
Online Reinforcement Learning in Large and
Structured Environments

Sayak Ray Chowdhury

CISE Postdoctoral Fellow
Boston University

sayak@bu.edu

January 28, 2022

Reinforcement learning

Reinforcement learning is concerned with learning to take
actions to maximize rewards, by trial and error, in environments

that can evolve in response to actions

I Traditional Search Goal: Find a policy with high total reward
using as few interactions with the environment as possible

I Optimization Goal: Maximize total reward / Minimize regret
(shortfall) in total reward compared to an optimal policy
I Applications: Recommendation systems, Sequential

investment, Dynamic resource allocation
I No separate budget to purely exploring the environment
I Exploration and Exploitation must be carefully balanced

1 / 33

Reinforcement learning

Reinforcement learning is concerned with learning to take
actions to maximize rewards, by trial and error, in environments

that can evolve in response to actions

I Traditional Search Goal: Find a policy with high total reward
using as few interactions with the environment as possible

I Optimization Goal: Maximize total reward / Minimize regret
(shortfall) in total reward compared to an optimal policy

I Applications: Recommendation systems, Sequential
investment, Dynamic resource allocation

I No separate budget to purely exploring the environment
I Exploration and Exploitation must be carefully balanced

1 / 33

Reinforcement learning

Reinforcement learning is concerned with learning to take
actions to maximize rewards, by trial and error, in environments

that can evolve in response to actions

I Traditional Search Goal: Find a policy with high total reward
using as few interactions with the environment as possible

I Optimization Goal: Maximize total reward / Minimize regret
(shortfall) in total reward compared to an optimal policy
I Applications: Recommendation systems, Sequential

investment, Dynamic resource allocation
I No separate budget to purely exploring the environment
I Exploration and Exploitation must be carefully balanced

1 / 33

Outline

Reinforcement learning algorithms for Regret Minimization in
large and structured (unknown) environments

I Part 1: Online learning in large scale Multi-armed Bandits

I Part 2: Online learning in large Markov Decision Processes

Main Challenge: Generalizing learned knowledge across
unseen states and actions

2 / 33

Outline

Reinforcement learning algorithms for Regret Minimization in
large and structured (unknown) environments

I Part 1: Online learning in large scale Multi-armed Bandits

I Part 2: Online learning in large Markov Decision Processes

Main Challenge: Generalizing learned knowledge across
unseen states and actions

2 / 33

Outline

Reinforcement learning algorithms for Regret Minimization in
large and structured (unknown) environments

I Part 1: Online learning in large scale Multi-armed Bandits

I Part 2: Online learning in large Markov Decision Processes

Main Challenge: Generalizing learned knowledge across
unseen states and actions

2 / 33

Part 1: Online Learning in large-scale Multi-armed Bandits1

1S. R. Chowdhury and A. Gopalan, “On kernelized multi-armed bandits”,
ICML, 2017.

3 / 33

Background: Multi-armed Bandit

1 2 3 N

N arms with unknown parameters µ1, . . . , µN
(Think Bernoulli)

4 / 33

Background: Multi-armed Bandit

1 2 3 N

Time 1

y1 ∼ µ2

4 / 33

Background: Multi-armed Bandit

1 2 3 N

Time 2

y2 ∼ µ1

4 / 33

Background: Multi-armed Bandit

1 2 3 N

Time 3

y3 ∼ µ3

4 / 33

Background: Multi-armed Bandit

1 2 3 N

Time 4

y4 ∼ µ2

4 / 33

Background: Multi-armed Bandit

1 2 3 N

Time T

yT ∼ µN

4 / 33

Upper Confidence Bound algorithm [Auer et al.’02]
Idea: Be optimistic under uncertainty !

µ̂1 µ̂2 µ̂N

Play arm it = argmax
16i6N

{
µ̂i +

√
2 log t
ki

}

5 / 33

Variation: Linear Bandits [Dani et al.’08, ...]

I Assumption in MAB: Arms’ rewards are independent
I Often, more structure / coupling is present

arm 1
arm 2

arm 3

arm 4
arm 5

Problem setting
I Each arm i is a vector xi ∈ Rd

I Playing arm it gives reward

yt = θ>xit + εt

I θ ∈ Rd is unknown and
εt ∼ N (0, σ2) is noise

6 / 33

Variation: Linear Bandits [Dani et al.’08, ...]

