
EasyCSPeasy: Automatic XSS Prevention
(Final Report)

Gianluca Stringhini (PI), Manuel Egele (Co-PI), Beliz Kaleli (RA)

This project funded PhD candidate Beliz Kaleli for two
semesters. During this time, Beliz developed a prototype of
the EASYCSPEASY system and is in the process of finalizing
it. She has also tested EASYCSPEASY on ten popular websites
including Facebook and Twitter, showing that our approach
works and does not break the website’s functionality. In
the rest of this document, we first summarize the research
conducted during this project. We then discuss our future
publication and funding plans.

I. SUMMARY OF THE COMPLETED RESEARCH

Introduction. Web-security is the cornerstone of our online
life, and allows us to safely engage in online activities such
as shopping, banking, and the management of medical records
(e.g., BU’s Healthway to curb the spread of COVID-19 on
campus1). The Content Security Policy (CSP) framework
ratified by the World Wide Web Consortium (W3C) has de-
veloped into a central pillar to enable a secure and trustworthy
Web. Unfortunately, the policy language has become suffi-
ciently expressive and complicated leading to most websites
eschewing the use of CSP altogether.2 As hypothesized by
prior work [10], the reason is that defining the policy that
guards a given website is a labor-intensive and largely manual
task that does not scale well with the ever-changing nature
of today’s Web. In this project, we developed a novel and
automated capability that intelligently builds a security policy
for arbitrary websites. Our system first, automatically extracts
a fine-grained CSP based on a website’s code. Second, it
rewrites the source code of the web-application to ensure
developer-intended full functionality of the website.
Background. The Open Web Application Security Project
(OWASP) periodically publishes a list of Top-10 [2] web se-
curity threats. Cross-site scripting (XSS) is constantly featured
in this list. Despite significant research and engineering efforts
to thwart XSS vulnerabilities, the continuous presence on the
Top-10 list is testament to the fact that XSS remains a prolific
threat to web-security. At its core, XSS is an injection vulnera-
bility where an adversary tricks a victim’s browser to interpret
the attacker’s injected script code to execute in the context of
a benign but buggy victim website. The consequences of a
XSS attack are dire as the adversary can commonly access
the victim’s authentication tokens (cookies) and hence gain
the capability to impersonate the victim on the website (e.g.,
to commandeer an online banking account). The most popular
countermeasure against XSS is the Content Security Policy
(CSP) [1] which essentially restricts what script content a

1Note that the PIs identified a number of significant web-security flaws in
BU’s Healthway portal. After we responsibly disclosed these issues to BU’s
security team, the underlying problems have been addressed by the vendor,
thus leading to an overall more secure Healthway experience.

2A non-representative analysis shows that neither the BU, nor the CISE,
nor the Healthway websites make use of CSP.

user’s browser should execute when visiting a website. One
of the main challenges for the widespread deployment of CSP
is the process of policy generation. Modern websites are an
amalgamation of content originating from a slew of providers
(e.g., social interaction buttons, advertisements, or scripts to
monitor visitor statistics), and the web-developer cannot easily
know what script content will appear on their site. This makes
the development of effective policies particularly challenging.
CSP is designed to allow the web server to instruct the
web browser to restrict the resources that a page can load
such as images, scripts, and objects. Each resource type has
a directive in CSP in which the allowed domains or other
CSP options are set. The following is an example of a very
simple CSP policy which permits the loading of scripts from
example.com and prevents the loading of images from any
domain: Content-Security-Policy: script-src
http://example.com; img-src ’none’. The re-
sponsibility to configure a CSP policy falls on the developer
of a Web application. However, defining such a policy is
challenging, especially in the context of complicated real-
world web applications which use many external resources.
Previous research [1] found that the average web developer
lacks sufficient understanding of CSP to design a secure policy.
As a consequence, developers either implement an overly-
permissive (insecure) policy or omit the policy altogether. It
is therefore not surprising that the adoption of CSP in the
wild is low [10] (around 10% for Alexa top 10K [3]). To
help web developers devise secure CSPs, researchers have
proposed two automated approaches. Pan et al. [8], introduced
CSPAutoGen, a tool that trains so-called templates for each
domain, generates CSPs based on the templates, rewrites
incoming webpages on the fly to apply those generated CSPs,
and then serves those rewritten webpages to client browsers.
An issue with this approach is, CSPAutoGen has to run an
additional server to do the template-matching and to store
scripts. This additional server also needs security measures.
Moreover, the whole template-matching and rewriting process
should execute for each url fetch. These two phenomena
complicate the deployment of CSPAutoGen which adds more
confusion to CSP adoption. Prior research has demonstrated
that CSP policies that exclusively rely on allowlists are inher-
ently insecure and bypassable [11], for example by exploiting
open redirect vulnerabilities. Calzavara et al. [6], presented
CCSP in which they generate a final CSP which is the
lowest bound of the CSPs provided by the web developer
and the content provider. This approach however still requires
considerable manual effort by web developers as well as
content providers, and is still based on allowlists. To prevent
allowlist vulnerabilities, CSP Level 2 introduced nonces [5],
random strings generated by the server every time a website is
requested. When a nonce is specified in the policy, all scripts
which carry that nonce as an attribute are allowed to execute.



