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ABSTRACT

Children can manipulate non-symbolic representations of both small quantities of objects
(about four or fewer, represented by the parallel individuation system) and large quantities of
objects (represented by the analog magnitude system, or AMS). Previous work has shown that
children can perform a variety of non-symbolic operations over AMS representations (like
summing and solving for an unknown addend), but are not able to perform further operations
on the derived solutions of such non-symbolic operations. However, while the computational
capacity of AMS has been studied extensively in early childhood, less is known about the
computational capacity of the parallel individuation system. In two experiments, we examined
children’s ability to perform two types of arithmetic-like operations over representations of
small, exact quantities, and whether they could subsequently perform novel operations on
derived quantity representations. Four-6-year-old US children (n = 99) solved two types of
non-symbolic arithmetic-like problems with small quantities: summation and unknown
addend problems. We then tested whether children could use the solutions to these problems
as inputs to new operations. Results showed that children more readily solved non-symbolic
small, exact addition problems compared to unknown addend problems. However, when
children did successfully solve either kind of problem, they were able to use those derived
solutions to solve a novel non-symbolic small, exact problem. These results suggest that the
parallel individuation system is computationally flexible, contrasting with previous work
showing that the AMS is more computationally limited, and shed light on the computational
capacities and limitations of representing and operating over representations of small
quantities of individual objects.

INTRODUCTION

Humans are able to mentally represent the quantity of a set of objects in the world without the
use of number words or digits. Research over the past several decades has suggested at least
two formats for representing quantity in the mind that are available to humans: an analog mag-
nitude system for representing the approximate numerosity of sets of larger quantities of
objects (e.g., sets of greater than about four items), and a parallel individuation system for rep-
resenting small quantities of individual 3-D objects (about four or fewer) in parallel (Dehaene,
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1997; Feigenson et al., 2004; Odic & Starr, 2018; Wang & Kibbe, 2024). Both systems come
online early in infancy (Coubart et al., 2014; Izard et al., 2009; Libertus & Brannon, 2009;
Martin et al., 2022; Xu, 2003).

While both systems represent quantity, these representations have fundamentally different
formats. The analog magnitude system allows humans to represent the quantity of a set of
objects as a magnitude that roughly corresponds to the quantity of individual items in the
set. Analog magnitude representations do not contain information about the individual objects
in the set, but instead represent a summary of the quantity of those objects. Analog magnitude
representations are imprecise (and get noisier as the number of objects in the set increases), but
they represent the quantity of a set of objects explicitly: larger quantities are represented with
larger magnitudes, smaller quantities with smaller magnitudes (Gallistel & Gelman, 1992,
2000; Halberda & Feigenson, 2008; Meck & Church, 1983). By contrast, the parallel individ-
uation system represents each individual object in a small set by deploying discrete, index-like
representations for each object, which act as attentional “pointers” to each object’s location
(Feigenson & Carey, 2003, 2005; Leslie et al., 1998). The quantity of small sets of objects is
therefore represented precisely, but only implicitly, via one-to-one correspondence between
the object representations in the mind and the objects they represent in the world, and the
quantities that this system can represent are limited (to set of objects with ~4 or fewer objects;
see Wang & Kibbe, 2024, for review).

Before children master formal symbolic mathematics, they can update both types of non-
symbolic representations of quantity in response to real-world changes in quantity, performing
what are commonly referred to as “arithmetic” operations over non-symbolic representations
(Barth et al., 2006; Booth & Siegler, 2008; Cheng & Kibbe, 2023a; Christodoulou et al., 2017;
Gilmore & Spelke, 2008; McCrink &Wynn, 2004; Wynn, 1992). Much of the research on non-
symbolic “arithmetic” has focused on examining operations over AMS representations and
how those operations are carried out. This research has shown that children can update analog
magnitudes by incrementing or decrementing those representations by some magnitude. For
example, Barth et al. (2006) showed 5-year-old children two large sets of dots that were hid-
den sequentially behind an occluder, removed the occluder to reveal a new set, and asked
children whether the new set was larger or smaller than the total of the two sets together.
To succeed, children needed to represent the initial quantity, update that representation to
accommodate the second quantity, and then compare that updated representation to their rep-
resentation of the revealed array. Children were able to approximately estimate the total quantity
of the two sets together. Children also are able to perform operations over AMS representations
that involve scaling those representations up or down by a factor of, e.g., 2 or 4 (McCrink et al.,
2017; McCrink & Spelke, 2010, 2016; McCrink & Wynn, 2007), suggesting that AMS represen-
tations can be manipulated in a variety of computationally useful ways.

Furthermore, children can perform operations over AMS representations that require chil-
dren to hold two representations in mind and perform an operation over those representations
to derive a solution, in addition to being able to increment or decrement a single AMS repre-
sentation. For example, Kibbe and Feigenson (2015, 2017) found that 4–6-year-old children
could solve for unknown addends in non-symbolically-presented problems that used large
quantities represented by the AMS. In their study, children were introduced to an animal
character who had a “magic cup” which would add more objects to a visible set of objects.
Children observed the set of objects before the animal added the set inside the cup, and then
again after the contents were added, and were asked to select from two alternatives which
quantity had been inside the cup. Children were able to select the correct quantity at rates
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above chance (effectively solving problems of the format, e.g., 5 + [addend] = 17; see also
Cheng & Kibbe, 2023a). These results suggest that children can combine AMS representations
using a computation that resembles solving for an unknown addend in symbolic math, in
addition to manipulating a single representation (as in summation, subtraction, or scaling).

However, although a range of arithmetic-like operations can be performed over AMS rep-
resentations, recent research suggests that the AMS may be computationally limited when it
comes to being able to perform computations with the solutions to AMS operations. Specifi-
cally, children struggle in tasks that require them to use the solutions to AMS operations (i.e.,
solved addends) as inputs into new operations (i.e., adding the solved addend quantity to a
new quantity). Cheng and Kibbe (2023b) first showed 4-8-year-old children two unknown-
addend problems presented non-symbolically (as in Kibbe & Feigenson, 2015, 2017), and
then showed them a new problem—children saw two unequal sets of objects and were asked
to choose which of the two solved addends should be added to the smaller set of objects to
make the sets “about the same”. To succeed, children needed to successfully solve for two
unknown addends, and then select which of the two solutions should be used as an addend
in a new, balancing operation, without ever having directly observed the quantities they were
selecting from. Cheng and Kibbe (2023b) found that, while children could solve for both
unknown addends with high fidelity, they were unable to use those solutions as inputs into
a balancing operation. Children’s failure was not due to an inability to understand the bal-
ancing operation itself; children were successful when they were asked to perform a similar
computation with visible quantities of objects rather than the (not directly observed) solutions
to unknown addend problems. Cheng and Kibbe’s (2023b) results suggest an important limitation
on the computational power of non-symbolic arithmetic over AMS representation: while children
can solve arithmetic-like problems using the AMS, they were unable to use those solutions
beyond the context in which the solutions arose. This means that AMS “arithmetic” does
not have the combinatorial power of a true arithmetic (Dedekind & Beman, 1901).

While much research has examined the computational capacity of the AMS, the computa-
tional range of the parallel individuation system is less well understood. The distinct formats of
AMS representations and individual object representations mean that the operations that are
supported by these systems are executed in different ways. Research has shown that children
can update individual object representations by updating the number of object indexes they
have deployed to track objects in the set (Leslie et al., 1998). For example, Wynn (1992)
showed infants scenarios in which a single object was placed on a puppet stage, the object
was then occluded, and then a second object was added. In order to represent the quantity of
objects that was hidden behind the occluder, infants needed to hold the first object index in
mind, and then add a second index as the new object was added. Wynn (1992) found that
infants were able to do so, as evidenced by their increased attention to the display when the
occluder was lifted and the wrong quantity was revealed, suggesting that it is possible to carry
out addition operations on individual object representations (for replications, see Berger et al.,
2006; Clearfield & Westfahl, 2006; Cohen & Marks, 2002; Simon et al., 1995; Slater et al.,
2010; Uller et al., 1999; Walden et al., 2007; see also Kibbe & Feigenson, 2017, for converg-
ing evidence from 4–6-year-olds). Similar results were obtained with subtraction operations in
infants (Wynn, 1992).

However, one paper (Kibbe & Feigenson, 2017) found that 4–6-year-old children were
unable to solve for an unknown addend when non-symbolic addend-unknown problems were
instantiated using small quantities represented by individual object representations—an oper-
ation that is readily accomplished over AMS representations. For example, children who were
shown problems like 1 + [addend] = 3 chose at chance when asked whether 1 or 2 objects
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had been added. By contrast, children had no difficulty when the problems were of the form
1 + 2 = [sum], readily selecting 3 as the correct answer over distractor quantities 2 or 4.
These results suggest that some arithmetic operations may be more readily performed over
individual object representations than others, and that the parallel individuation system may
be more computationally limited than the AMS.