I Assumption in MAB: Arms’ rewards are independent
I Often, more structure / coupling is present

θ̂t

Ct

LinUCB algorithm
I Build a point estimate (least

squares estimate) θ̂t and a
confidence region (ellipsoid) Ct

I Play the most optimistic action
w.r.t. this ellipsoid

it = argmax
16i6N

max
θ∈Ct

(
θ>xi

)

6 / 33

Generalization: Black-box optimization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

f(
x)

x

D

Problem setting:

I Maximize an unknown utility
function f : D → R

I Sequentially query f with
points x1, x2, . . . , xT

I Noisy point evaluations:
yt = f(xt) + εt, where
εt ∼ N (0, σ2) is the noise

Goal: Maximize cumulative (expected) utility:
>∑
t=1

E[yt]

or, equivalently,

Minimize cumulative regret:
>∑
t=1

(
f(x?)− f(xt)

)

7 / 33

Application: Hyperparameter tuning
Hyperparameters in DeepNN training
I Learning rate
I Regularizer
I Number of hidden layers
I Number of units in each layer
I Optimizer (SGD, Adagrad, Adam, ...)
I Nonlinearity (Relu, Softmax, ...)

DeepNN training as Black-box optimization
I D : all possible hyperparameter configurations
I f(x) : training error for configuration x
I x? : the best set of hyperparameters

Huge (possibly infinite) set of hyperparameters to choose from !!!

8 / 33

Possible approaches

Grid search, Random search
I Do not use information from previous searches
I Not good when point evaluations are expensive

Need to make an educated decision about where to search next

Bayesian optimization

1. Learn a (probabilistic) model for f

2. Use model predictions and uncertainty to select query xt

3. Update model with data (xt, yt) and repeat.

9 / 33

Possible approaches

Grid search, Random search
I Do not use information from previous searches
I Not good when point evaluations are expensive

Need to make an educated decision about where to search next

Bayesian optimization

1. Learn a (probabilistic) model for f

2. Use model predictions and uncertainty to select query xt

3. Update model with data (xt, yt) and repeat.

9 / 33

Regularity assumption

I f is an element of a reproducing kernel Hilbert space (RKHS) Hk
associated with a kernel k : D ×D → R

I Induces smoothness: |f(x)− f(x′)| 6 ‖f‖k ‖ϕ(x)− ϕ(x′)‖k

10 / 33

Regularity assumption

I f is an element of a reproducing kernel Hilbert space (RKHS) Hk
associated with a kernel k : D ×D → R

f

Hk

I Induces smoothness: |f(x)− f(x′)| 6 ‖f‖k ‖ϕ(x)− ϕ(x′)‖k

10 / 33

Regularity assumption

I f is an element of a reproducing kernel Hilbert space (RKHS) Hk
associated with a kernel k : D ×D → R

f

Hk
D

x

ϕ(x)

f(x) = 〈f, ϕ(x)〉k

I Induces smoothness: |f(x)− f(x′)| 6 ‖f‖k ‖ϕ(x)− ϕ(x′)‖k

10 / 33

Regularity assumption

I f is an element of a reproducing kernel Hilbert space (RKHS) Hk
associated with a kernel k : D ×D → R

f

Hk
D

x

ϕ(x)

f(x) = 〈f, ϕ(x)〉k

x′

ϕ(x′)

k(x, x′) = 〈ϕ(x), ϕ(x′)〉k

I Induces smoothness: |f(x)− f(x′)| 6 ‖f‖k ‖ϕ(x)− ϕ(x′)‖k

10 / 33

Regularity assumption

I f is an element of a reproducing kernel Hilbert space (RKHS) Hk
associated with a kernel k : D ×D → R

f

Hk
D

x

ϕ(x)

f(x) = 〈f, ϕ(x)〉k

x′

ϕ(x′)

k(x, x′) = 〈ϕ(x), ϕ(x′)〉k

I Induces smoothness: |f(x)− f(x′)| 6 ‖f‖k ‖ϕ(x)− ϕ(x′)‖k

10 / 33

Algorithm Design

Idea: Gaussian Process (GP) regression

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

x

f(
x
)

