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Reinforcement learning

Reinforcement learning is concerned with learning to take
actions to maximize rewards, by trial and error, in environments

that can evolve in response to actions

I Traditional Search Goal: Find a policy with high total reward
using as few interactions with the environment as possible

I Optimization Goal: Maximize total reward / Minimize regret
(shortfall) in total reward compared to an optimal policy
I Applications: Recommendation systems, Sequential

investment, Dynamic resource allocation ....
I No separate budget to purely exploring the environment
I Exploration and Exploitation must be carefully balanced
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Outline

Reinforcement learning algorithms for Regret Minimization in
large and structured (unknown) environments

I Part 1: Online learning in large scale Multi-armed Bandits

I Part 2: Online learning in large Markov Decision Processes

Main Challenge: Generalizing learned knowledge across
unseen states and actions
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Part 1: Online Learning in large-scale Multi-armed Bandits1

1S. R. Chowdhury and A. Gopalan, “On kernelized multi-armed bandits”,
ICML, 2017.
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Background: Multi-armed Bandit

1 2 3 N

N arms with unknown parameters µ1, . . . , µN
(Think Bernoulli)
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Background: Multi-armed Bandit
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Background: Multi-armed Bandit
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Background: Multi-armed Bandit

1 2 3 N

Time T

yT ∼ µN
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Upper Confidence Bound algorithm [Auer et al.’02]
Idea: Be optimistic under uncertainty !

µ̂1 µ̂2 µ̂N

Play arm it = argmax
16i6N

{
µ̂i +

√
2 log t
ki

}
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Variation: Linear Bandits [Dani et al.’08, ...]

I Assumption in MAB: Arms’ rewards are independent
I Often, more structure / coupling is present

arm 1
arm 2

arm 3

arm 4
arm 5

Problem setting
I Each arm i is a vector xi ∈ Rd

I Playing arm it gives reward

yt = θ>xit + εt

I θ ∈ Rd is unknown and
εt ∼ N (0, σ2) is noise
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Variation: Linear Bandits [Dani et al.’08, ...]

I Assumption in MAB: Arms’ rewards are independent
I Often, more structure / coupling is present

θ̂t

Ct

LinUCB algorithm
I Build a point estimate (least

squares estimate) θ̂t and a
confidence region (ellipsoid) Ct

I Play the most optimistic action
w.r.t. this ellipsoid

it = argmax
16i6N

max
θ∈Ct

(
θ>xi

)
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Generalization: Black-box optimization
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Problem setting:

I Maximize an unknown utility
function f : D → R

I Sequentially query f with
points x1, x2, . . . , xT

I Noisy point evaluations:
yt = f(xt) + εt, where
εt ∼ N (0, σ2) is the noise

Goal: Maximize cumulative (expected) utility:
>∑
t=1

E[yt]

or, equivalently,

Minimize cumulative regret:
>∑
t=1

(
f(x?)− f(xt)

)
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Application: Hyperparameter tuning
Hyperparameters in DeepNN training
I Learning rate
I Regularizer
I Number of hidden layers
I Number of units in each layer
I Optimizer (SGD, Adagrad, Adam, ...)
I Nonlinearity (Relu, Softmax, ...)

DeepNN training as Black-box optimization
I D : all possible hyperparameter configurations
I f(x) : training error for configuration x
I x? : the best set of hyperparameters

Huge (possibly infinite) set of hyperparameters to choose from !!!
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Possible approaches

Grid search, Random search
I Do not use information from previous searches
I Not good when point evaluations are expensive

Need to make an educated decision about where to search next

Bayesian optimization

1. Learn a (probabilistic) model for f

2. Use model predictions and uncertainty to select query xt

3. Update model with data (xt, yt) and repeat.
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Regularity assumption

I f is an element of a reproducing kernel Hilbert space (RKHS) Hk
associated with a kernel k : D ×D → R