Together, the above studies suggest that addition and subtraction operations may be per-
formed over individual object representations (i.e., by creating or removing object indexes in
the face of real-world changes to object quantities; Kibbe & Feigenson, 2017; Wynn, 1992; see
Leslie et al., 1998), but children may not be able to hold two sets of individual object repre-
sentations in mind and compute their difference (i.e., represent a set of one individual object,
and then a set of three individual objects, and compute that the difference between the sets is
two; Kibbe & Feigenson, 2017). However, the source of the limitations on computations that
can be performed over individual object representations is not entirely clear. It is possible that
the representational format of individual object representations makes certain computations
more accessible than others. For example, in summation or subtraction problems, children
could deploy a new visual index or remove a visual index as the array quantities change
(i.e., as objects are added or subtracted). Such visual updating may not be possible when chil-
dren are asked to perform a computation over one or more represented sets, as in the unknown
addend problems in Kibbe and Feigenson (2017) (see also Uller et al., 1999). It is also possible
that, by virtue of the fact that children are required to manipulate multiple set representations,
the increased working memory demands could make unknown-addend computations more
error prone. If this is the case, children’s ability to use the parallel individuation system to
compute small-quantity unknown addend problems should improve with age, as their working
memory capacities increase substantially (Cheng & Kibbe, 2022; Simmering, 2012).

It is also not known whether children can perform additional computations with the solu-
tions to non-symbolic arithmetic problems over small quantities, and whether this depends on
the kind of arithmetic operation children are asked to perform. Previous work by Cheng and
Kibbe (2023b) found that 4–6-year-olds could not reliably use the solutions to AMS arithmetic
problems in a new AMS problem, suggesting a significant computational limit on the AMS that
is not shared with formal, symbolic arithmetic, which is combinatorial by definition (Dedekind
& Beman, 1901). However, whether the parallel individuation system would be subject to
such a computational limit is an open question, and answering this question is important
for several reasons. First, understanding whether manipulated representations of individual
objects—that is, representations that arise from a computation in the mind, rather than strictly
from an interaction with objects in the world—can be operated over in the mind is critical for
our theoretical understanding of how individual object representations might be used in the
mind beyond the context in which they arose. Second, since children typically start to learn
formal arithmetic by manipulating small numbers, understanding the computational arithmetic
capacity of the parallel individuation system has implications for the extent to which children
can leverage their early, non-symbolic arithmetic systems to help them learn the formal rules of
symbolic arithmetic.

Here, in two experiments, we examined children’s ability to perform arithmetic-like oper-
ations over small quantities and whether they can use the solutions to those computations as
inputs into new non-symbolic, small-quantity problems. We asked children to compute two
types of arithmetic-like problems instantiated with small quantities of objects (within partici-
pants): sums and unknown addends. We used the same age range as Kibbe and Feigenson
(2015, 2017), 4–6-year-old children. Children of this age are learning counting and cardinality,
but are not likely to yet have extensive experience with the symbolic forms of addition or
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unknown addend problems (National Governors Association Center for Best Practices, Coun-
cil of Chief State School Officers, 2010). All children completed two blocks of trials, each of
which required a different type of operation. In a Summation block, children solved for two
summation problems presented non-symbolically. Children were told that two animal charac-
ters were collecting buttons inside opaque cups, and that they both liked to collect different
numbers of buttons. Children then viewed three examples of each animal collecting
buttons—one animal collected 1 + 2 buttons inside their cup, and the other collected 1 + 1
buttons inside their cup. In the critical Test trial, children were shown two new sets of buttons,
one of which contained fewer than the other, and were asked to choose which of the two
characters’ sums to add to the smaller set to make the sets have the same number of objects.
To succeed, children needed to use the sums they computed, but never directly observed, as
inputs into a balancing operation. In an Unknown Addend block, children solved for two
unknown addends in problems presented non-symbolically. Children were shown two animal
characters and were told that each animal has a “magic cup” that always adds a specific quan-
tity to a set, but that we could not see what was inside the cup, we had to figure it out. Children
then observed three examples of each character’s cup adding to a set and then revealing the
set increased by some quantity (e.g., 1 + [cup] = 3; 1 + [cup] = 2). In the critical Test trial,
children were shown two unequal sets and were asked to select which addend they should
add to the smaller set to make the sets equal. To succeed, children needed to use the solved
addends that they computed, but did not directly observe, as inputs in a balancing operation.

We had two primary goals for these experiments. First, we aimed to replicate and extend
Kibbe and Feigenson’s (2017) result that children can successfully solve non-symbolic small-
quantity sums but have more difficulty with small-quantity unknown addends. We added several
checks beyond what Kibbe and Feigenson (2017) did to examine children’s representations of
the solutions to non-symbolic small-quantity sums and unknown addends, and to determine
whether we can observe variability in children’s ability to solve for each type of problem.
Our within-participants design enabled us to examine whether children’s ability to solve
small-quantity non-symbolic summation problems is correlated with their ability to solve
small-quantity, non-symbolic unknown-addend problems. We also tested a larger sample of
children, sufficiently powered to be able to detect any effects of age on children’s perfor-
mance. Thus, we aimed to better characterize children’s ability to perform computations over
individual object representations during a period of time in which children’s working memory
capacities are increasing substantially.

Our second goal was to investigate whether the outputs of computations over small quan-
tities of objects can be used as inputs into new computations. That is, we asked whether we
would observe the same context-dependent computational limitation that has previously been
observed in the AMS when children are performing operations over individual object
representations.

EXPERIMENT 1

Methods

Participants. Forty-nine 4- to 7-year-olds (mean age = 5.86 years, age range: 4 year 0 months
2 days–7 years 0 months 14 days, 26 girls) participated in Experiment 1. The study was con-
ducted remotely via Zoom. This sample size was similar to a study with a similar design that
examined the development of 4–6-year-old children’s AMS computational capacity (Cheng &
Kibbe, 2023b), in which age-related changes in capacity were observed. Two additional
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children participated but were excluded from analyses because they declined to complete all
study procedures.

Participants were recruited from the greater Boston area through public birth records, family
events, and social media. Thirty out of 49 families answered the optional demographic form.
Parents reported their child to be Asian (4), Asian African (1), Asian White (4), American Indian
(1), White (19), or other (1). One family reported their child to be Hispanic or Latinx, 28 families
reported their child to be not Hispanic or Latinx, and one family preferred not to say. For all
children, at least one caregiver reported having a college degree or higher. Each family received
a $10 Amazon gift card for their participation in the study. The study was approved by the Boston
University Charles River Campus Institutional Research Board under protocol number 3618E.

Apparatus and Stimuli. Families were asked to participate in a quiet room from home. The
experimental stimuli were created in Keynote Presentation software (full stimuli, plus a video
demonstrating an example experimental session, are available at https://osf.io/jkc5f/). The stim-
uli included images of buttons of varying sizes presented on a computer or tablet screen (on a
13.3 inch laptop, the buttons’ diameters ranged from .5 cm to .7 cm). The button images used
were similar across the study blocks, except for their color (orange in the Summation block,
blue in the Unknown-addend block). During the experiment, the experimenter shared their
screen using the Zoom screen-share function to enable children to view the stimuli. Families
were asked to participate using a device that had a screen 10 inches or larger (43 families used
a laptop, 3 families used a desktop computer, and 3 families used a tablet). The experimenter
recorded the experimental session with the permission of the caregivers.

Procedure. Screen Set-Up. The experimenter first guided caregivers through the Zoom set-up
for the experiment. Caregivers were instructed on how to hide self-view and place the exper-
imenter’s video in the top center of the screen. The experimenter then shared their screen so
that children could view the stimuli controlled by the experimenter on her computer, and
checked with caregivers that children could see the stimuli and hear the experimenter clearly.

Children then completed a series of Pre-trials followed by two blocks of computation trials:
a Summation block and an Unknown Addend block (block order counterbalanced across
participants).

Pre-Trials.

Balancing Familiarization. To orient children to the action of balancing unequal sets of objects
by adding objects to the smaller of the two sets, we first had children complete a Balancing
Familiarization trial (Figure 1). The experimenter showed two unequal sets of buttons (a set of
one and a set of four buttons) and said, “See these two piles of buttons? They have different
numbers of buttons. But I want them to be the same.” Then a transparent cup containing three
buttons appeared on the bottom center of the screen, and the experimenter said, “I have a
magic cup!” An arrow appeared above the cup pointing to the smaller set, and the experi-
menter continued, “I want to use my magic cup to add to this pile [arrow indicating the smaller
set], so that these two piles will look the same.” Then the experimenter played an animation in
which the cup moved to cover the smaller set, added the buttons to the set, and then moved
out of the display. After that, the experimenter showed children which buttons were added by
playing an animation that caused the added buttons to flash a different color, and the exper-
imenter said, “See the flashing ones? Those are the buttons that the cup just added. Now these
two piles have the same number of buttons!”
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Visible Balancing Trials. To obtain a baseline measure of children’s ability to balance unequal
sets, children completed two Visible Balancing trials (Figure 1). On each trial, the experimenter
showed children two unequal sets of buttons (in one trial: a set of 2 and a set of 3; in the other
trial: a set of 2 and a set of 4; trial order counterbalanced across participants) and told children
that she wants them “to be the same”. The experimenter then advanced the animation to pres-
ent two transparent cups, a red-outlined cup containing one button and a green-outlined cup
containing two buttons. The experimenter then said, “This time I have two cups. Which cup
should I use to add to this one [an arrow appeared pointing to the smaller set] so that these two
piles will look the same? The red cup, or the green cup?” After children answered, the exper-
imenter gave them feedback by moving their selected cup over the smaller set and adding the
buttons. If children were correct, the experimenter encouraged children to observe the two
sets and said, “Yes, right! Good job!” Then the experimenter animated the added buttons so
that they flashed a different color, and continued, “See the flashing button(s)? This is the one
[these are the ones] that my [red/green] cup just added! Now these two piles have the same
number of buttons!” If children were incorrect, the experimenter said, “Now do you think
these two piles have the same number of buttons?” If children said no, then the experimenter
proceeded, “No, right? Ok, so what do you think, shall we try the other cup?” If children still
had difficulty, the experimenter prompted children to count with her and then encouraged
children to try the other cup. On the trial with sets of two and three buttons, the red cup
(containing one button) was the correct answer (+1 trial), and on the trial with sets of two

Figure 1. Pre-test trials from Experiment 1. Children completed a Balancing Familiarization trial,
and then two Visible Balancing trials in which they were asked to select which of two visible quan-
tities should be added to the smaller set to make the two sets the same.
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and four buttons, the green cup (containing two buttons) was the correct answer (+2 trial; see
Figure 1).