System Overview. The EASYCSPEASY system automatically
derives CSP policies to prevent XSS while allowing the
website to operate as intended by its developer. The CSP
specification states that when multiple policies are present,
each of them has to be enforced. Our system defines one
nonce-based policy to check the script nonce attributes and
one allowlist-based policy to check the script sources. This
multiple CSP approach can mitigate most types of XSS attacks
such as so-called script gadget attacks [7] along with other
known attacks such as Open Redirect and JSONP vulnerabili-
ties. To automatically build the two policies, EASYCSPEASY
has to tackle two challenges. The first challenge is to identify
an exhaustive list of domain names from where the scripts
are being loaded. EASYCSPEASY distills that list into the
first policy that contains the allowlist. Second, it needs a
mechanism to recognize scripts that “belong” on the website.
EASYCSPEASY then rewrites such scripts with a nonce and
hence allows their execution. EASYCSPEASY system has
the following three phases to accomplish these challenges:
Crawling, CSP Generation and Rewriting.

Crawling: We leverage python-sitemap, a python library to
generate a sitemap for a given seed url. We modified the source
code of this library to output a file called urls.txt that contains
all public urls of the given website. This file will later on
be used by the CSP Generator as an input. CSP Generator
will visit each url inside urls.txt to collect script sources. Our
crawler is also capable of taking cookies as input and crawl
behind-the-login pages.

CSP Generation: The goal of CSP generator is to collect
script resource urls given a clean target url to devise the
allowlist. CSP Generator takes urls.txt as an input and visits all
urls with a headless Chrome instance. We use the seleniumwire
python library as a man-in-the-middle proxy to catch the
requests and responses made while visiting the urls. The
request interceptor of CSP Generator, intercepts the request
to add the cookies and records the requests that are made to
same-party or third-party javascript resources.

Rewriting: In the rewriting phase, we have the following
two main goals: modify the source code of a web-application
to add nonces to scripts so that CSP will recognize them as
benign and allow execution and set the proper CSP header for
the webpage.

A web-application can be based on different backend lan-
guages such as PHP and Ruby. It can also be built on a content
management system (CMS) such as Wordpress and Drupal.
According to W3C [9], 36% of websites do not use any CMS
and 65% of websites that use one, use Wordpress which is
based on PHP so we decided to build our system for PHP. Our
python-based program goes over all PHP files in the source
code and replaces script tags with a script tag concatenated
with the nonce attribute.

