Research Thrusts and Testbeds

Christopher Chen

Director, BU Biological Design Center Professor of Biomedical Engineering Professor of Materials Science and Engineering Harvard Wyss Institute for Biologically Inspired Engineering

Technology Tasks and Flows Between TAs

THRUST AREA	TECHNIQUE	MATERIALS	STRUCTURES	FEATURE	PURPOSE	WHO
Atomic Calligraphy		Au, Ag, Ni, Al, etc.		<50 nm	High resolution patterns of metal that template organic/cellular assembly	BU
OVJP		C60, fluorescent, Pc OTS, HMDS, PEGDA, dPMT, pluronic, thiols, other organics, linear & cyclic RGD		< 2 μm	Functional coatings to create attachment points for cells	UM
Nanoscribe		PEG, PEO, PMMA, etc.		<1 µm	3D nanoscale structures to act as scaffolds for cells and sensors/actuators	BU FIU ANL UM
AC + OVJP +Scaffolds				< 50 nm	Patterned 3D structures with focal attachments that direct cell binding, motion and function	BU UM
THRUST AREA Tissue Assembly	в 		MUSCLE	< 50 nm	Complex surfaces and 3D scaffolds for cell binding/ proliferation-multiscale, hierarchical, dynamic, embedded sensing	BU Harvard Columbia
THRUST AREA Imaging & Actuation	4	fluorescent proteins, quantum dots		<1µm	Deep 3D tissue imaging, fluorescent tagging, optogenetic actuation of tissue	BU FIU

The Key (enabling) Challenge

Functional Syncytium of Heart Muscle

- Mechanically and electrically coupled cardiomyocytes
- Aligned muscle units
- Interwoven microvessels
- Soft extracellular matrix (ECM) scaffolding supports architecture

CELL-MET Test beds

Pre-ERC: Cardiac cell structure and function are controlled by materials

- 1) Patterning cell shape drives cell differentiation, alignment, and mechanics;
- 2) Scaffold stiffness regulates sarcomere maturation and force generation;
- 3) Focal adhesion distribution regulates sarcomere alignment and architecture

ERC Goals

- 1) Nanoscale control over cell adhesion will enable control over cell shape, sarcomere architecture, and cardiac function (TA1)
- 2) Controlling scaffold mechanics via both materials and architecture will allow control over cardiomyocyte mechanics (TA2)
- 3) Embedded sensors and actuators will allow real-time modulation of cell environment and assessment of cell function (TA2, TA4)

Shalev, Shtein, et al., Nat. Comm. (2014), (2017)

Cardiac Microbundle

Approach

- Control the organization and alignment of cardiomyocytes (TA3), using metamaterials (TA2) and nanoscale adhesive patches (TA1)
- Use actuators (TA1 and TA4) to apply optical and electrical signals, mechanical loads, and structural changes to stimulate the tissue
- Use of feedback loop controls to provide adaptive responses between cells/tissues and their environmental signals
- Iteration based on performance and structural metrics

ERC Goals

- 1) Spatial control over mechanical environment will enable more complex alignments (TA2)
- 2) Specified nanoscale structure and adhesion will enable cell alignment/ position control (TA1/2)
- 3) Embedded conduits will enable sensors and actuators (TA2, TA4)

Cardiac Sheet

Approach

- Control the organization and alignment of cardiomyocytes, as with microbundles, but extended to larger sheets (TA1, TA2, TA3)
- Use actuators to apply electrical signals, mechanical loads, and structural changes to stimulate the tissue (TA1, TA2, TA3, TA4)
- Use embedded sensors and optical approaches to monitor cardiac function, including electrical potential, oxygen levels, pH, material strains, force (TA1, TA2, TA4)
- Use of feedback loop controls to provide adaptive responses between cells/tissues and their environmental signals (TA3, TA4)

Vascularized Patch

Approach

- Control the organization vasculature and registration with aligned cardiomyocytes; Integration with microfluidic controls to perfuse tissue ex vivo (TA1, TA2, TA3)
- - Use embedded sensors and optical approaches to monitor both vascular and cardiac function, including electrical potential, oxygen levels, pH, material strains, force (TA1, TA2, TA4)
 - Use of feedback loop controls to provide adaptive responses between cells/tissues and their environmental signals (TA3, TA4)

Vascularized Patch

ERC Goals

- 1) Channels branched and tapered down to 3 µm diameter will match scales of vessels in tissues (TA2, TA3)
- 2) Introduction of embedded sensors and actuators will allow monitoring and manipulation of the engineered tissue (TA1, TA4)

Mag = 293 X EHT = 2.00 kV Signal A = SE2 Signal B = InLens WD = 6.3 mm Aperture Size = 30.00 µm Stage at T = 0.0 ° Date :29 Sep 2016

Integrated Test Beds

The Approach

Adhesive nanopatterns (TA1) 3D fabrication (TA2) Cell Engineering (TA3)

Deep 3D (TA4)

System level test bed: • 3D Organson-Chip • Structured Implants

- Understanding the *rules* that govern multicellular organization, how cells→tissues
- Establishing the *technologies* to control tissue assembly
- Engineering human tissues as models for research (e.g., heart-on-chip)
- Engineering human tissues as *therapeutics for transplant*

 \rightarrow Provide a foundation for synthetic tissue manufacturing

Stretch goals and future years

Complex muscle architecture

Vasculature

CELL-MET

Two strategies for heart disease

HEART FAILURE: ~5 million Americans 500,000 new cases/year Annual costs = \$17.8 billion Prognosis: 75% Die within 8 Years

Sarcomere Proteins (TTN, MYH7, MYBPC3, TNNT2, TPM1) Lamin A/C RNA-binding motif protein 20 Transcriptional Regulators Z-disc Proteins Intermediate Filaments Dystrophin/Glycoproteins ATP-binding Cassette Heat Shock Proteins Presenilin αB Crystallin

Sarcomere Proteins (MYH7, MYBPC3, TNNT2, TPM1) Lysosome-associated Membrane Protein-2 γ-2 subunit AMP-dependent Protein Kinase Desmin Trans-Thyretin Alpha acid glucosidase Alpha-D galactosidase Myozenin-2 Actinin

Patients with dilated cardiomyopathy

Control

CELL-MET

Titin

Hinson et al., Science 2015

Questions