Children then proceeded to complete two blocks of computation trials: A Summation block
and an Unknown Addend block. The order of the blocks was counterbalanced across
children. Below, we describe the Summation block first, followed by the Unknown Addend
block. Each block included four phases: Familiarization, Demonstration, Test, and Post-test.

Summation Block.

Familiarization Trial. The experimenter first familiarized children with the summation anima-
tion. An orange cup appeared on the lower center of the screen. The experimenter said, “This
is my orange cup. I’m going to put some buttons in the cup, and I want you to help me figure
out how many buttons my orange cup is going to collect. Now watch this.” A first set of but-
tons (two) appeared on the left side of the screen, and the experimenter continued, “Here are
some buttons, I’m putting them in my cup.” The experimenter then advanced the animation so
that the cup moved to cover the set. Then, a second set of buttons (three) appeared on the right
side of the screen. The experimenter said, “Here are some more buttons. I’m putting them in
my cup too.” Then the cup moved to cover the second pile. The cup then moved back to its
original location. The experimenter then showed children how many buttons the cup had col-
lected by turning the cup transparent to reveal a total of five buttons inside the cup, and said,
“See the buttons we collected?”

Demonstration Trials. Children next completed two sets of Demonstration trials (see Figure 2,
left panel). First, the experimenter showed children images of an elephant character with a
blue cup on the bottom left of the screen, and a pig character with a pink cup on the bottom
right of the screen (loosely styled after Gerald and Piggy from the Elephant and Piggy books by
Mo Willems). The experimenter said, “Now I want to introduce my friends. This is Elephant
[the elephant bounced] and Elephant’s cup [the cup jiggled]. This is Piggy [the pig bounced]
and Piggy’s cup [the cup jiggled].” The experimenter further explained, “They each like to
collect different numbers of buttons in their cups. Elephant has a favorite number of buttons
he likes to collect, and Piggie has a favorite number of buttons she likes to collect. But I don’t
know how many they each like best. Can you help me figure it out? Here’s how we are going
to figure it out. We are going to add some buttons to their cups, just like I did with my orange
cup, and they will let us know when they have just the right number of buttons in their cups.
But this time, we won’t get to see the buttons inside the cup, so we have to figure it out our-
selves. Are you ready?”

Children then observed three Demonstration trials for each cup, following a similar method
used by Kibbe and Feigenson (2017) (three Elephant demonstrations and three Piggy demon-
strations; whether children observed the Elephant demonstrations or the Piggy demonstrations
first was counterbalanced across children). Here we describe the condition in which Elephant
trials were presented first, followed by Piggy trials.

At the start of the Elephant trials, children saw a screen depicting only Elephant and his blue
cup in the bottom left. The experimenter said, “Here’s Elephant and his cup. Elephant is going
to collect some buttons. Let’s see how many he’s going to collect!” In the first Elephant trial, a
single button appeared on the left side of the screen, and the experimenter said, “See this but-
ton? Let’s put it inside Elephant’s cup.” The cup then moved to cover the button. Another sin-
gle button then appeared on the right side of the screen, and the experimenter again said “See
this button? Let’s put it inside Elephant’s cup.” The cup moved to cover the second button.
After the second button was added to the cup, Elephant was animated to jump up and down,
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and the experimenter said, “Hooray! We gave Elephant just the right number of buttons!” The
cup then moved back to its original location next to Elephant. The second and third Elephant
trials proceeded similarly, except at the beginning of each trial, the cup turned transparent to
show children that it starts each trial empty inside (“Let’s try again. See Elephant’s cup is
empty?”) The cup then turned opaque again, and the experimenter continued with the trial.
At the end of each Elephant trial, Elephant’s cup always contained two buttons.

At the start of the Piggy trials, children saw a screen depicting only Piggy and her pink cup
in the bottom right. The experimenter said, “This is Piggy and her cup. Piggy’s favorite number
is different than Elephant’s. Piggy’s cup collects a different number of buttons than Elephant’s
cup does. Can you help me figure out how many buttons does Piggy collect?” On each Piggy
trial, children observed Piggy’s cup collect a set of one button and a set of two buttons, ending
up with three total (whether the cup collected one or two first was counterbalanced across the
three trials: Children saw 1 + 2, 2 + 1, and 1 + 2). We used the same sizes of buttons across the
three Demonstration trials.

Figure 2. Example Demonstration, Test, and Post-test trials from the Summation block and
Unknown Addend blocks of Experiment 1. Block order was counterbalanced across participants.
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Test Trial. In the single Test trial (Figure 2, left panel), we asked whether children could use
their solutions to the problems in the Demonstration trials as inputs into a balancing oper-
ation. The experimenter showed children two sets of buttons and said, “See these two piles
of buttons? They have different numbers of buttons. But I want them to be the same.” Then
the two characters, Elephant and Piggy, and their cups, appeared under the smaller set. The
two characters bounced while the experimenter continued, “Whose cup should I use to add
more buttons to this one [an arrow pointed to the smaller set] so that these two piles will
look the same?” Children did not receive feedback during the Test trial. Half of the children
completed Test trials in which Elephant’s cup was the correct answer (+Elephant trial), while
for the other half of children, Piggy’s cup was correct (+Piggy trial; see Table 1).

Post-Test Trials. Children then completed two Post-test trials (Figure 2, left panel), which were
designed to directly measure children’s representations of the quantities in each cup (i.e., to test
whether they had solved the summation problems in the Demonstration trials). In each trial,
children saw a screen with Elephant and Piggy, each paired with their cups. In the Comparison
trial, the experimenter asked, “Whose cup has more buttons?” In the Identification trial, the
experimenter advanced the animation so that either two or three buttons (counterbalanced
across children) were visible in the lower center of the screen. The experimenter then asked,
“Whose cup has this many?” Children did not receive feedback during the Post-test trials.

Unknown Addend Block.

Unknown Addend Familiarization. In the Unknown Addend block, to orient children to the
unknown-addend format of the non-symbolic problems, children first observed a single
familiarization trial (for a similar approach, see Cheng & Kibbe, 2023b). In the first trial, chil-
dren saw an opaque blue cup on the bottom center of the screen. The experimenter said,
“This is my blue cup [the cup jiggled]. There are some buttons inside my cup. But I don’t
know how many buttons are inside my cup. Want to help me figure it out?” A single button
appeared then on the top center of the screen, “OK watch this, here is a button. My cup is
going to come and add some more buttons. We can look at the buttons before my cup adds,
and the after my cup adds, and figure out how many buttons were in my cup. Ready?” The

Table 1. Description of the quantities used in the Demonstration and Test trials and summary of children’s responses on Test and Post-Test
trials in Experiments 1 and 2. p Values represent the results of statistical comparisons against chance (50%).

Demonstration Quantities
(three trials) Test Quantities Test Response Post-Test Response

Exp. 1 Summation:
1 + 1 = Elephant;
2 + 1 = Piggie

+Elephant (2): 2 vs. 4 or
+Piggie (3): 2 vs. 5

80%, p < .001 Comparison: 86%, p < .001

Identification: 90%, p < .001

Unknown-addend:
1 + Gator = 3;
1 + Cheetah = 2

+Gator (2): 2 vs. 4 or
+Cheetah (1): 2 vs. 3

65%, p = .044 Comparison: 81%, p < .001

Identification: 71%, p = .004

Exp. 2 Summation:
1 + 1 = Elephant;
2 + 1 = Piggie

+Elephant (2): 2 vs. 4 or
+Piggie (3): 2 vs. 5

80%, p < .001 Comparison: 78%, p < .001

Identification: 78%, p < .001

Unknown-addend:
1 + Gator = 3;
2 + Cheetah = 3

+Gator (2): 3 vs. 5 or
+Cheetah (1): 3 vs. 4

50%, p = 1 Comparison: 56%, p = .48

Identification: 55%, p = .67
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cup then moved to cover the button and then moved back to its original location, revealing
four buttons on the top center of the screen. The experimenter then said, “Ok, let’s look at
the buttons now! Can we figure out how many my cup just added? Now watch this.” The
experimenter animated the display so that the added buttons flashed a different color, and
said, “See the flashed buttons? Those are the ones that my cup just added. So now we know
how many buttons were in my cup! We looked at the buttons before my cup was added, and
after my cup was added, and figured out how many were in my cup.”

Demonstration Trials. Demonstration trials proceeded similarly to the Summation block (see
Figure 2, right panel), following a similar method to Kibbe and Feigenson (2017). The exper-
imenter introduced Cheetah and his orange cup and Gator and his green cup. The experi-
menter said, “They have different numbers of buttons in their cups. But I don’t know how
many they have in each of their cups. Can you help me figure it out? Here’s how we are going
to figure it out. We are going to use Cheetah’s and Gator’s cups to add to some piles of buttons.
We’ll look at the piles of buttons before each cup adds, and the buttons after each cup adds,
and we’ll try to figure out how many each cup added. But we won’t get to see the buttons
flashing this time. We have to figure it out ourselves. Are you ready?”