One of the ways to set a CSP header is to use PHP
header() function. The proper location to add this function
can change according to the used CMS. For example, by
default, Wordpress has a file called header.php where we
can add the desired CSP configuration. The location of this
header.php file is always the same by default and should not
be altered. Hence, to set the CSP pairs, we locate this file
and add our generated CSP pair by using two header()
functions.
Evaluation of Effectiveness. The source code of real world

popular websites is not publicly available. Testing our ap-
proach on these websites is however important, since it
would be an indication that EASYCSPEASY can protect them
from XSS without breaking their functionality. To addres this
issue we developed a proxy testing system, and tested it
on popular websites obtained from the Tranco [4] ranking.
Our proxy-system outputs a similar HTML code given a
URL to our EASYCSPEASY system. The difference between
them is that the proxy-system modifies the response from the
server on the fly when a webpage is requested by the client
whereas EASYCSPEASY runs on the server-side once per
web-application. We implemented the proxy-system in python
using the mitmproxy library to intercept the requests and the
responses. We used the BeautifulSoup package to parse the
server responses. The process of the proxy-system is similar
to EASYCSPEASY. We assume the given url is clean (does
not contain attacker injected code) since EASYCSPEASY runs
on the server-side, urls are guaranteed to be clean. We visit
each input url and collect script resources then we modify the
server response to add nonces to scripts and add the curated
CSP to the HTML response. We tested 10 pages each for
10 popular websites including twitter.com, facebook.com and
reddit.com. By manual analysis, we observed that 9 out of
10 websites were still fully-functional when modified with
our proxy-system, indicating that EASYCSPEASY could be
deployed on those websites.

We are now in the process of implementing a version
of EASYCSPEASY that automatically re-writes the source
code of popular content management system applications like
Wordpress and Drupal to set up our CSP policies.

II. PUBLICATION AND FUTURE FUNDING PLANS

Publication plans. We plan to wrap up the work on EASYCS-
PEASY by the end of the Fall semester. We will then submit a
paper on the system and its results to a computer security
conference early 2022. Potential venues include the ACM
Conference on Computer and Communications Security (CCS)
and the Conference on Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA). This work will also
become part of Beliz’s PhD dissertation.
Funding plans. As discussed in the original proposal, now
that we have a working prototype of our anti-XSS solution we
plan to write a grant proposal to get additional funding and
continue working in this space. More precisely, we plan to
send a whitepaper to our contacts at ONR, ARL, and AFOSR
to gauge their interest in the project. We also plan to write
an NSF proposal and submit it to the Secure and Trustworthy
Cyberspace (SaTC) program in Spring 2022.

REFERENCES

[1] “Content security policy level 3,” https://w3c.github.io/webappsec-
csp/#multiple-policies.

[2] “Owasp top ten,” https://owasp.org/www-project-top-ten/.
[3] “The top 500 sites on the web.” https://www.alexa.com/topsites.
[4] “Tranco,” https://tranco-list.eu/.
[5] “W3c,” https://www.w3.org/.
[6] S. Calzavara, A. Rabitti, and M. Bugliesi, “CCSP: Controlled relaxation

of content security policies by runtime policy composition,” in Proceed-
ings of USENIX Security Symposium, Vancouver, BC, August 2017.

[7] S. Lekies, K. Kotowicz, S. Groß, E. A. Vela Nava, and M. Johns, “Code-
reuse attacks for the web: Breaking cross-site scripting mitigations
via script gadgets,” in Proceedings of ACM SIGSAC Conference on
Computer and Communications Security (CCS), Texas, USA, October
2017.

2



[8] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou, “Cspautogen:
Black-box enforcement of content security policy upon real-world
websites,” in Proceedings of ACM SIGSAC Conference on Computer
and Communications Security (CCS), Vienna, Austria, October 2016.

[9] Q-Success, “Usage Statistics and Market Share
of Content Management Systems for Websites,”
https://w3techs.com/technologies/overview/content management/all,
Aug. 2019.

[10] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock, “Complex

security policy? a longitudinal analysis of deployed content security
policies,” in Proceedings of Network and Distributed System Security
Symposium (NDSS), California, USA, February 2020.

[11] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc, “Csp is
dead, long live csp! on the insecurity of whitelists and the future of
content security policy,” in Proceedings of ACM SIGSAC Conference
on Computer and Communications Security (CCS), Vienna, Austria,
October 2016.

3