I Induces smoothness: |f(x)− f(x′)| 6 ‖f‖k ‖ϕ(x)− ϕ(x′)‖k

10 / 33



Regularity assumption

I f is an element of a reproducing kernel Hilbert space (RKHS) Hk
associated with a kernel k : D ×D → R

f

Hk

I Induces smoothness: |f(x)− f(x′)| 6 ‖f‖k ‖ϕ(x)− ϕ(x′)‖k

10 / 33



Regularity assumption

I f is an element of a reproducing kernel Hilbert space (RKHS) Hk
associated with a kernel k : D ×D → R

f

Hk
D

x

ϕ(x)

f(x) = 〈f, ϕ(x)〉k

I Induces smoothness: |f(x)− f(x′)| 6 ‖f‖k ‖ϕ(x)− ϕ(x′)‖k

10 / 33



Regularity assumption

I f is an element of a reproducing kernel Hilbert space (RKHS) Hk
associated with a kernel k : D ×D → R

f

Hk
D

x

ϕ(x)

f(x) = 〈f, ϕ(x)〉k

x′

ϕ(x′)

k(x, x′) = 〈ϕ(x), ϕ(x′)〉k

I Induces smoothness: |f(x)− f(x′)| 6 ‖f‖k ‖ϕ(x)− ϕ(x′)‖k

10 / 33



Regularity assumption

I f is an element of a reproducing kernel Hilbert space (RKHS) Hk
associated with a kernel k : D ×D → R

f

Hk
D

x

ϕ(x)

f(x) = 〈f, ϕ(x)〉k

x′

ϕ(x′)

k(x, x′) = 〈ϕ(x), ϕ(x′)〉k

I Induces smoothness: |f(x)− f(x′)| 6 ‖f‖k ‖ϕ(x)− ϕ(x′)‖k

10 / 33



Algorithm Design

Idea: Gaussian Process (GP) regression
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I Unknown utility function f
modeled by Gaussian
processes, f ∼ GP (0, k(x, x′))

I Posterior of f given t noisy
observations Ht = (xτ , yτ )tτ=1

is a GP

f |Ht ∼ GP(µt(x), kt(x, x
′))

Posterior mean and covariance:

µt(x) = kt(x)>(Kt + σ2I)−1y1:t

kt(x, x
′) = k(x, x′)− kt(x)>(Kt + σ2I)−1kt(x

′)
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Algorithm 1: Improved GP-UCB

Key Idea: Choose the point with highest Upper Confidence Bound
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At each round t, choose the
query point xt using current
GP posterior and a suitable
parameter βt:

xt ∈ argmax
x∈D

µt(x) + βtσt(x)

First appeared as GP-UCB [Srinivas et al.’10] −→ We provide a tighter
regret bound (O (log T ) improvement!)
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IGP-UCB achieves sublinear regret [CG’17]

Regret bound: O
(
γT

√
T log

(
1
δ

))
with probability at least 1− δ

“Information Complexity”: Captures reduction in uncertainty after
observing noisy rewards (depends on the kernel function)

N (0, σ2I)

f ∼ GP(0, k)

f1:T =

f(x1)
...

f(xT )

 y1:T =

y1...
yT



γT = max
{x1,...xT }

I(y1:T , f1:T )
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Algorithm 2: Gaussian Process Thompson Sampling

What would a “Bayesian” do?
I Sample a random function and choose its maximizer
I Prehistoric [Thompson’33]

At each round t:
I Sample a function ft

from current GP
posterior

I Choose the query point
xt = argmax

x∈D
ft(x)

Regret bound: O
(
γT

√
dT log

(
1
δ

))
with probability at least 1−δ
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Numerics

f sampled from RKHS
(RBF kernel)
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I IGP-UCB improves over
GP-UCB ,,

I GP-TS fares well ,

Temperature Sensor Data
(Intel Berkeley Research lab)
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Variation: Heavy-tailed kernelized bandits2

eg. Student’s-t, Pareto, Cauchy etc.

Motivation:

I Distribution of delays in
communication networks

I Bursty traffic flow distributions
I Price fluctuations in financial

and insurance data

I Heavy-tailed payoffs: E
[
|yt|2

]
< +∞

I Results: Regret upper and lower bounds of order ≈ γT
√
T

Bounded second-moment sufficient for O(
√
T ) regret!

