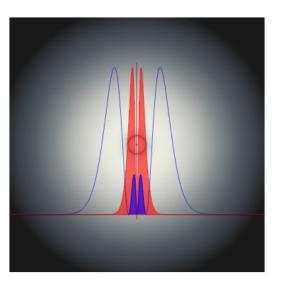

Two of lithium's electrons are 1s

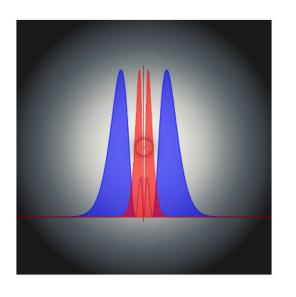
Goal: Estimate the effective nuclear charge ($Z_{\rm eff}$) experienced by the Li atom 2s and 2p orbitals. Use images on the following slides to guide you.


BOSTON

1

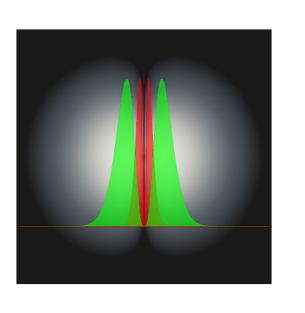
Shielding and multi-electron atoms

2s inner loop is not shielded by 1s² cloud


The outer loop of 2s is about 10% of the electron wave.

2s **outer loop is shielded** by 1s² cloud

The outer loop of 2s is about 90% of the electron wave.



Shielding and multi-electron atoms

3

2p is fully shielded by 1s² cloud

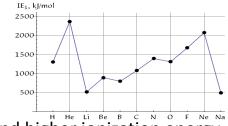
BOSTON


4

Shielding of 2s and 2p in Li

• <u>Draw</u> an energy level diagram showing the relative energies of lithium's 2s and 2p orbitals. How does this explain the ground-state electron configuration of lithium?

5



6

First ionization energy, I_1

Big take-away messages:

- Biggest effect is number of loops (n)
- Then we look at the nuclear charge In general, increasing Z leads to larger $Z_{\rm eff}$ and higher ionization energy

Small things:

- First new shielding (i.e., new subshell) decreases IE
- First electron/electron repulsion decreases IE

TRENDS: (a) Size and (b) Ionization energy → ALL FOLLOW ABOVE RULES!

$$E_{\rm n}$$
 = -(2.18 aJ) $Z_{\rm eff}^2/n^2$

7

Shielding and multi-electron atoms

Periodic Trends summary

<u>Valence electrons</u> are the ones with the largest value of "n" (number of loops) \rightarrow easiest to ionize and largest in size

Trends:

- (1) Down family \rightarrow increase n, so decrease in ionization energy (also explains why alkali metals are the lowest ionization energy)
- (2) Across period → increase Z leads to increase Z_{eff} and so decrease in ionization energy (explains why the noble gases are the highest ionization energies)
- (3) Small "blips" across period → shielding and e⁻/e⁻ repulsion