Children then saw two sets of Demonstration trials, one set for Cheetah’s cup and one set
for Gator’s cup, each consisting of three trials (whether Cheetah’s or Gator’s demonstrations
were presented first was counterbalanced across children). At the start of the Cheetah set of
demonstrations, the experimenter showed a screen in which Cheetah and an orange cup were
visible in the lower left corner. The experimenter played an animation to jiggle the cup and
said, “Here’s Cheetah and his cup. Cheetah’s cup will add to a pile, but I don’t know how
many it adds.” A set of one button then appeared in the center of the screen, “See this button?
Let’s use Cheetah’s cup to add to this pile. Like this.” Cheetah’s cup then moved to cover the
set of two buttons, and then moved back to its original location, revealing a final set of three
buttons in the center. The experimenter then said, “Ok, see the buttons now?” Children then
saw two more trials in which Cheetah’s cup added to a set of one, yielding a final set of two
buttons.

The experimenter then showed children Gator and the green cup (presented on the lower
right side of the screen; Figure 2, right panel). The experimenter said, “This is Gator and his
cup.” The cup jiggled while the experimenter said, “His cup is different than Cheetah’s, it adds
a different number of buttons than Cheetah’s cup does. But I don’t know how many it adds.”
The experimenter then showed children a set of one button in the center of the screen and
said, “See this button? Let’s use Gator’s cup to add to this pile. Like this.” The green cup then
moved to cover the center set and then moved back to its original location, revealing a final set
of three buttons in the center. The experimenter then said, “See the buttons now?” The next
two trials proceeded similarly, with Gator’s cup adding to a set of one button and yielding a
final set of three buttons.

We used the same set of different sized buttons across trials. Within each trial, children
could potentially identify which objects were part of the initial set after the cup adds (i.e., they
could use the sizes of the objects to re-identify the original set among the added objects).

Test Trial. The single Test trial examined whether children could use the solutions to the
unknown-addend problems in the Demonstration trials to perform a balancing operation.
The Test trial proceeded similarly to the Test trial in the Summation block (see Figure 2, right
panel). Children were shown two unequal sets of buttons, a set of two and a set of either three
or four, and were asked to select which character’s cup should be added to the smaller set to
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make the sets the same. Half of the children completed a Test trial in which Cheetah’s cup was
the correct choice (+Cheetah trial); for the other half of children, Gator’s cup was the correct
choice (+Gator trial; see Table 1).

Post-Test Trials. Post-test trials proceeded similarly to the Summation block, except that the
prompt questions were worded to reflect the fact that children were being asked about the
addend rather than the final total (see Figure 2, right panel). In the Comparison trial, children
were asked, “Which cup adds more?” and in the Identification trial children were asked
“Which cup adds this many?”

Quantities. We attempted to select quantities that were representable using individual object
representations while also reducing repetition of quantities between the Demonstration and
Test trials. Since the small number range limits such quantity options, we made the decision
to include sets of five objects as the “larger” of the two uneven sets in some of the Test trials (in
both Experiment 1 and Experiment 2; see Table 1). Previous work has shown that sets of five
are border cases for non-symbolic representation; they can be represented using exact, non-
symbolic representations and can be compared via one-to-one correspondence, but children
have more difficulty tracking these sets when the elements in the set are manipulated (Izard
et al., 2014). Since sets of five can be represented exactly, and since these sets were presented
as static arrays in our experiments (i.e., arrays that children had to compare to the smaller set in
the Test trial via one-to-one correspondence), we decided to include these quantities. To
examine whether including the set of five impacted children’s performance, we conducted
analyses comparing children’s performance between Test trials containing the set of five with
Test trials containing a smaller set for the larger quantity, which are presented in the Results
sections for each experiment. Quantities 1–4 are represented exactly in children in our age
range (Hutchison et al., 2020).

Results

Visible Balancing Trials. Children’s proportion correct across the two Visible Balancing trials
was .82, significantly greater than would be expected if children were choosing randomly
(chance = .5; Wilcoxon sign rank test p < .001). Children’s proportion correct responses were
not significantly correlated with their age in years (r = .27; p = .058), although older children
tended to have more success. These results suggest that children in our sample were able to
perform a balancing operation over visible sets of small numbers of objects.

Test Trial. Children’s responses in the Summation and Unknown Addend Test trials are shown
in Figure 3 and summarized in Table 1. In the Summation block, 39/49 children (80%) cor-
rectly selected the cup containing the sum that, when added to the smaller set, would balance
the two sets (chance = 50% binomial test p < .001), and children performed similarly whether
they completed the +Elephant Test trial (20/25, 80%) or the +Piggy Test trial (19/24, 79%)
(Fisher’s exact test p = 1), suggesting there was no difference in children’s performance
between trials in which the larger set contained five objects and trials in which the larger
set contained four. In the Unknown-addend block, 32/49 children (65%) correctly selected
the solved addend that would balance the two sets (binomial test p = .044, chance = 50%);
children who had the +Gator Test trial did slightly worse (14/25 correct, 58%) compared to
children who had the +Cheetah Test trial (18/25 correct, 72%), but this difference was not
statistically significant (Fisher’s exact test p = .377). We observed no effects of block order
or demonstration trial order (ps > .25).
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While children made overall fewer correct responses in the Unknown Addend Test trial
compared to the Summation Test trial, this difference was not statistically significant
(McNemar Test = 1.71, p = .189). Children’s performance on the Summation Test trial did
not significantly correlate with their performance on the Unknown Addend Test trial (r =
−.05, p = .558). Age was (weakly) correlated with Unknown Addend Test trial responses (r =
.28, p = .049), but not with Summation Test trial responses (r = −.09, p = .558; see Figure 3).

Post-Test Trials. To better understand the representations driving children’s performance in the
Test trial, we examined children’s responses in the Post-test trials, in which we directly mea-
sured the precision of children’s representations of the quantities in the cups. In the Compar-
ison trial, children selected the cup with the greater number in both the Summation (42/49
children, 86%) and the Unknown-Addend (40/49 children, 82%) blocks (chance = 50%;
binomial test, both p < .001), and their accuracy did not differ significantly between the
two blocks (McNemar’s Test = .08, asymp. p = .773). In the Identification trial, children iden-
tified the correct target cup in both the Summation (44/49 children, 90%) and Unknown
Addend blocks (34/48 children, 71%; one child declined to respond on this trial) at rates
above chance (binomial test, both p < .004). However, children were significantly better at
identifying the target cup when the quantity was the result of summation compared to the
result of an unknown-addend operation (McNemar’s Test = 4.27, asymp. p = .039). No
age-related differences were observed in either the Comparison or the Identification trial in
either block (all ps > .056, rs < .277). Together, these results suggest that, while children were
fairly certain about which cup contained the greater number of objects in both the Summation
and Unknown Addend blocks, their representations were more precise in the Summation
block.

Discussion

First, we found that children were able to solve for two sums, and then use those sums as
inputs into a balancing operation, selecting which of the two sums should be added to the
smaller of two sets to make the sets “the same”. To answer correctly, children needed to com-
pute two sums across sets of Demonstration trials, maintain bindings between each sum and a
specific character’s cup, and then deploy the computed sum to solve a new problem. Cru-
cially, children never directly observed the sums; instead, they observed two addends and
had to compute their sum. Children’s success in the Summation Test trial—and their accuracy
in the post-test trials designed to examine the precision of children’s representations—suggests

Figure 3. Individual children’s responses (correct or incorrect) in the Test trials of Experiments 1
and 2.
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that children can compute sums and work directly with those solutions in non-symbolic prob-
lem contexts.

Second, we aimed to examine whether children also could do so when the problems were
in a more challenging unknown-addend format. We found that children showed evidence of
being able to select which of two solved addends should be used to balance unequal sets, and
their performance on the post-test trials suggested that they had solved for the unknown
addends successfully. However, while they selected the correct unknown addend to balance
the unequal sets in the Test trial at rates above chance, a binomial test only just reached sta-
tistical significance, and children made more errors when asked directly about the quantity of
the solutions to unknown addend problems compared to summation problems. This suggests
that children may have had more difficulty computing the solutions to non-symbolic
unknown-addend problems, and this may be true across the age range we tested. Since both
problems were presented with small quantities, and both problems involved similar quantities,
the differences in accuracy between the summation and unknown addend solutions suggests
that differences in performance across these two problem types is due to the different compu-
tational demands these problems make.

The fact that children showed some success at solving non-symbolic unknown-addend
problems in Experiment 1 contrasts somewhat with the conclusions of Kibbe and Feigenson
(2017) and suggests that children may have more competence with these kinds of problems
than previously thought. However, it is possible that children could have succeeded using a
lower-level strategy that did not require them to directly solve for unknown addends or com-
pute with those solutions. Specifically, between the two unknown addend scenarios (Gator’s
cup and Cheetah’s cup), the initial quantity (before the cup was added) was the same (1) while
the quantity that was added by the cups differed (1 or 2). This meant that the final quantity after
the cup was added was always greater when the addend was greater. That is, Gator’s final
quantity was always larger than Cheetah’s. Some children may have used a strategy of attending
to the final quantities, rather than solving directly for the unknown addend, and using the final
quantities as a basis for their choices in the Test trial and for their judgments in the post-test trials
(see also Cheng & Kibbe, 2023b). This could potentially explain why children were a) slightly
(but not significantly) more successful in the Test trial in the Summation block, in which such a
strategy was not possible, b) why children performed slightly (but not significantly) worse in the
+Gator condition (some children may have selected Cheetah because his final quantity would
balance the two sets), or c) why children were more successful in the Identification post-test trials
in the Summation block compared to the Unknown Addend block.