2S. R. Chowdhury and A. Gopalan, “Bayesian Optimization under
Heavy-tailed Payoffs”, NeurIPS, 2019.
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Part 2: Online Learning in Large-scale Markov Decision Processes3

3S. R. Chowdhury, A. Gopalan and O.-A. Maillard, “Reinforcement Learning
in Parametric MDPs with Exponential Families”, AISTATS, 2021.
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Markov Decision Process

We consider learning in an episodic MDP {S,A, R, P,H}

Environment

Agent

ActionState
Reward

I State space S ⊂ Rm

I Action space A ⊂ Rn

I Transition probabilities
P : S ×A → ∆(S)

I Reward function
R : S ×A → [0, 1]

I Finite episode length H ∈ N

s1 s2 sH sH+1
a1

r1

aH

rH

a2

r2

aH−1

rH−1
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Parameterized MDP – Queuing System

Transitions are parameterized by θ – unknown to the agent a priori

I Single queue with N states, discrete-time
I Bernoulli(λ) arrivals at every state
I 2 actions: (Bernoulli) service rates {µ1, µ2}
I Assume service rates known, uncertainty in λ only
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Online Reinforcement Learning

I MDP parameter θ is unknown to the decision maker a priori
I Must LEARN optimal policy - what action to take in each state to

maximize the cumulative reward

E

[
T∑
t=1

H∑
h=1

R(st,h, at,h)

]

or, equivalently, minimize the cumulative regret

E

[
T∑
t=1

H∑
h=1

R(st,h, a
?
t,h)

]
− E

[
T∑
t=1

H∑
h=1

R(st,h, at,h)

]
,

I Trade-off: Explore the state space or Exploit existing knowledge to
design good current policy?
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Online reinforcement learning

I Upper confidence-based approaches: Build confidence intervals
per state-action pair, be optimistic!
I Rmax [Brafman-Tennenholtz’01]
I UCRL2 [Jaksch et al.’07]

I Key idea: Maintain estimates + high-confidence sets for
transition probabilities for every state-action pair

I “Wasteful” if transitions have structure/relations

Parameterized MDP: Transitions are described by a finite dimen-
sional parameter – unknown to the agent a priori
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Example: Linear quadratic regulator

Berstekas’04:

State transitions: s′ = As+Ba+ η

I A ∈ Rm×m and B ∈ Rm×n are unknown matrices
I Noise η ∼ N (0, σ2I) with known variance

Rewards: R(s, a) = s>Ps+ a>Qa

I P ∈ Rm×m and Q ∈ Rn×n are known matrices
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Generic models: Linear MDPs

Yang and Wang’19: P (s′|s, a) = ψ(s′)>Mϕ(s, a)

Jin et al.’19: P (s′|s, a) = θ>ν(s′, s, a)

I Known feature functions: ψ(s′), ϕ(s, a) and ν(s′, s, a)

I Unknown parameters: M (a matrix) and θ (a vector)
I Special case: Tabular finite-state, finite-action MDP

DO NOT cover several popular models:
I Linearly controlled systems [Bertsekas’ 04]
I Factored MDPs [Kearns and Koller’ 99]
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Our Model: Linear Exponential Family [CGM’21]

log-transition probabilities are linear:

Pθ(s
′|s, a) = exp

(
θ>F (s′, s, a)− Zs,a(θ)

)
I θ ∈ Rd is the unknown parameter of the model
I F (s′, s, a) are known features (sufficient statistic)
I Zs,a(θ) is the log-partition function

(Captures a wide range of distributions, e.g., Gaussian, Bernoulli,
Gamma, Chi-square, ...)
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Algorithm: Exponential family UCRL (Exp-UCRL)

Key idea: Maintain estimates + high-confidence sets for θ

At each episode t:

1. Compute the penalized maximum-likelihood estimate (MLE) θ̂t of θ
from data {sτ,h, aτ,h, sτ,h+1}τ<t,h≤H :

θ̂t ∈ argmin
θ∈Rd

∑
τ<t,h≤H

− logPθ(sτ,h+1|sτ,h, aτ,h) +
1

2
‖θ‖2

2. Build a confidence set around the MLE:

Ct=

θ ∣∣∑
τ<t,h≤H

KL
(
Pθ̂t(·|sτ,h, aτ,h), Pθ(·|sτ,h, aτ,h)

)
+

1

2

∥∥∥θ̂t − θ∥∥∥2≤βt


3. Compute the optimal policy w.r.t. Ct (by value iteration,
simulation,...) and play actions prescribed by that policy
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Exp-UCRL attains sublinear regret [CGM’21]

Concentration inequality: P
[
∀t ∈ N, θ ∈ Ct

]
≥ 1− δ

I A general result to design high-confidence sets for adaptive
regression in conditional exponential families

I Generalize known results for linear bandits [Abbasi-Yadkori et
al.’11] and GLM bandits [Filippi et al.’10]

Regret Bound: O
(

β√
α
H2d

√
T log(1/δ)

)
with probability ≥ 1−δ

α = inf
θ,s,a

λmin (Cθ[ψ(s′)|s, a])

β = sup
θ,s,a

λmax (Cθ[ψ(s′)|s, a])

Model dependent constants —
encode degree of non-linearity
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Confidence Sets in Exponential Families [CSGM’22]

A general toolkit:4 High probability confidence sets in exponential
families — applications well beyond bandits and RL
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Joint confidence sets for (µ, σ) for
Gaussian distribution

4S. R. Chowdhury, P. Saux, A. Gopalan, O.-A. Maillard “Bregman Deviations
of Generic Exponential Families”, arxiv, 2022.
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Variation: Privacy Concerns in RL
Reinforcement learning (RL) widely applied to personalized service:
I personalized healthcare
I virtual assistants
I social robots
I online recommendations
I ...

However, both states and rewards contain user’s sensitive information
I healthcare: age, gender, treatment history
I virtual assistants: words, voice, sentences.
I social robots: facial expressions and scores on puzzles
I online recommendations: shopping habits

How to protect all these information in a rigorous way?
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Differential privacy

Central Model:
I The learning agent has access to users’ personal data
I Privacy protection: adversary cannot infer any particular user’s

data by observing the outputs the agent

Local Model:
I Each user protects her data at the local side
I The learning agent only has private data from users

Can we have a unified framework for both models in RL?
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Privacy in Tabular MDPs

Private information:
I number of visits to a state-action pair n(s, a) – bits (0/1)

I number of transitions to a given state n(s′|s, a) – bits (0/1)

I rewards r(s, a) – scalars [0, 1]

The goal: release private counts with minimal amount of noise

Protection in local model:
I each user k, add independent noise, leads to sum of K noise

Protection in central model:
I Binary counting mechanism, only logK noise [Chan et al.’11]
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Private Algorithms and Regret

Private Policy Optimization:5

I Central Model: Õ
(√

S2AH3T + S2AH3/ε
)

I Local Model: Õ
(√

S2AH3T + S2A
√
H5T/ε

)
Private Value Iteration:
I Central Model: Õ

(√
SAH3T + S2AH3/ε

)
I Local Model: Õ

(√
SAH3T + S2A

√
H5T/ε

)
Regret increases if level of privacy increases (i.e., ε decreases)

5S. R. Chowdhury and X. Zhou, “Differentially Private Regret Minimization
in Episodic Markov Decision Processes”, AAAI, 2022.
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Current/Future Work

Model selection in bandits and MDPs:
I Function class (in bandits) / class of transition distributions

(in MDPs) unknown?
I How to identify the correct model class during learning?

Ethics/Privacy questions:
I How to protect users’ sensitive information (e.g.

recommendation systems, personalized treatment)?
I Fairness and transparency in policy selection?

Multi-agent systems:
I Decentralized peer-to-peer learning/ Federated learning?
I Impact of network properties, delay in communication, etc.?
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