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This project funded two PhD students, Ruizhao Zhu and
Jimuyang Zhang. The project outcomes have provided the
foundation for scalable design and evaluation of intelli-
gent systems that can seamlessly interact with individuals
with visual impairments. First, we have been developing a
uniquely realistic simulation environment for teaching in-
telligent systems about the needs individuals with disabil-
ities. Second, we performed an IRB-approved study to
guide system and algorithm design. Third, based on our
in-simulation and real-world findings, we have been de-
veloping a meta-learning framework for personalization of
intelligent systems, i.e., to enable interaction with diverse
real-world settings and end-users. In this process, we have
collaborated with a local outreach organization, the Car-
roll Center for the Blind in Newton, to engage end-users
throughout the entire technology development process. Be-
low, we summarize the research conducted as well as dis-
cuss our future research and funding plans.

Motivation: How can we design intelligent systems that
can seamlessly interact with and assist individuals with vi-
sual impairments? Factors related to non-visual reasoning
and safety require precise modeling of information needs
for determining what, when, and how to best assist an end-
user. An elderly blind user, for instance, may benefit from
additional guidance and context during challenging navigat-
ing tasks, such as those comprising open spaces with fre-
quent obstacles and crowds [4]. Even when providing basic
guidance cues, e.g., to turn in a certain direction towards an
elevator button or a door handle, a slight delay or premature
signaling can result in user confusion and navigation errors.
Based on the preliminary findings from our user study, we
find Orientation and Mobility guides to carefully tailor the
timing and content of their instructions, i.e., to minimize
cognitive load and ensure smooth and safe navigation per-
formance. Such real-time adaptation also enables guides to
seamlessly accommodate users with various mobility skills
(e.g., cane strategies), aids, and personal preferences.

Limitations in Current Systems: There are two fun-
damental challenges today preventing the development of
technologies that can adapt to various needs and prefer-
ences of individuals with visual impairments. First, in-

dividuals with visual impairments are mostly absent from
datasets in computer vision and machine learning. Cost,
privacy, and safety issues have led to a lack of standard-
ized development frameworks for developing data-driven
adaptive tools, e.g., benchmarks with relevant use-cases and
data collection and sharing principles. This limitation hin-
ders even preliminary analysis with respect to current ap-
proaches for personalization, e.g., meta-learning [2, 6, 9]
Second, factors related to non-visual reasoning and safety
requires more elaborate modeling of the information needs
of an end-user with visual impairments. This practical limi-
tation has led accessibility researchers to extensively hand-
engineer and tune guidance feedback and interaction prop-
erties by assistive systems. This current non-scalable pro-
cess of careful manual design of system guidance properties
hinders system’s ability to flexibly accommodate the highly
diverse needs and scenarios. When encountering a new
user (e.g., with different mobility skills or aids) or a new
environment (e.g., various acoustic and layout properties),
the interaction settings must be manually re-adjusted in a
cumbersome, non-scalable process [7]. This manual design
process is perhaps part of the reason researchers and devel-
opers tend to evaluate their carefully engineered prototyp-
ical technologies over a relatively small and homogeneous
set of users (between 3-10, e.g., [1]), with pre-assumed user
and route characteristics and simplified navigation tasks. In-
deed, based on our preliminary findings from our on-going
project, existing assistive guidance systems are easily con-
founded when encountering the diverse information needs
of naturalistic real-world users and settings. The aforemen-
tioned two challenges hinder the development of automatic
personalization tools, and result in brittle implementations
that fail to anticipate and react to user needs when encoun-
tering a new user, device, or scenario. The key technical
merit of our project lies in introducing a principled frame-
work and model for facilitating personalized and safe inter-
action when assisting individuals with visual impairments
navigating throughout dense and dynamic settings.
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Figure 1. Our goal is to develop intelligent systems that can consider the needs of a walker with visual impairments when seamlessly
maintaining situational awareness. Left: Real-world image from the perspective of a participant in our user study, with overlaid navigational
instructions provided by an Orientation and Mobility (O&M) expert. Right: First-person view of a simulated pedestrian navigating an urban
sidewalk with model generated instructions overlaid.

1. Summary of Completed Research
Despite ample publicly available benchmarks, there are

no current datasets suitable for model training and evalua-
tion of timely, safety-critical, and ability-aware navigation
guidance to walkers with visual impairments. Towards ex-
ploring real-time information needs and fundamental chal-
lenges in our novel modeling task, we collect the first multi-
modal real-world benchmark with recorded Orientation and
Mobility (O&M) experts instructional guidance in dynamic
urban walking navigation settings. We then leverage the
real-world study to inform the design of a novel realistic
simulation environment. Altogether, the two benchmarks
will be used to produce complementary analysis while tack-
ling inherent issues in safety, cost, and scalability of real-
world data collection with participants with visual impair-
ments. The two benchmarks will also be used for train-
ing assistive AI system and comprehensively analyze limi-
tations in current personalization techniques across diverse
scenarios (e.g., users, harsh weathers, geographical loca-
tions).