We addressed this possibility in Experiment 2. Experiment 2 was nearly identical to Exper-
iment 1, except that we made two changes to the quantities in the Unknown Addend block.
First, we changed the initial quantity in the Unknown Addend Demonstration trials—while
Cheetah’s cup always added one object and Gator’s cup always added two objects (as in
Experiment 1), we varied the initial quantity so that the final quantity after the cups were added
was always three. In this way, Gator and Cheetah always ended up with the same quantity
after their cups were added (see Table 1), which meant that children could not rely on a strat-
egy in which they attended only to the final quantities in the Demonstration trials to make
decisions in the Test or Post-test trials. Second, we changed the quantities of the two unequal
sets in the Unknown Addend block Test trial to 3 vs. 4 (+Cheetah condition) and 3 vs. 5
(+Gator condition), rather than 2 vs. 3 and 2 vs. 4, to ensure children were not carrying over
the visible quantities from the Demonstration trials as cues to respond at Test. The Summation
block was identical to Experiment 1, and thus served as a direct replication of the Summation
block of Experiment 1.
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EXPERIMENT 2

Methods

Participants. Fifty children (mean age = 5.36 years, age range: 4 year 0 months–6 years
9 months, 31 girls) participated in Experiment 2 via Zoom. Sample size was determined as in
Experiment 1. Two additional children were tested but were not included in analyses due to
experimenter error (1) and declining to complete study procedures (1).

Forty-two caregivers answered the optional demographic form. Caregivers reported their
child as Asian (9), Asian White (6), American Indian (1), White (24), or other (2). Two care-
givers reported their child as Hispanic or Latinx, 37 reported their child as not Hispanic or
Latinx, and three caregivers selected “prefer not to say”. Each child had at least one caregiver
who was reported to have a college degree. The study was approved by the Boston University
Charles River Campus Institutional Review Board (protocol #3618E).

Apparatus and Stimuli. The stimuli, including the button images, cups, and animals, were
similar to Experiment 1. All families participated using a laptop computer. The full stimuli
and an example video can be found at https://osf.io/jkc5f/.

Procedure. Experiment 2 followed the same procedures as Experiment 1, with two exceptions
in the Unknown Addend block. First, we changed the quantity of the first set presented in each
Unknown Addend Demonstration trial, so that the final quantities (after Gator’s or Cheetah’s
cups were added) were the same (always 3; see Table 1). Specifically, to demonstrate Gator’s
cup, the experimenter showed children a set of one button, showed Gator’s cup occluding the
set, and then revealed the final set of three buttons. To demonstrate Cheetah’s cup, the exper-
imenter showed children a set of two buttons, showed Cheetah’s cup occluding the set, and
then revealed the final set of three buttons.

We also changed the quantities of the two unequal sets presented in the Unknown Addend
Test trial (see Table 1). In the Test trial, children either saw a set of three and a set of four
buttons (+Cheetah trial) or a set of three and a set of five buttons (+Gator trial).

Results

Visible Balancing Trials. Children’s proportion correct across the two Visible Balancing
trials was .82 (chance = .5, Wilcoxon Signed Rank test asymp. p < .001). As in Exper-
iment 1, although children’s proportion correct tended to increase with age, a correla-
tion between proportion correct and age did not reach statistical significance (r = .268,
p = .06).

Test Trial. Children’s responses in the Summation and Unknown Addend block Test trials are
shown in Figure 3 and summarized in Table 1. In the Summation block, 40/50 children (80%)
selected the correct sum that would balance the unequal sets (chance = 50%; binomial p <
.001), and children performed similarly whether they completed the +Elephant Test trial (19/25
children (76%) chose correctly) or the +Piggy Test trial (20/25 children (80%) chose correctly)
(Fisher’s exact test p = 1); children performed similarly when the larger set contained five
objects compared to when the larger set contained four objects. In the Unknown-addend Test
trial, 25/50 children (50%) correctly chose the addend that would balance the unequal sets,
not different from chance (binomial p = 1). Children responded similarly regardless of whether
they completed the +Gator Test trial (14/26 children (54%) chose correctly) or the +Cheetah
Test trial (11/24 children (46%) chose correctly) (Fisher’s exact test p = .78), suggesting that
children’s performance was not significantly impacted by the inclusion of the set of five
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objects in the +Gator condition, compared to the relatively smaller quantities used in
the +Cheetah condition. There were no effects of block order or demonstration trial
order (ps > .72).

Children performed significantly better in the Summation block Test trial compared to the
Unknown Addend block Test trial (McNemar test = 6.76, asymp. p = .009). Summation block
Test trial performance was significantly correlated with age (r = .43, p = .002), but Unknown
Addend block Test trial performance was not (r = .026, p = .860) (see Figure 3).

Post-Test Trials. In the Comparison trial, children successfully selected the cup that contained
the greater quantity in the Summation block (39/50 children (78%) responded correctly, bino-
mial p < .001), but not in the Unknown Addend block (28/50 children (56%) responded cor-
rectly, binomial p = .48), and their correct responses were significantly different across the two
blocks (McNemar test = 5.88, asymp. p = .015). In the Identification trial, children identified
the correct target cup in the Summation block (39/50 children (78%) chose correctly binomial
p < .001), but not in the Unknown Addend block (27/50 children (54%) chose correctly,
binomial p = .67); children performed significantly worse in the Unknown Addend block
compared to the Summation block (McNemar test = 4.76, asymp. p = .029). No age-related
differences were observed in either the Comparison or the Identification trial in either blocks
(all ps > .077, rs < .255). These results suggest that children successfully solved the sums in the
Summation block, but they were not overall successful in solving for the unknown addends in
the Unknown Addend block.

Experiment 1 and 2 Compared. Visible Balancing Trials. There were no differences in mean per-
formance in Visible Balancing trials across the two experiments (independent samples t test
t(97) = .056, p = .96). Age was significantly correlated with children’s performance in Visible
Balancing trials (r = .23, p = .022), controlling for experiment; with increasing age, children
were more likely to choose the correct set in Visible Balancing trials.

Test Trials. Children performed similarly in the Summation Test trial of Experiments 1 and 2
(Mann-Whitney U test, Z = .05, asymp. p = .96). In the Unknown Addend Test trial, despite the
fact that children chose the correct cup at Test at rates greater than chance in Experiment 1
(65%) and at rates not different from chance in Experiment 2 (50%), there was no statistically
significant difference in children’s choices between the two experiments (Mann-Whitney
U test, Z = 1.53, asymp. p = 125). For both blocks, children’s responses in the Visible Balancing
trials were correlated with the Test trial responses controlling for experiment (Summation
Block: r = .224, p = .027; Unknown Addend Block: r = .282, p = .005), suggesting that children’s
ability to understand and perform a balancing operation may have supported their ability to
compute with the solutions to the non-symbolic arithmetic problems. Across both experiments,
children performed significantly better in the Summation Test trial than the Unknown Addend
Test trial (McNemar test χ2 = 8.82, asymp. p = .003).

Post-Test Trials. Children in Experiments 1 and 2 performed similarly in the Summation block
Comparison (Z = .99, asymp. p = .32) and Identification (Z = 1.59, asymp. p = .11) trials. In the
Unknown Addend blocks, children performed significantly better on the Comparison trial in
Experiment 1 compared to Experiment 2 (Mann-Whitney U test, Z = 2.74, asymp. p = .006) but
performed similarly in the Identification trial (Z = 1.56, asymp. p = .11), suggesting that chil-
dren in Experiment 1 may have been basing their response in the Comparison trials on the final
quantity revealed in the Demonstration trials rather than solving for the unknown addends
directly. Overall, children performed significantly better in the Summation Post-Test trials
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compared to the Unknown Addend Post-Test trials (Comparison: McNemar test, χ2 = 4.97,
asymp. p = .026; Identification: χ2 = 10.03, asymp. p = .002).

Relationship Between Test Trial Performance and Representational Precision. Finally, we took
advantage of our combined samples of Experiments 1 and 2 to ask whether there were any
systematic relationships between children’s success in the Test trials, in which they were asked
to select which of the two solutions (sums in the Summation block; solved unknowns in the
Unknown Addend block) should be used to balance unequal sets, and their performance in
the Post-Test trials, in which we measured the precision of those solutions. We divided
children into two groups within each block—those who chose correctly in the Test trial and
those who chose incorrectly—and asked whether children’s overall performance in the
relevant Post-Test trial varied depending on their Test trial performance. These results are
shown in Figure 4.

Children who responded correctly in the Summation Test trial (n = 79) were more accurate
in the Summation Comparison trial than children who responded incorrectly in the Summation
Test trial (n = 20) (Mann-Whitney test Z = 2.82, asymp. p = .005), and were slightly but not
significantly more accurate in the Summation Identification trial (Z = 1.87, asymp. p = .061)
(though note that few children (20%) responded incorrectly in the Summation Test trial, so
these comparisons may be underpowered even with Experiments 1 and 2 combined).

