).

Control Input Menu Generate / compute or specify the control input
values applied to each job (i.e. {ui}Ni=1) using this
menu. See Figure 5 for more details.

Simulation menu Use this menu to store different simulations and
to compare them and also to see their real-time
operation. See Figure 6 for more details.

Table 1: Caption

Figure 3: Arrival Time Menu

10

Figure 4: Quality Level Menu

Figure 5: Control Input Menu

2.2 Some generated results

Results obtained for four case studies are illustrated in the Figures 7-10.

11

Figure 6: Simulations Menu

Figure 7: Case 1: Arrival times are Poisson distributed, required quality levels are
uniformly distributed, all penalty parameters are equal to 1, and Sim.1 - Sim.3 re-
spectively stands for when the control input is generated via a) Forward algorithm,
b) Deterministic with ui = 2,∀i and c) Uniformly distributed where ui ∼ U [2, 5]

12

Figure 8: Case 2: Both arrival times and the required quality levels of each job
is uniformly distributed, all penalty parameters are equal to 1, and Sim.1 - Sim.3
respectively stands for when the control input is generated via a) Forward algorithm,
b) Deterministic with ui = 1,∀i and c) Uniformly distributed where ui ∼ U [1, 5]

Figure 9: Case 2: Arrival times are deterministic, required quality levels are uni-
formly distributed, all penalty parameters are equal to 1, and Sim.1 - Sim.3 respec-
tively stands for when the control input is generated via a) Forward algorithm, b)
Deterministic with ui = 3,∀i and c) Uniformly distributed where ui ∼ U [3, 5]

13

Figure 10: Case 2: Both arrival times and the required quality levels are deterministic,
all penalty parameters are equal to 1, and Sim.1 - Sim.3 respectively stands for
when the control input is generated via a) Forward algorithm, b) Deterministic with
ui = 1,∀i and c) Uniformly distributed where ui ∼ U [1, 5]

2.3 Conclusions

In general, the forward algorithm used in the simulator is capable of addressing op-
timal control problems defined for a single stage hybrid systems. The developed
simulator uses a conventional manufacturing system as a single stage hybrid system.
The control variables in this paradigm are the service times of various jobs. More-
over, the considered performance metric involves quality requirements, control inputs,
delivery time requirements, and system delay time requirements. Theoretically, the
considered optimal control problem is non-convex and non-differentiable due to the
associated event-driven dynamics of the hybrid system. However, the used forward
algorithm is a scalable and low-complexity approach to compute the optimal controls
(i.e. optimal service times) for each job. Specifically, the forward algorithm is derived
via identifying the busy period structure of the optimal sample path. In operation,
the forward algorithm requires solving multiple, yet much smaller convex optimiza-
tion problems (with linear constraints) to construct the optimal sample path. The
implementation results show that the optimal controls determined by the forward al-
gorithm are always capable of delivering better performance levels compared to when
arbitrarily defined control inputs are used. In the literature, the pioneers of this for-
ward algorithm have also proposed few improved forward algorithm versions as well
[2, 3].

14

References

[1] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems.
Springer Publishing Company, Inc., 2nd ed., 2010.

[2] Y. C. Cho, C. G. Cassandras, and D. L. Pepyne, “Forward algorithms for optimal
control of a class of hybrid systems,” in 39th IEEE Conf. on Decision and Control,
vol. 1, pp. 975–980, 12 2000.

[3] Ping Zhang and C. G. Cassandras, “An improved Forward Algorithm for optimal
control of a class of hybrid systems,” in 40th IEEE Conf. on Decision and Control,
vol. 2, pp. 1235–1236, 12 2001.

	Problem Formulation and Solution
	Generalized problem formulation
	Generalized solution technique
	The specific problem considered in the simulator
	The solving technique used in the simulator

	The Developed Simulator
	Component wise details of the simulator
	Some generated results
	Conclusions