µ−βσ

µ+βσ

µ

I Unknown utility function f
modeled by Gaussian
processes, f ∼ GP (0, k(x, x′))

I Posterior of f given t noisy
observations Ht = (xτ , yτ)tτ=1

is a GP

f |Ht ∼ GP(µt(x), kt(x, x
′))

Posterior mean and covariance:

µt(x) = kt(x)>(Kt + σ2I)−1y1:t

kt(x, x
′) = k(x, x′)− kt(x)>(Kt + σ2I)−1kt(x

′)

11 / 33

Algorithm Design

Idea: Gaussian Process (GP) regression

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

µ
t
+βσ

t

µ
t
−βσ

t

µ
t

I Unknown utility function f
modeled by Gaussian
processes, f ∼ GP (0, k(x, x′))

I Posterior of f given t noisy
observations Ht = (xτ , yτ)tτ=1

is a GP

f |Ht ∼ GP(µt(x), kt(x, x
′))

Posterior mean and covariance:

µt(x) = kt(x)>(Kt + σ2I)−1y1:t

kt(x, x
′) = k(x, x′)− kt(x)>(Kt + σ2I)−1kt(x

′)

11 / 33

Algorithm 1: Improved GP-UCB

Key Idea: Choose the point with highest Upper Confidence Bound

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

µ
t

x
t

At each round t, choose the
query point xt using current
GP posterior and a suitable
parameter βt:

xt ∈ argmax
x∈D

µt(x) + βtσt(x)

First appeared as GP-UCB [Srinivas et al.’10] −→ We provide a tighter
regret bound (O (log T) improvement!)

12 / 33

Algorithm 1: Improved GP-UCB

Key Idea: Choose the point with highest Upper Confidence Bound

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

µ
t

x
t

At each round t, choose the
query point xt using current
GP posterior and a suitable
parameter βt:

xt ∈ argmax
x∈D

µt(x) + βtσt(x)

First appeared as GP-UCB [Srinivas et al.’10] −→ We provide a tighter
regret bound (O (log T) improvement!)

12 / 33

IGP-UCB achieves sublinear regret [CG’17]

Regret bound: O
(
γT

√
T log

(
1
δ

))
with probability at least 1− δ

“Information Complexity”: Captures reduction in uncertainty after
observing noisy rewards (depends on the kernel function)

N (0, σ2I)

f ∼ GP(0, k)

f1:T =

f(x1)
...

f(xT)

 y1:T =

y1...
yT

γT = max
{x1,...xT }

I(y1:T , f1:T)

13 / 33

IGP-UCB achieves sublinear regret [CG’17]

Regret bound: O
(
γT

√
T log

(
1
δ

))
with probability at least 1− δ

“Information Complexity”: Captures reduction in uncertainty after
observing noisy rewards (depends on the kernel function)

N (0, σ2I)

f ∼ GP(0, k)

f1:T =

f(x1)
...

f(xT)

 y1:T =

y1...
yT

γT = max
{x1,...xT }

I(y1:T , f1:T)

13 / 33

IGP-UCB achieves sublinear regret [CG’17]

Regret bound: O
(
γT

√
T log

(
1
δ

))
with probability at least 1− δ

“Information Complexity”: Captures reduction in uncertainty after
observing noisy rewards (depends on the kernel function)

N (0, σ2I)

f ∼ GP(0, k)

f1:T =

f(x1)
...

f(xT)

 y1:T =

y1...
yT

γT = max
{x1,...xT }

I(y1:T , f1:T)

13 / 33

Algorithm 2: Gaussian Process Thompson Sampling

What would a “Bayesian” do?
I Sample a random function and choose its maximizer
I Prehistoric [Thompson’33]

At each round t:
I Sample a function ft

from current GP
posterior

I Choose the query point
xt = argmax

x∈D
ft(x)

Regret bound: O
(
γT

√
dT log

(
1
δ

))
with probability at least 1−δ

14 / 33

Algorithm 2: Gaussian Process Thompson Sampling

What would a “Bayesian” do?
I Sample a random function and choose its maximizer
I Prehistoric [Thompson’33]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

f
t

µ
t

At each round t:
I Sample a function ft

from current GP
posterior

I Choose the query point
xt = argmax

x∈D
ft(x)