In the Unknown Addend block, children’s Test success was related to their post-test accu-
racy: children who responded correctly in the Unknown Addend Test trial (n = 56) were more
accurate than children who responded incorrectly in the Unknown Addend Test trial (n = 41)
in both the Unknown Addend Comparison trial (Z = 2.55, asymp. p = .011) and Unknown
Addend Identification trial (Z = 2.45, asymp. p = .014), Figure 4.

Across both blocks, there was no significant difference in age between children who
responded correctly at Test compared to children who responded incorrectly (Summation:
t(97) = 1.54, p = .127, Cohen’s d = .31; Unknown-addend: t(97) = 1.95, p = .054, Cohen’s
d = .40).

Discussion

In Experiment 2, we replicated the Summation condition from Experiment 1. Children were
able to reliably solve for two sums in non-symbolic summation problems with small quantities,

Figure 4. Children’s proportion correct responses in the Comparison and Identification trials of
Experiments 1 and 2 (combined) as a function of whether they successfully chose which of the
two solutions should be used to balance the unequal sets in the Summation Test trial (left panel)
and the Unknown Addend Test trial (right panel).
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and they were able to use the solutions to those summation problems as inputs into a new,
balancing operation. Children overall were not successful at solving for unknown addends
when we controlled for lower-level strategies (i.e., by equating the final quantities between
the two problems so that children could not use the relative size of the final quantities to sup-
port their responses on the Test trial). However, when children did successfully solve for the
unknown addends, as evidenced by their responses in the post-test trials, they were able to use
those solutions as inputs into a balancing operation. We discuss the implications for our under-
standing of the computational capacity of the parallel individuation system in the General
Discussion.

GENERAL DISCUSSION

In two experiments, we aimed to examine the computational capacity of the parallel individ-
uation system by examining the kinds of operations children can do over individual object
representations and whether children can compute with the outputs of such operations. We
asked 4–6-year-old children to perform two types of non-symbolic exact arithmetic operations,
summation operations in one block of trials, and unknown addend operations in another block
of trials. After each block, we presented children with a Test trial in which they were shown
two sets of objects with different quantities and asked children to balance the unequal sets by
choosing which solution (generated from the summation or unknown addend problems)
should be added to the smaller set to make the two sets the same. In Post-test trials following
each Test trial, we directly probed children’s representations of the solution quantities. Here,
we discuss three main takeaways from the results of these experiments.

First, when children are computing over small quantities of objects, computing sums is
easier or more accessible than computing unknown addends (similar to previous results
comparing these operations over AMS representations; Cheng & Kibbe, 2023a). There could
be several reasons for this. One possibility is that computing subsequent additions of objects
may just be more straightforward computationally than back-solving from a final quantity to
determine what quantity must have been added to a set. Inferring the quantity of an unknown
addend requires children to hold the initial set in working memory while observing the cup’s
action, and then to perform a computation over the set held in working memory and the final
set to derive their difference. There are several potential candidates for what this computation
looks like. The computation could be something like a subtraction operation (which is sup-
ported by the parallel individuation system; Wynn, 1992), which children have to deploy over
representations held in working memory (e.g., [observed final set] − [remembered set] =
[addend]). The subtraction computation itself may be more challenging than the addition
operation for children (Campbell, 2008; LeFevre et al., 2006), and the working memory
demands of holding the first set in mind while performing the computation could also drive
the differences in performance between summation and unknown addend formats. Or, the
unknown addend computation could be carried out via a more complex backward inference
process; children may reason counterfactually about what must have been added given the
starting and final state of the set. Under this possibility, children may perform a sort of simu-
lated incrementing operation (e.g., starting with a representation of one object and mentally
incrementing the set until they get to the observed final quantity of three), which could
impose higher cognitive demands and introduce more error compared to the forward incre-
mentation that is possible over summation problems. Either potential computation would
make unknown addend operations more challenging than summation operations, and fur-
ther work is needed to better understand the exact computations supporting these two oper-
ations over individual object representations.
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Another (non-mutually exclusive) reason that children may perform better at summation
problems is that, while children of this age are still learning formal symbolic counting, ordin-
ality, and arithmetic, they could be attempting to use verbal strategies to help support their
problem solving in our task. For example, children might deploy a verbal “counting up” strat-
egy in the summation problems, incrementing a verbal count list (albeit silently) as the objects
are occluded. Such a strategy would be easier to deploy as children become more proficient
with the count list, but more difficult to deploy over unknown addends, which would require
children to directly compute the difference between counted sets. Perhaps as children acquire
more experience with giving precise linguistic labels to their non-symbolic representations of
small sets, they may be better able to represent and compare quantities and use those repre-
sentations in a more general way, i.e., in other computations that are independent of the con-
text in which the original result arose. However, we did not observe consistent age-related
increases in children’s ability to solve for summation or unknown addend problems across
Experiments 1 and 2 (as evidenced by their Test and Post-test responses). Further, previous
work has shown that children in our age range consistently perform better on non-
symbolically presented problems compared to similar verbally-presented problems (e.g.,
Levine et al., 1992), suggesting verbal strategies may be less reliable. We speculate that, while
some children may have deployed verbally-mediated strategies, this is unlikely to be the only
explanation for the differences in children’s performance across the summation and unknown
addend problem contexts. Further work is needed to better pinpoint the sources that underly
the difference in the computability and the role of verbal strategies for these problems for
young children.

A second takeaway from Experiments 1 and 2 is that, while computing over unknown
addends may be more challenging than computing sums, we observed that children who cor-
rectly identified the quantity of the unknown addend in the post-test trial were more successful
at using the solved addends as inputs into a balancing operation, as evidenced by their Test
trial performance. This suggests that some 4–6-year-old children can solve for unknown
addends, in contrast to the conclusions of Kibbe and Feigenson (2017). Kibbe and Feigenson
(2017) had a single dependent measure of children’s performance (their measure was similar
to our Identification post-test trial), so they were not able to determine whether children’s
chance-like performance was indeed due to chance or whether some children who chose cor-
rectly did so because they had successfully solved for the unknown addend. By including trials
that asked children to compute with the solutions to the problems, we found that children of
this age may show some success with this kind of computation, suggesting that the parallel
individuation system may not be as computationally limited as previously thought. Further
work is needed to better understand sources of individual differences in children’s ability to
solve for unknown addends in small-quantity non-symbolic problems.

A third takeaway is, when children do solve for sums or unknowns in small-quantity non-
symbolic arithmetic problems, they are able to use those solutions as inputs into a completely
novel balancing operation. This contrasts with the results of Cheng and Kibbe (2023b) who
found that while children were fairly precise in their representations of large unknown
addends (suggesting that they solved for unknowns in large-quantity non-symbolic
addend-unknown problems), they were not able to use those solutions as inputs into a bal-
ancing operation. Our results suggest that there may be more flexibility in the kinds of com-
putations children can do over representations of smaller sets. We found that children are able
to use small-quantity representations that did not arise from visual inputs—i.e., representations
that resulted from an active operation over small-quantity representations—as an input into a
new operation.
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The contrast with Cheng and Kibbe’s (2023b) results also underscores the likelihood
that children were using representations of small quantities, and not AMS representations,
in our experiments. Cheng and Kibbe’s (2023b) study was set up similarly to our unknown
addend conditions, except that they used larger sets of objects representable by the AMS.
They found that 4–7-year-olds could solve for unknown addends quite successfully and
with fairly high fidelity (see also Cheng & Kibbe, 2023a), but consistently failed to use
those solutions as inputs into a new balancing operation. The results we obtained here
suggest a qualitatively different pattern. Although the ratios between the initial and final
quantities in the unknown addend problems we used in Experiments 1 and 2 were within
the discriminability range for the AMS (and similar to the ratios used in Cheng & Kibbe,
2023b), children in our experiments overall struggled to solve for the unknowns, as evi-
denced by their Post-test trial performance. However, children in our experiments who
showed positive evidence of solving for the unknown addends also showed evidence of
being able to use those solutions as inputs into a new balancing operation, unlike the chil-
dren in the large-set experiments of Cheng and Kibbe (2023b). While further experimental
work is needed to more directly compare children’s performance across the small-large
quantity divide, we think that the differences in patterns observed across these two papers
is further suggestive of a computational difference between individual object representa-
tions and AMS representational formats.

We speculate that non-symbolic arithmetic over representations of small sets of objects may
have a more “function-like” structure than non-symbolic arithmetic over representations of
large sets (i.e., AMS representations). Symbolic arithmetic is defined by its function structure:
any integer that is the result of an arithmetic computation is independent of the problem con-
text in which it arose, and can therefore be used as input into any other problem (Dedekind &
Beman, 1901; for further discussion, see Cheng & Kibbe, 2023b; Kibbe, 2023). Previous
research by Cheng and Kibbe (2023b) suggested that non-symbolic arithmetic over AMS rep-
resentations lacks this function-like structure. However, the results of the present research sug-
gest that not all non-symbolic arithmetic operations are similarly computationally limited. We
speculate that the representational format of small sets of objects may be more flexible in ways
that would lend these representations to more function-like computation. Individual object
representations are deployed separately from each other, are represented independently from
each other, and are compared via one-to-one comparison of the individual representations.
The independence of these representations that is inherent in their format may allow these
representations to operate more flexibly across contexts. This format may also make individual
object representations more readily transposed into other, more general, representational for-
mats (like verbal number words) which could make them easier to compute with in a variety of
contexts. However, further within-participants work is needed to better understand the con-
texts that give rise to different representational formats, the range of these different formats,
the ways in which these formats and computations interface with symbolic number learning,
and how differences in format may drive differential support for different computations across
development, particularly as children become more adept at using symbolic counting, ordin-
ality, and arithmetic strategies.

