
TASK-DIRECTED SEMANTIC EXPLORATION WITH SPARSE SENSING

FINAL REPORT

1 Motivation
The standard pipeline in robotic systems includes perception, planning, and control. Each step of the pipeline
is typically implemented with a module that aims to maximize performance for its task, e.g., building a
map of the environment with high resolution, planning a motion on this map that produces the shortest
path to a goal, and moving along this path while considering all obstacles. However, not all steps of this
pipeline require maximum accuracy to complete a specific task, and, in fact, this may not even be possible in
a resource-constrained setting. In parallel, may environments (especially if man-made) present similarities
across many different instances (e.g., apartment floor plans as those shown in Fig. 1); there is therefore the
opportunity to distill these commonalities into a model which can then be used to complete a navigation task
with reduced resource requirements.

Figure 1: Floorplan examples from the RPLAN dataset (a dataset that contains residential apartments): patches indicate
the centers of room and front door (on the boundary) [1].

Specifically, under this award, we have considered the problem of navigating to the exit door in an
apartment. The robot is assumed to be equipped with a long-range 2-D laser scanner and a short-range
exit-door detector (implemented, for instance, using a camera). The prior knowledge of the environment
takes the form of an auto-encoder deep neural network that predicts a heat map of the exit location given a
partial map of the environment.

2 Overview of the work
We proposed a method based on three steps (see Fig. 2 for an overview):

Mapping At each step of the algorithm, measurements (laser scans and, if deemed necessary, camera
detections) are acquired and accumulated into two occupancy maps: one for the environment, and one
for the exit.

Decision A local crop of the map is used as input to our trained neural network, which produces an estimate
of the exit location (as the mode of a heat map). An interim goal is then selected at the location in the
known space that is closest to the predicted goal.

[. Planning] We use the A∗ algorithm to find a feasible trajectory from the current position of the robot.
Once the robot reaches the interim goal, it acquires a new laser scan to augment the map. If the robot is
sufficiently confident of being at the exit location, a camera measurement is triggered to confirm the
completion of the task.

Our method is complete (i.e., it is guaranteed to eventually complete the task)

2.1 Network architecture
To represent the prior knowledge about the environment, we use an auto-encoder architecture, as shown in
Figs. 2♣ and 3. The encoder takes the concatenated laser scan and camera (exit detection) data to learn a
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Figure 2: System workflow with main elements in blue boxes. The robot begins in an unknown environment (with the
examples here occurring in that of Fig. ??). Local Crop: a laser scan is acquired to update the occupancy grid map
(three examples shown; the green dot is the current location). A camera measurement may also be acquired to update
the exit location map (non-exits are superimposed in light gray). Decision: a local map is extracted and fed to a DNN
(first blue box) to produce a heat map of the exit location (second blue box with a map for each example in the Local
Crop box). Planning: a target location (third blue box; the red diamond is the target, and the purple star is the exit ground
truth) is extracted and the robot navigates to the interim goal. The process is then iterated. (⋆ and ♠ will be used for a
comparison in Fig. 4.)

common latent space representation of size 8× 8× 256. Each layer uses a standard convolutional layer with
Batch Normalization and Leaky ReLU.

The decoder predicts a probability map of the centroid for the exit m̂exit
t . We consider also two additional

but optional decoders: an occupancy map of indoor/outdoor/walls region (optional), and a probability map of
room centroids (optional). In our results (see below) we have shown that these additional decoders do not
significantly change the performance in the exit navigation task, but provide additional information that can
be used for other auxiliary tasks (e.g., semantic mapping).

3 Implementation and testing
3.1 Evaluation in a simplified 2-D simulator
We built a simplified simulations for the training dataset and algorithm evaluations. The mapping is performed
using PseudoSLAM [2]. The laser scanner has a 360◦ field of view and 9m range, and the camera has a
360◦ field of view and 1.7m range. The environment map is a 2D occupancy map with a resolution 0.14m
per pixel. Since we assume zero odometry and observation errors, the laser map updates were implemented
by ray-casting. The camera map updates were implemented by adding the detector results onto the current
SLAM map. We compared against a standard frontier-based exploration method that does not use any prior
knowledge of the environment [3] Furthermore, to demonstrate that our algorithm is robust against at least
some level of unmodeled structure in the environment, we introduced random obstacles into the environments
used for testing (Fig. 4).

The results are shown in Table 1.
The results show that:

• Our method is always more efficient than traditional uninformed frontier-based exploration.

• The use of camera measurements guarantees the correct termination of the search. Moreover, there is
a trade-off between the number of measurements and the number of steps necessary to complete the
search.

• The introduction of obstacles increases the traveled distance, but increases the number of camera
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Table 1: Method performance comparison in terms of average steps (distance traversed before stopping) and average
number of camera triggers. Also shown are the (median, standard deviation) over all runs. ↓ indicates that smaller value
implies better performance. C.R. refers to the camera range, obst. refers to the inclusion of obstacles in the environment.

Avg. steps ↓ Avg. camera triggers ↓

Frontier (C.R. 1.7m) 329.7 (277.3, 259.4) 14.22 (14.0, 8.41)

Frontier (C.R. 3.4m) 120.5 (87.6, 103.3) 4.65 (4.0, 2.79)

Method 1† 38.26 (35.69, 24.58) 0 (0,0)

Method 2 68.0 (59.45, 51.44) 1.66 (1.0, 0.95)

Method 3 65.67 (59.76, 44.91) 3.23 (3.0, 1.45)

Method 3 (with obstacles) 86.43 (67.51, 87.52) 3.94 (3.0, 2.38)
† Method 1 is not complete and has a success rate of 57%.

measurements only marginally.

3.2 Evaluation in a full 3-D dynamic simulator
To test the algorithm under more realistic conditions (a 3-D simulation with imperfect sensor measurements),
we implemented our scheme in the Robot Operating System (ROS) using the Gazebo simulator with a Jackal
robot model (Clearpath Robotics). Fig. 5 presents some images from one of these advanced simulations. In
general, the algorithm behaved similarly as what found in 2-D simulations.
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Figure 3: Network diagram: the local occupancy grid map and grip map built from the exit detector are fed into an
auto-encoder to estimate the exit location in the floorplan. Without loss of performance, the additional tasks on map
completion and semantic prediction can be trained simultaneously. FL means focal loss.
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(a) Environment (b) Exit heat map (c) Final trajectory

Figure 4: Proposed method in an environment with obstacles. (a) The same environment as in Fig. ?? with randomly
placed obstacles. (b) Exit heat map in the second iteration (compare to Fig. 2 ⋆). (c) (green line) Found trajectory to the
exit location (compare to Fig. 2 ♠).

(a) Gazebo (b) Intial Map (c) Final Trajectory (d) Exit Detected

Figure 5: ROS Simulation: (a) A typical environment in Gazebo with the Jackal placed on a random initial location.
(b) The occupancy grid after one scan. (c) Robot trajectory (green line) after two iterations with the robot driven to a
hallucinated exit location. (d) Camera image taken at the end of the trajectory in (c) and showing the detected Apriltag.

4 Students supported and research products
The award mainly supported one student, Zili Wang (System Engineering), and also involved a MSc student,
Drew Threatt (Master in Robotics and Autonomous System). The work has resulted in one workshop
extended abstract and presentation [4], and a paper submission [5] (currently under review).

5 Extramural funding
The PIs have submitted a proposal to the Sony Research Award Program with title “Efficient and Robust
Top-Down Autonomous Navigation” ($150, 000), which is currently under review.
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