Regret bound: O
(
γT

√
dT log

(
1
δ

))
with probability at least 1−δ

14 / 33

Algorithm 2: Gaussian Process Thompson Sampling

What would a “Bayesian” do?
I Sample a random function and choose its maximizer
I Prehistoric [Thompson’33]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

f
t

µ
t

x
t At each round t:

I Sample a function ft
from current GP
posterior

I Choose the query point
xt = argmax

x∈D
ft(x)

Regret bound: O
(
γT

√
dT log

(
1
δ

))
with probability at least 1−δ

14 / 33

Algorithm 2: Gaussian Process Thompson Sampling

What would a “Bayesian” do?
I Sample a random function and choose its maximizer
I Prehistoric [Thompson’33]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x
)

f
t

µ
t

x
t At each round t:

I Sample a function ft
from current GP
posterior

I Choose the query point
xt = argmax

x∈D
ft(x)

Regret bound: O
(
γT

√
dT log

(
1
δ

))
with probability at least 1−δ

14 / 33

Numerics

f sampled from RKHS
(RBF kernel)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Rounds

C
u
m
u
la
ti
v
e
R
eg
re
t

GP-PI

GP-EI

GP-TS

GP-UCB

IGP-UCB

I IGP-UCB improves over
GP-UCB ,,

I GP-TS fares well ,

Temperature Sensor Data
(Intel Berkeley Research lab)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Rounds

C
u
m
u
la
ti
v
e
R
eg
re
t

GP-PI

GP-EI

GP-TS

GP-UCB

IGP-UCB

I IGP-UCB performs similar to
GP-UCB �

I GP-TS performs the best ,

15 / 33

Variation: Heavy-tailed kernelized bandits2

eg. Student’s-t, Pareto, Cauchy etc.

Motivation:

I Distribution of delays in
communication networks

I Bursty traffic flow distributions
I Price fluctuations in financial

and insurance data

I Heavy-tailed payoffs: E
[
|yt|2

]
< +∞

I Results: Regret upper and lower bounds of order ≈ γT
√
T

Bounded second-moment sufficient for O(
√
T) regret!

2S. R. Chowdhury and A. Gopalan, “Bayesian Optimization under
Heavy-tailed Payoffs”, NeurIPS, 2019.

16 / 33

Part 2: Online Learning in Large-scale Markov Decision Processes3

3S. R. Chowdhury, A. Gopalan and O.-A. Maillard, “Reinforcement Learning
in Parametric MDPs with Exponential Families”, AISTATS, 2021.

17 / 33

Markov Decision Process

We consider learning in an episodic MDP {S,A, R, P,H}

Environment

Agent

ActionState
Reward

I State space S ⊂ Rm

I Action space A ⊂ Rn

I Transition probabilities
P : S ×A → ∆(S)

I Reward function
R : S ×A → [0, 1]

I Finite episode length H ∈ N

s1 s2 sH sH+1
a1

r1

aH

rH

a2

r2

aH−1

rH−1

18 / 33

Markov Decision Process

We consider learning in an episodic MDP {S,A, R, P,H}

Environment

Agent

ActionState
Reward

I State space S ⊂ Rm

I Action space A ⊂ Rn

I Transition probabilities
P : S ×A → ∆(S)

I Reward function
R : S ×A → [0, 1]

I Finite episode length H ∈ N

s1 s2 sH sH+1
a1

r1

aH

rH

a2

r2

aH−1

rH−1

18 / 33

Parameterized MDP – Queuing System

Transitions are parameterized by θ – unknown to the agent a priori

I Single queue with N states, discrete-time
I Bernoulli(λ) arrivals at every state
I 2 actions: (Bernoulli) service rates {µ1, µ2}
I Assume service rates known, uncertainty in λ only

19 / 33

Online Reinforcement Learning

I MDP parameter θ is unknown to the decision maker a priori
I Must LEARN optimal policy - what action to take in each state to

maximize the cumulative reward

E

[
T∑
t=1

H∑
h=1

R(st,h, at,h)

]

or, equivalently, minimize the cumulative regret

E

[
T∑
t=1

H∑
h=1

R(st,h, a
?
t,h)

]
− E

[
T∑
t=1

H∑
h=1

R(st,h, at,h)

]
,

I Trade-off: Explore the state space or Exploit existing knowledge to
design good current policy?