ACKNOWLEDGMENTS

The authors would like to thank all children and their families who participated in our study,
and Jiaqi Zhao, Shiba Esfand, Rakiya Washington, Vivien Jiang, and Emilia Boak for their assis-
tance in data collection.

OPEN MIND: Discoveries in Cognitive Science 44

Children's Operations Over Non-Symbolic Representations of Small Quantities Cheng and Kibbe

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00177/2497023/opm
i_a_00177.pdf by guest on 10 January 2025



FUNDING INFORMATION

This research was supported by a National Science Foundation (BCS 1844155) grant awarded
to M. M. K.

AUTHOR CONTRIBUTIONS

C.C.: Conceptualization: Equal; Formal analysis: Equal; Investigation: Lead; Methodology:
Equal; Writing – original draft: Lead; Writing – review & editing: Equal. M.M.K.: Conceptual-
ization: Equal; Formal analysis: Equal; Funding acquisition: Lead; Investigation: Supporting;
Methodology: Equal; Writing – original draft: Supporting; Writing – review & editing: Equal.

DATA AVAILABILITY STATEMENT

Stimuli, data, and an example video demonstration of study procedures are available
in the Open Science Framework at https://osf.io/jkc5f/.

REFERENCES

Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., &
Spelke, E. (2006). Non-symbolic arithmetic in adults and young
children. Cognition, 98(3), 199–222. https://doi.org/10.1016/j
.cognition.2004.09.011, PubMed: 15876429

Berger, A., Tzur, G., & Posner, M. I. (2006). Infant brains detect
arithmetic errors. Proceedings of the National Academy of
Sciences, 103(33), 12649–12653. https://doi.org/10.1073
/pnas.0605350103, PubMed: 16894149

Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations
influence arithmetic learning. Child Development, 79(4), 1016–1031.
https://doi.org/10.1111/j.1467-8624.2008.01173.x, PubMed: 18717904

Campbell, J. I. (2008). Subtraction by addition. Memory & Cogni-
tion, 36(6), 1094–1102. https://doi.org/10.3758/MC.36.6.1094,
PubMed: 18927028

Clearfield, M. W., & Westfahl, S. M.-C. (2006). Familiarization in
infants’ perception of addition problems. Journal of Cognition
and Development, 7(1), 27–43. https://doi.org/10.1207
/s15327647jcd0701_2

Cheng, C., & Kibbe, M. M. (2022). Development of updating in
working memory in 4–7-year-old children. Developmental
Psychology, 58 (5 ) , 902–912. ht tps : / /doi .org/10.1037
/dev0001337, PubMed: 35311308

Cheng, C., & Kibbe, M. M. (2023a). Development of precision of
non-symbolic arithmetic operations in 4–6-year-old children.
Frontiers in Psychology, 14, 1286195. https://doi.org/10.3389
/fpsyg.2023.1286195, PubMed: 38034281

Cheng, C., & Kibbe, M. M. (2023b). Is nonsymbolic arithmetic truly
“arithmetic”? Examining the computational capacity of the
Approximate Number System in young children. Cognitive
Science, 47(6), e13299. https://doi.org/10.1111/cogs.13299,
PubMed: 37303302

Christodoulou, J., Lac, A., & Moore, D. S. (2017). Babies and math:
A meta-analysis of infants’ simple arithmetic competence. Devel-
opmental Psychology, 53(8), 1405–1417. https://doi.org/10.1037
/dev0000330, PubMed: 28581312

Cohen, L. B., & Marks, K. S. (2002). How infants process addition
and subtraction events. Developmental Science, 5(2), 186–201.
https://doi.org/10.1111/1467-7687.00220

Coubart, A., Izard, V., Spelke, E. S., Marie, J., & Streri, A. (2014).
Dissociation between small and large numerosities in newborn

infants. Developmental Science, 17(1), 11–22. https://doi.org/10
.1111/desc.12108, PubMed: 24267592

Dedekind, R., & Beman, W. W. (1901). Essays on the theory of
numbers: I. Continuity and irrational numbers, II. The nature and
meaning of numbers. Open Court Publishing Company.

Dehaene, S. (1997). The number sense: How the mind creates
mathematics. Oxford University Press.

Feigenson, L., & Carey, S. (2003). Tracking individuals via
object-files: Evidence from infants’ manual search. Developmen-
tal Science, 6(5), 568–584. https://doi.org/10.1111/1467-7687
.00313

Feigenson, L., & Carey, S. (2005). On the limits of infants’ quanti-
fication of small object arrays. Cognition, 97(3), 295–313. https://
doi.org/10.1016/j.cognition.2004.09.010, PubMed: 16260263

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of
number. Trends in Cognitive Sciences, 8(7), 307–314. https://
doi.org/10.1016/j.tics.2004.05.002, PubMed: 15242690

Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting
and computation. Cognition, 44(1–2), 43–74. https://doi.org/10
.1016/0010-0277(92)90050-R, PubMed: 1511586

Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cogni-
tion: From reals to integers. Trends in Cognitive Sciences, 4(2),
59–65. https://doi.org/10.1016/S1364-6613(99)01424-2,
PubMed: 10652523

Gilmore, C. K., & Spelke, E. S. (2008). Children’s understanding of
the relationship between addition and subtraction. Cognition,
107(3), 932–945. https://doi.org/10.1016/j.cognition.2007.12
.007, PubMed: 18281029

Halberda, J., & Feigenson, L. (2008). Developmental change in the
acuity of the “number sense”: The Approximate Number System
in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychol-
ogy, 44(5), 1457–1465. https://doi.org/10.1037/a0012682,
PubMed: 18793076

Hutchison, J. E., Ansari, D., Zheng, S., De Jesus, S., & Lyons, I. M.
(2020). The relation between subitizable symbolic and
non-symbolic number processing over the kindergarten school
year. Developmental Science, 23(2), e12884. https://doi.org/10
.1111/desc.12884, PubMed: 31271687

Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn
infants perceive abstract numbers. Proceedings of the National

OPEN MIND: Discoveries in Cognitive Science 45

Children's Operations Over Non-Symbolic Representations of Small Quantities Cheng and Kibbe

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00177/2497023/opm
i_a_00177.pdf by guest on 10 January 2025

