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Research Questions

Power Balance

Is frequency the only metric to define power balance in power
systems?

Synchronous Machine

Is the synchronous machine the “best” possible way to
generate power?



Dual
Grid-Forming
Converter

Federico
Milano

Motivations

Complex
Frequency

Dual-GFM

Conclusions

References

Table of Contents

1 Motivations

2 Complex Frequency

3 Dual-GFM

4 Conclusions

5 References



Dual
Grid-Forming
Converter

Federico
Milano

Motivations

Complex
Frequency

Dual-GFM

Conclusions

References

Frequency and Power Variations

This section defines the link between complex power and
complex frequency in ac power systems.

Let us consider the power injection at network buses:

s̄(t) = p(t) + ȷq(t) = v̄(t) ◦ ı̄∗(t) ,

where voltages and currents are Park’s vectors (or analytic
signals), i.e., are valid in transient conditions:

v̄(t) = vd(t) + ȷvq(t) .
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Assumption

Let us assume that transmission line dynamics are fast, hence:

ı̄(t) ≈ Ȳ v̄(t) ,

where Ȳ is the conventional admittance matrix of the grid.

Hence the power injections into the grid nodes can be rewritten
as:

s̄(t) = v̄(t) ◦ [Ȳ v̄(t)]∗ .
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Complex Frequency

Let us rewrite the Park vector of the voltage in polar
coordinates:

v̄ = v eȷ θ = e(u+ȷ θ)

where u = ln(v).

Then, the complex frequency is defined as follows:

η̄ =
d

dt

(
u + ȷ θ

)
= u′ + ȷ θ′ = ρ+ ȷ ω ,

It is possible to show that the complex frequency is a special
case of geometric frequency.
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Link of the Complex Frequency with the Current

From the previous definition, the following identity holds:

v̄ ′ =
d

dt
v̄ = v̄ ◦ η̄ .

Then, from ı̄ ≈ Ȳ v̄ , one obtains:

ı̄′ = Ȳ v̄ ′ = Ȳ (v̄ ◦ η̄) = Ȳ diag(v̄) η̄ = Ī η̄ .



Dual
Grid-Forming
Converter

Federico
Milano

Motivations

Complex
Frequency

Dual-GFM

Conclusions

References

Link of the Complex Frequency with the Complex
Power

Then taking the conjugate and multiplying by the voltage

v̄ ◦ ı̄′∗ = S̄ η̄∗ .

Where S̄ is a matrix whose elements are the complex power
flow in the branches of the grid.
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Rate of Change of Power (RoCoP) [grid side]

And finally, we note that:

s̄ ′ =
d

dt
(v̄ ◦ ı̄∗)

= v̄ ′ ◦ ı̄∗ + v̄ ◦ ı̄′∗
= v̄ ◦ η̄ ◦ ı̄∗ + v̄ ◦ ı̄′∗
= s̄ ◦ η̄ + v̄ ◦ ı̄′∗

So we obtain the expression:

s̄ ′ − s̄ ◦ η̄ = S̄ η̄∗

We need now an expression for s̄ ′ from the device side . . .
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Alternative Expression of the RoCoP

Note that, in general, the complex frequency of the voltage is
not equal to the complex frequency of the current, hence:

v̄ ′ = η̄v v̄

ı̄′ = η̄ıı̄

Then, one obtains:

p′ = (ρv + ρı)p − (ωv − ωı)q

and
q′ = (ωv − ωı)p − (ρv + ρı)q
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System Model

Let consider the conventional DAE model for transient stability
analysis:

z ′ = f (z , y)
0 = g(z , y)

Under usual assumptions, we can write:

y ′ =
∂ϕ

∂z
z ′ =

(
∂g
∂y

)−1 ∂g
∂z

z ′

=

(
∂g
∂y

)−1 ∂g
∂z

f (z ,ϕ(z)) .
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Rate of Change of Power (RoCoP) [device side]

In the conventional DAE model of power systems, voltages and
powers are algebraic variables.