20 / 33

Online reinforcement learning

I Upper confidence-based approaches: Build confidence intervals
per state-action pair, be optimistic!
I Rmax [Brafman-Tennenholtz’01]
I UCRL2 [Jaksch et al.’07]

I Key idea: Maintain estimates + high-confidence sets for
transition probabilities for every state-action pair

I “Wasteful” if transitions have structure/relations

Parameterized MDP: Transitions are described by a finite dimen-
sional parameter – unknown to the agent a priori

21 / 33

Online reinforcement learning

I Upper confidence-based approaches: Build confidence intervals
per state-action pair, be optimistic!
I Rmax [Brafman-Tennenholtz’01]
I UCRL2 [Jaksch et al.’07]

I Key idea: Maintain estimates + high-confidence sets for
transition probabilities for every state-action pair

I “Wasteful” if transitions have structure/relations

Parameterized MDP: Transitions are described by a finite dimen-
sional parameter – unknown to the agent a priori

21 / 33

Example: Linear quadratic regulator

Berstekas’04:

State transitions: s′ = As+Ba+ η

I A ∈ Rm×m and B ∈ Rm×n are unknown matrices
I Noise η ∼ N (0, σ2I) with known variance

Rewards: R(s, a) = s>Ps+ a>Qa

I P ∈ Rm×m and Q ∈ Rn×n are known matrices

22 / 33

Generic models: Linear MDPs

Yang and Wang’19: P (s′|s, a) = ψ(s′)>Mϕ(s, a)

Jin et al.’19: P (s′|s, a) = θ>ν(s′, s, a)

I Known feature functions: ψ(s′), ϕ(s, a) and ν(s′, s, a)

I Unknown parameters: M (a matrix) and θ (a vector)
I Special case: Tabular finite-state, finite-action MDP

DO NOT cover several popular models:
I Linearly controlled systems [Bertsekas’ 04]
I Factored MDPs [Kearns and Koller’ 99]

23 / 33

Our Model: Linear Exponential Family [CGM’21]

log-transition probabilities are linear:

Pθ(s
′|s, a) = exp

(
θ>F (s′, s, a)− Zs,a(θ)

)
I θ ∈ Rd is the unknown parameter of the model
I F (s′, s, a) are known features (sufficient statistic)
I Zs,a(θ) is the log-partition function

(Captures a wide range of distributions, e.g., Gaussian, Bernoulli,
Gamma, Chi-square, ...)

24 / 33

Algorithm: Exponential family UCRL (Exp-UCRL)

Key idea: Maintain estimates + high-confidence sets for θ

At each episode t:

1. Compute the penalized maximum-likelihood estimate (MLE) θ̂t of θ
from data {sτ,h, aτ,h, sτ,h+1}τ<t,h≤H :

θ̂t ∈ argmin
θ∈Rd

∑
τ<t,h≤H

− logPθ(sτ,h+1|sτ,h, aτ,h) +
1

2
‖θ‖2

2. Build a confidence set around the MLE:

Ct=

θ ∣∣∑
τ<t,h≤H

KL
(
Pθ̂t(·|sτ,h, aτ,h), Pθ(·|sτ,h, aτ,h)

)
+

1

2

∥∥∥θ̂t − θ∥∥∥2≤βt

3. Compute the optimal policy w.r.t. Ct (by value iteration,
simulation,...) and play actions prescribed by that policy

25 / 33

Exp-UCRL attains sublinear regret [CGM’21]

Concentration inequality: P
[
∀t ∈ N, θ ∈ Ct

]
≥ 1− δ

I A general result to design high-confidence sets for adaptive
regression in conditional exponential families

I Generalize known results for linear bandits [Abbasi-Yadkori et
al.’11] and GLM bandits [Filippi et al.’10]

Regret Bound: O
(

β√
α
H2d

√
T log(1/δ)