Real-World User Study and Dataset: We are the first to
collect synchronized multi-modal camera and sensor data
together with their corresponding in-situ expert instruc-
tional guidance. We recruited 13 participants through the
mailing list of a local outreach services center, including 10
individuals with visual impairments and three OM guides
(to analyze expert diversity). We sought to collect video
and sensor measurements during navigation in real-world
urban scenes with expert guidance from the perspective
of an assistive system, i.e., a first-person camera. There-
fore, in order to capture naturalistic navigation behavior and
real-world challenges associated with assistive technolo-
gies, we opted for a remote guidance solution. While the
limited perspective incorporates a practical challenge, this
study design choice also lends to scalability due to minimal
mount configuration, ease of data collection, and ultimate
large-scale deployments on commodity devices, e.g., smart-
phones. We asked the participants to navigate an unfamiliar

110m planned route through a busy business district with
typical weekday traffic, including pedestrians, vehicles, and
shops. We ensured control for confounding factors: partici-
pants were called on different days and on varying hours.
The equipment included a 5G smartphone, an additional
GoPro camera mounted to a chest harness, and a Blue-
tooth bone-conducting headset to provide instructions with-
out hindering acoustic reasoning. GPS, IMU, audio, and
camera data were all captured synchronously. We note that
the restricted forward view provided by a chest-mounted
camera rarely provided a complete view of the surroundings
and potential obstacles. This necessitated crucial collabo-
ration between the navigator and the guide, an interactive
functionality that we wish to embody in our assistive agent.
For instance, in order to gather sufficient visual information
for safe navigation the expert may ask the navigator to stop
and scan the environment by rotating their torso to pan and
tilt the camera.

Need for Personalization: We empirically found guides to
tailor and provide additional feedback, e.g., regarding ob-
stacles and requests to stop, automatically to accommodate
certain participants. We also found expert guides to person-
alize to mobility aids, e.g., with less obstacle descriptors for
a participant using a guide-dog compared to those using a
walking cane. Previous experience with assistive technolo-
gies showed statistically significant differences in the num-
ber of interventions along the route as well as navigation
time along the walking portion of the route (p < .05). The
need to tailor instructions across participants and settings
was common in participant feedback. For instance, a partic-
ipant mentioned: “The best advice I can give is to ask each
person how much information they would like, everyone has
different preferences for how much information they would
like.”. Others expressed explicit preferences, e.g., “There’s
a lot my dog can help me go around but it is not the same
as somebody telling you where the holes are along the way,
the kind of information others find obvious while walking
around.”



Simulation Environment for Personalized AI Training:
To begin addressing issues in data scarcity in the context
of accessibility, we developed an accessibility-centered re-
alistic simulation environment (Fig. 1, right). The simu-
lation supports generation of ample amounts of finely an-
notated, multi-modal data in a safe, cheap, and privacy-
preserving manner with various edge cases, diverse set-
tings, and different walking behaviors. We spawn nav-
igating pedestrians and capture a first-person image per-
spective together with complete ground-truth information
of surrounding landmarks and obstacles (i.e., 3D location
of buildings, pedestrians, sidewalks, trees, etc.). Given a
current walker position, a sampled goal, and a constructed
Bird’s-Eye-View (BEV) image, we extract walkable space
and obtain a path using A∗ planning. We then employ the
planned path to construct instructional sentences. We con-
textualize the instructions by extracting surrounding obsta-
cle information from the BEV along the path and inform
regarding obstacles in proximity (e.g., pedestrians, build-
ing). While this process can be used to generate standard-
ized instructions, we leverage insights from our real-world
study together with prior literature in orientation and mobil-
ity strategies to consider relevant navigation strategies and
immediate information needs. For instance, we leverage
clock orientation to indicate turning which has been found
to be more intuitive for users with visual impairments.

Meta Imitation Learning for Personalization: Manually
designing a generalized assistive instruction generation ex-
pert is challenging. To learn to generate human-like in-
structions, we assume a dataset with expert instructional
guidance (available in our real-world and synthetic bench-
marks). We can then optimize a model to imitate expert
instructions, i.e., using supervised learning [5, 8]. We then
leverage meta-learning [2, 3, 6, 9] to personalize the model.
Meta learning is inspired by humans’ learning ability of
adapting their knowledge of representations, beliefs and
predictions as they encounter new tasks. This is typically
accomplished by training a meta-model on a diverse set of
tasks, such that the meta-model can in turn train and output
a model on a new task using only a few training examples.
In our context, system usability pivots on the system’s abil-
ity to quickly personalize its model from little data. Our pre-
liminary results of personalization over the real-world data
suggest significant performance gains. Within five samples,
the model’s accuracy when imitating the expert increases
by about 200% (on average across all participants). How-
ever, despite the improvement, we find absolute model per-
formance to be quite low for our assistive instruction task
(5-15% accuracy with across various language metrics and
participants). Moreover, personalization can also worsen
performance for a subset of the participants. As our work
provides the first step towards automatically personalized
assistive navigation systems, future work can now use our

tools to rigorously analyze and tackle such issues. We are
also organizing a workshop this year to begin tackling fun-
damental issues in model design and evaluation for assisting
individuals with visual impairments.

2. Future Plans
We plan to continue working on the meta learning frame-

work in our simulation so it may be validated safely in a
follow-up real-world study. We will be working on this dur-
ing the Summer and Fall semesters. We will then submit
a paper with our novel benchmarks and findings, targeting
machine learning and computer vision conferences, such as
the International Conference on Learning Representations
and the International Conference on Computer Vision and
Pattern Recognition. Various aspects of this project, from
the simulation environment and up to meta learning for
personalization, will also become part of Jimuyang’s and
Ruizhao’s PhD dissertations. We will target relevant fund-
ing in the Fall, such as the NSF programs for Smart and
Connected Communities (SCC) and Computer and Infor-
mation Science and Engineering (CISE).
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