Let assume we can write the expression of the power injections
of each device connected to the grid as:

s̄ ′ = s̄ ′(v̄ , z , y)

Then, the time derivatives of s̄ ′ can be written as:

s̄ ′ =
∂s̄
∂v̄

v̄ ′ +

[
∂s̄
∂z

+
∂s̄
∂y

(
∂g
∂y

)−1 ∂g
∂z

]
z ′

where we already know that v̄ ′ = (ρ+ ȷω) ◦ v̄ = η̄ ◦ v̄ , hence:

s̄ ′ =
∂s̄
∂v̄

η̄ ◦ v̄ +

[
∂s̄
∂z

+
∂s̄
∂y

(
∂g
∂y

)−1 ∂g
∂z

]
z ′
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Component of the RoCoP

From the definition of complex frequency we can define the
following components of the RoCoP:

s̄ ′1 = ȷs̄ ◦ ω − ȷS̄ω ,

s̄ ′2 = s̄ ◦ ϱ+ S̄ϱ .

where

s̄ ′ = s̄ ′1 + s̄ ′2 .
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Special Cases: Constant Power Injection

The constraint is s̄ = const.

Then, we obtain:

s̄ ′ = 0 ⇒ s̄ ′1 = −s̄ ′2

This is a quite interesting result as it indicates that, during a
transient, a constant power device (even a constant power
load) affects the frequency at a bus if the voltage magnitude
changes, and vice versa!
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Special Cases: Constant Admittance

The constraint is ı̄ = Ȳo v̄

Then (after some tedious algebra), we obtain:

s̄ ′1 = 0 and s̄ ′ = s̄ ′2

This is another interesting result as it indicates that a constant
admittance cannot impact the frequency. It only impacts the
voltage magnitude.
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Special Cases: Constant Current and Power Factor

The constraint is |̄ı| = const. and ϕ = const.

Then (after some tedious algebra), we obtain:

s̄ ′2 = 0 and s̄ ′ = s̄ ′1

Yet another interesting result. This tells us that a constant
current device cannot impact the voltage. It only impacts the
frequency.
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Approximated Expressions

Then, one can define some approximated expressions:

p′
1 ≈ B1ω ,

q ′
1 ≈ G1ω ,

and

p′
2 ≈ G2ϱ ,

q ′
2 ≈ B2ϱ ,

where B1, G1, B2 and G2 are approximated susceptance and
conductance matrices obtained from Ȳ.
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Example: ρ and ω
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Example: Synchronous Machine and DER
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Example: Control of DERs – I

Control 1 (conventional)
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Example: Control of DERs – II
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Dual Grid-Forming Converter

We now consider a dual model for grid-forming (GFM)
controlled converters.

The model is inspired from the observation that the structures
of the active and reactive power equations of lossy synchronous
machine models are almost symmetrical in terms of armature
resistance and transient reactance.
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Conventional Synchronous Machine – I

Consider the power injections of the lossy electromechanical
model of the synchronous machine shown in the figure below:

p =
[ev cos(δ − θ)− v2]ra + [ev sin(δ − θ)]x ′d

r2a + x ′d
2

,

q =
[ev cos(δ − θ)− v2]x ′d − [ev sin(δ − θ)]ra

r2a + x ′d
2

.

e∠δ rax′

d
v∠θ

p+ jq
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Conventional Synchronous Machine – II

In synchronous machines, the armature resistance ra is small
with respect to x ′d and is often neglected, thus leading to the
well-known equations:

p =
ev sin(δ − θ)

x ′d
,

q =
ev cos(δ − θ)− v2

x ′d
.
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Dual Model – I

Consider now the dual parts of the machine equations, that is,
the terms that depend on the armature resistance and suppose
that the reactance x ′d is zero or negligible:

p̃ =
ev cos(δ − θ)− v2

ra
,

q̃ = −ev sin(δ − θ)

ra
.
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Dual Model – II

For simplicity, assume that the virtual parameter that
represents the armature resistance is negative, say K = −1/ra,
thus leading to:

p̃ = Kv2 − Kev cos(δ − θ) ,

q̃ = Kev sin(δ − θ) .

For this hyptotheical device, the active power strongly depends
on the magnitude of the internal emf e, while the reactive
power strongly depends on the phase angle δ.
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Swing Equations

Recall that the conventional swing equation is defined in terms
of the machine rotor angle:

δ̇ = ω − ωo ,

Mω̇ = pm − p(e, v , δ, θ)− D(ω − ωo) ,
(1)
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Dual Swing Equations – I

To obtain the dual swing equation, consider the complex
quantity:

ē = e exp(j δ) .