)
with probability ≥ 1−δ

α = inf
θ,s,a

λmin (Cθ[ψ(s′)|s, a])

β = sup
θ,s,a

λmax (Cθ[ψ(s′)|s, a])

Model dependent constants —
encode degree of non-linearity

26 / 33

Exp-UCRL attains sublinear regret [CGM’21]

Concentration inequality: P
[
∀t ∈ N, θ ∈ Ct

]
≥ 1− δ

I A general result to design high-confidence sets for adaptive
regression in conditional exponential families

I Generalize known results for linear bandits [Abbasi-Yadkori et
al.’11] and GLM bandits [Filippi et al.’10]

Regret Bound: O
(

β√
α
H2d

√
T log(1/δ)

)
with probability ≥ 1−δ

α = inf
θ,s,a

λmin (Cθ[ψ(s′)|s, a])

β = sup
θ,s,a

λmax (Cθ[ψ(s′)|s, a])

Model dependent constants —
encode degree of non-linearity

26 / 33

Confidence Sets in Exponential Families [CSGM’22]

A general toolkit:4 High probability confidence sets in exponential
families — applications well beyond bandits and RL

0 50 100 150 200
Sample size

2

4

6

8

10

=5%, =5.0, c=1.0
(averaged over 1000 repetitions)

Confidence sets for Chi-square
distribution

2 1 0 1 2 3 4

1

2

3

4
=5%, =1, =1, c=0.1

Joint confidence sets for (µ, σ) for
Gaussian distribution

4S. R. Chowdhury, P. Saux, A. Gopalan, O.-A. Maillard “Bregman Deviations
of Generic Exponential Families”, arxiv, 2022.

27 / 33

Variation: Privacy Concerns in RL
Reinforcement learning (RL) widely applied to personalized service:
I personalized healthcare
I virtual assistants
I social robots
I online recommendations
I ...

However, both states and rewards contain user’s sensitive information
I healthcare: age, gender, treatment history
I virtual assistants: words, voice, sentences.
I social robots: facial expressions and scores on puzzles
I online recommendations: shopping habits

How to protect all these information in a rigorous way?

28 / 33

Differential privacy

Central Model:
I The learning agent has access to users’ personal data
I Privacy protection: adversary cannot infer any particular user’s

data by observing the outputs the agent

Local Model:
I Each user protects her data at the local side
I The learning agent only has private data from users

Can we have a unified framework for both models in RL?

29 / 33

Privacy in Tabular MDPs

Private information:
I number of visits to a state-action pair n(s, a) – bits (0/1)

I number of transitions to a given state n(s′|s, a) – bits (0/1)

I rewards r(s, a) – scalars [0, 1]

The goal: release private counts with minimal amount of noise

Protection in local model:
I each user k, add independent noise, leads to sum of K noise

Protection in central model:
I Binary counting mechanism, only logK noise [Chan et al.’11]

30 / 33

Private Algorithms and Regret

Private Policy Optimization:5

I Central Model: Õ
(√

S2AH3T + S2AH3/ε
)

I Local Model: Õ
(√

S2AH3T + S2A
√
H5T/ε

)
Private Value Iteration:
I Central Model: Õ

(√
SAH3T + S2AH3/ε

)
I Local Model: Õ

(√
SAH3T + S2A

√
H5T/ε

)
Regret increases if level of privacy increases (i.e., ε decreases)

5S. R. Chowdhury and X. Zhou, “Differentially Private Regret Minimization
in Episodic Markov Decision Processes”, AAAI, 2022.

31 / 33

Numerics [CZ’22]

32 / 33

Current/Future Work

Model selection in bandits and MDPs:
I Function class (in bandits) / class of transition distributions

(in MDPs) unknown?
I How to identify the correct model class during learning?

Ethics/Privacy questions:
I How to protect users’ sensitive information (e.g.

recommendation systems, personalized treatment)?
I Fairness and transparency in policy selection?

Multi-agent systems:
I Decentralized peer-to-peer learning/ Federated learning?
I Impact of network properties, delay in communication, etc.?

33 / 33

Thank You

	Introduction
	Bandits
	Background
	kernelized bandits
	Extensions

	MDPs
	Exponential Family MDPs
	Future work

	Appendix