Define u = ln(e), e ̸= 0, then the previous equation becomes:

ē = exp(u + j δ) ,

and its time derivative is:

˙̄e = (u̇ + j δ̇) exp(u + j δ) = (ϱ+ j ω) ē ,

where ω is defined as in (1) and ϱ is:

ϱ = u̇ = ė/e .
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Dual Swing Equations – II

Finally, the swing equation dual to (1) is defined as:

u̇ = ρ ,

M̃ ρ̇ = pref − p̃(u, v , δ, θ)− D̃ρ ,

or, equivalently

ė = ϱ e ,

M̃ ϱ̇ = pref − p̃(e, v , δ, θ)− D̃ϱ ,
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Primary Controllers

The simplest first order model for the turbine governor can be
written as:

Tmṗm =
1

R
(ωref − ω) + pm,o − pm ,

For a 3-rd order machine model, a basic automatic voltage
control has the form:

T ′
d0ė = vf − (xd − x ′d)id − e ,

Tr v̇f = Kr (v
ref − v)− vf ,
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Dual Primary Controllers

In the same vein, the primary active power control for the
dual-GFM control is required to track ϱ, for example:

T̃mṗ
ref =

1

R̃
(ϱref − ϱ) + prefo − pref ,

The dual to the AVR can be written as:

Tq δ̇ = Kq(q
ref − q̃)− δ ,

T̃r q̇
ref = K̃r (ω

ref − ω)− qref ,

or alternatively, defining:

δr = Kq q
ref .

we obtain:
Tq δ̇ = δr − Kq q̃ − δ ,

T̃r δ̇r = K̃ ′
r (ω

ref − ω)− δr ,
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Complete Model of the Dual-GFM
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Synchronism of Dual-GFMs

The virtual angular speed does not appear in the formulation of
the dual-GFM control except for the time derivative of the
internal signal δ in the reactive power control.

It is still necessary, of course, to fix the frequency in the
system. The dual-GFM converter imposes the frequency at the
bus through the regulation of the reactive power.

δ is relative to the phase angle θ of the voltage at the point of
connection of the converter to the grid. Hence, to reach steady
state, the rest of the grid must be synchronous at the rated
frequency ωref .
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Example 1: WSCC 9-bus System – I

All generators are dual-GFMs. 20% of loss of load.
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Example 1: WSCC 9-bus System – II

All generators are dual-GFMs. Short-circuit at but 7, cleared
after 60 ms disconneting a line.
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Example 2: Modified All-Island Irish System – I

We illustrate the dynamic performance of the proposed
dual-GFM converter for a dynamic model of the all-island Irish
transmission system.

The original system includes 1479 buses, 1851 transmission
lines and transformers, 22 synchronous generators, along with
their appropriate control systems, 169 wind power plants and
245 loads.

All wind power plants are assumed to be GFLs and not to
provide any inertial response nor fast-frequency regulation.

We have substituted all synchronous machiens with dual-GFMs
with same capacity.
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Example 2: Modified All-Island Irish System – II

Outage of the largest infeed (connection with UK).
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Final Remarks

Robustness

The dual-GFM is particularly robust and stable following large
contingencies.

Compatibility

The dual-GFM does not seem to work well combined with
synchronous machines, but more tests are needed.

Universality?

The dual-GFM seems to be able to work both in AC and DC.
Future work will explore this feature and the implementation of
a prototype!
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Complex Frequency Concept, in IEEE Transactions on Power
Systems, preprint available. arXiv: 2209.11107

R. Bernal, F. Milano, A Complex Frequency-Based Control for
Inverter-Based Resources, Journal of Modern Power Systems and
Clean Energy (MPCE), SGEPRI, accepted for publication in March
2025. arXiv: 2501.00448

I. Ponce, F. Milano, Local Synchronization of Power System Devices.
IEEE Transactions on Power Systems, vol. 40, no. 5, pp. 4194-4204,
September 2025. arXiv: 2407.02661
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Further Reading – II

Works on the generalization of complex frequency.

F. Milano, A Geometrical Interpretation of Frequency, IEEE
Transactions on Power Systems, vol. 37, no. 1, pp. 816-819, January
2022.

F. Milano, Equivalence between Geometric Frequency and Lagrange
Derivative, IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 72, no. 9, pp. 4800-4809, September 2025. arXiv:
2410.02340

J. Gutiérrez Florensa, Á. Ortega, L. Sigrist, F. Milano, Quasi
Steady-State Frequency, IEEE Transactions on Circuits and Systems
I: Regular Papers, accepted for publication in September 2025. arXiv:
2505.21461
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