https://osf.io/jkc5f/
https://osf.io/jkc5f/
https://osf.io/jkc5f/
https://osf.io/jkc5f/
https://osf.io/jkc5f/
https://osf.io/jkc5f/
https://doi.org/10.1016/j.cognition.2004.09.011
https://doi.org/10.1016/j.cognition.2004.09.011
https://doi.org/10.1016/j.cognition.2004.09.011
https://doi.org/10.1016/j.cognition.2004.09.011
https://doi.org/10.1016/j.cognition.2004.09.011
https://doi.org/10.1016/j.cognition.2004.09.011
https://doi.org/10.1016/j.cognition.2004.09.011
https://doi.org/10.1016/j.cognition.2004.09.011
https://doi.org/10.1016/j.cognition.2004.09.011
https://doi.org/10.1016/j.cognition.2004.09.011
https://doi.org/10.1016/j.cognition.2004.09.011
https://pubmed.ncbi.nlm.nih.gov/15876429
https://doi.org/10.1073/pnas.0605350103
https://doi.org/10.1073/pnas.0605350103
https://doi.org/10.1073/pnas.0605350103
https://doi.org/10.1073/pnas.0605350103
https://doi.org/10.1073/pnas.0605350103
https://doi.org/10.1073/pnas.0605350103
https://doi.org/10.1073/pnas.0605350103
https://doi.org/10.1073/pnas.0605350103
https://pubmed.ncbi.nlm.nih.gov/16894149
https://doi.org/10.1111/j.1467-8624.2008.01173.x
https://doi.org/10.1111/j.1467-8624.2008.01173.x
https://doi.org/10.1111/j.1467-8624.2008.01173.x
https://doi.org/10.1111/j.1467-8624.2008.01173.x
https://doi.org/10.1111/j.1467-8624.2008.01173.x
https://doi.org/10.1111/j.1467-8624.2008.01173.x
https://doi.org/10.1111/j.1467-8624.2008.01173.x
https://doi.org/10.1111/j.1467-8624.2008.01173.x
https://doi.org/10.1111/j.1467-8624.2008.01173.x
https://doi.org/10.1111/j.1467-8624.2008.01173.x
https://doi.org/10.1111/j.1467-8624.2008.01173.x
https://doi.org/10.1111/j.1467-8624.2008.01173.x
https://pubmed.ncbi.nlm.nih.gov/18717904
https://doi.org/10.3758/MC.36.6.1094
https://doi.org/10.3758/MC.36.6.1094
https://doi.org/10.3758/MC.36.6.1094
https://doi.org/10.3758/MC.36.6.1094
https://doi.org/10.3758/MC.36.6.1094
https://doi.org/10.3758/MC.36.6.1094
https://doi.org/10.3758/MC.36.6.1094
https://doi.org/10.3758/MC.36.6.1094
https://doi.org/10.3758/MC.36.6.1094
https://doi.org/10.3758/MC.36.6.1094
https://pubmed.ncbi.nlm.nih.gov/18927028
https://doi.org/10.1207/s15327647jcd0701_2
https://doi.org/10.1207/s15327647jcd0701_2
https://doi.org/10.1207/s15327647jcd0701_2
https://doi.org/10.1207/s15327647jcd0701_2
https://doi.org/10.1207/s15327647jcd0701_2
https://doi.org/10.1207/s15327647jcd0701_2
https://doi.org/10.1207/s15327647jcd0701_2
https://doi.org/10.1207/s15327647jcd0701_2
https://doi.org/10.1037/dev0001337
https://doi.org/10.1037/dev0001337
https://doi.org/10.1037/dev0001337
https://doi.org/10.1037/dev0001337
https://doi.org/10.1037/dev0001337
https://doi.org/10.1037/dev0001337
https://doi.org/10.1037/dev0001337
https://pubmed.ncbi.nlm.nih.gov/35311308
https://doi.org/10.3389/fpsyg.2023.1286195
https://doi.org/10.3389/fpsyg.2023.1286195
https://doi.org/10.3389/fpsyg.2023.1286195
https://doi.org/10.3389/fpsyg.2023.1286195
https://doi.org/10.3389/fpsyg.2023.1286195
https://doi.org/10.3389/fpsyg.2023.1286195
https://doi.org/10.3389/fpsyg.2023.1286195
https://doi.org/10.3389/fpsyg.2023.1286195
https://doi.org/10.3389/fpsyg.2023.1286195
https://pubmed.ncbi.nlm.nih.gov/38034281
https://doi.org/10.1111/cogs.13299
https://doi.org/10.1111/cogs.13299
https://doi.org/10.1111/cogs.13299
https://doi.org/10.1111/cogs.13299
https://doi.org/10.1111/cogs.13299
https://doi.org/10.1111/cogs.13299
https://doi.org/10.1111/cogs.13299
https://doi.org/10.1111/cogs.13299
https://pubmed.ncbi.nlm.nih.gov/37303302
https://doi.org/10.1037/dev0000330
https://doi.org/10.1037/dev0000330
https://doi.org/10.1037/dev0000330
https://doi.org/10.1037/dev0000330
https://doi.org/10.1037/dev0000330
https://doi.org/10.1037/dev0000330
https://doi.org/10.1037/dev0000330
https://pubmed.ncbi.nlm.nih.gov/28581312
https://doi.org/10.1111/1467-7687.00220
https://doi.org/10.1111/1467-7687.00220
https://doi.org/10.1111/1467-7687.00220
https://doi.org/10.1111/1467-7687.00220
https://doi.org/10.1111/1467-7687.00220
https://doi.org/10.1111/1467-7687.00220
https://doi.org/10.1111/1467-7687.00220
https://doi.org/10.1111/1467-7687.00220
https://doi.org/10.1111/1467-7687.00220
https://doi.org/10.1111/desc.12108
https://doi.org/10.1111/desc.12108
https://doi.org/10.1111/desc.12108
https://doi.org/10.1111/desc.12108
https://doi.org/10.1111/desc.12108
https://doi.org/10.1111/desc.12108
https://doi.org/10.1111/desc.12108
https://doi.org/10.1111/desc.12108
https://pubmed.ncbi.nlm.nih.gov/24267592
https://doi.org/10.1111/1467-7687.00313
https://doi.org/10.1111/1467-7687.00313
https://doi.org/10.1111/1467-7687.00313
https://doi.org/10.1111/1467-7687.00313
https://doi.org/10.1111/1467-7687.00313
https://doi.org/10.1111/1467-7687.00313
https://doi.org/10.1111/1467-7687.00313
https://doi.org/10.1111/1467-7687.00313
https://doi.org/10.1111/1467-7687.00313
https://doi.org/10.1016/j.cognition.2004.09.010
https://doi.org/10.1016/j.cognition.2004.09.010
https://doi.org/10.1016/j.cognition.2004.09.010
https://doi.org/10.1016/j.cognition.2004.09.010
https://doi.org/10.1016/j.cognition.2004.09.010
https://doi.org/10.1016/j.cognition.2004.09.010
https://doi.org/10.1016/j.cognition.2004.09.010
https://doi.org/10.1016/j.cognition.2004.09.010
https://doi.org/10.1016/j.cognition.2004.09.010
https://doi.org/10.1016/j.cognition.2004.09.010
https://doi.org/10.1016/j.cognition.2004.09.010
https://doi.org/10.1016/j.cognition.2004.09.010
https://pubmed.ncbi.nlm.nih.gov/16260263
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.1016/j.tics.2004.05.002
https://doi.org/10.1016/j.tics.2004.05.002
https://pubmed.ncbi.nlm.nih.gov/15242690
https://doi.org/10.1016/0010-0277(92)90050-R
https://doi.org/10.1016/0010-0277(92)90050-R
https://doi.org/10.1016/0010-0277(92)90050-R
https://doi.org/10.1016/0010-0277(92)90050-R
https://doi.org/10.1016/0010-0277(92)90050-R
https://doi.org/10.1016/0010-0277(92)90050-R
https://doi.org/10.1016/0010-0277(92)90050-R
https://doi.org/10.1016/0010-0277(92)90050-R
https://doi.org/10.1016/0010-0277(92)90050-R
https://pubmed.ncbi.nlm.nih.gov/1511586
https://doi.org/10.1016/S1364-6613(99)01424-2
https://doi.org/10.1016/S1364-6613(99)01424-2
https://doi.org/10.1016/S1364-6613(99)01424-2
https://doi.org/10.1016/S1364-6613(99)01424-2
https://doi.org/10.1016/S1364-6613(99)01424-2
https://doi.org/10.1016/S1364-6613(99)01424-2
https://doi.org/10.1016/S1364-6613(99)01424-2
https://doi.org/10.1016/S1364-6613(99)01424-2
https://doi.org/10.1016/S1364-6613(99)01424-2
https://pubmed.ncbi.nlm.nih.gov/10652523
https://doi.org/10.1016/j.cognition.2007.12.007
https://doi.org/10.1016/j.cognition.2007.12.007
https://doi.org/10.1016/j.cognition.2007.12.007
https://doi.org/10.1016/j.cognition.2007.12.007
https://doi.org/10.1016/j.cognition.2007.12.007
https://doi.org/10.1016/j.cognition.2007.12.007
https://doi.org/10.1016/j.cognition.2007.12.007
https://doi.org/10.1016/j.cognition.2007.12.007
https://doi.org/10.1016/j.cognition.2007.12.007
https://doi.org/10.1016/j.cognition.2007.12.007
https://doi.org/10.1016/j.cognition.2007.12.007
https://pubmed.ncbi.nlm.nih.gov/18281029
https://doi.org/10.1037/a0012682
https://doi.org/10.1037/a0012682
https://doi.org/10.1037/a0012682
https://doi.org/10.1037/a0012682
https://doi.org/10.1037/a0012682
https://doi.org/10.1037/a0012682
https://doi.org/10.1037/a0012682
https://pubmed.ncbi.nlm.nih.gov/18793076
https://doi.org/10.1111/desc.12884
https://doi.org/10.1111/desc.12884
https://doi.org/10.1111/desc.12884
https://doi.org/10.1111/desc.12884
https://doi.org/10.1111/desc.12884
https://doi.org/10.1111/desc.12884
https://doi.org/10.1111/desc.12884
https://doi.org/10.1111/desc.12884
https://pubmed.ncbi.nlm.nih.gov/31271687


Academy of Sciences, 106(25), 10382–10385. https://doi.org/10
.1073/pnas.0812142106, PubMed: 19520833

Izard, V., Streri, A., & Spelke, E. S. (2014). Toward exact number:
Young children use one-to-one correspondence to measure set
identity but not numerical equality. Cognitive Psychology, 72,
27–53. https://doi.org/10.1016/j.cogpsych.2014.01.004,
PubMed: 24680885

Kibbe, M. M. (2023). The language-of-thought as a working
hypothesis for developmental cognitive science. Behavioral
and Brain Sciences , 46 , e280. https://doi.org/10.1017
/S0140525X23002030, PubMed: 37766618

Kibbe, M. M., & Feigenson, L. (2015). Young children ‘solve for x’
using the Approximate Number System. Developmental Science,
18(1), 38–49. https://doi.org/10.1111/desc.12177, PubMed:
24589420

Kibbe, M. M., & Feigenson, L. (2017). A dissociation between
small and large numbers in young children ’s ability to
“solve for x” in non-symbolic math problems. Cognition, 160,
82–90. https://doi.org/10.1016/j.cognition.2016.12.006,
PubMed: 28068528

LeFevre, J.-A., DeStefano, D., Penner-Wilger, M., & Daley, K. E.
(2006). Selection of procedures in mental subtraction. Canadian
Journal of Experimental Psychology/Revue Canadienne de Psy-
chologie Expérimentale, 60(3), 209–220. https://doi.org/10.1037
/cjep2006020, PubMed: 17076436

Leslie, A. M., Xu, F., Tremoulet, P. D., & Scholl, B. J. (1998).
Indexing and the object concept: Developing ‘what’ and
‘where’ systems. Trends in Cognitive Sciences, 2(1), 10–18.
https://doi.org/10.1016/S1364-6613(97)01113-3, PubMed:
21244957

Levine, S. C., Jordan, N. C., & Huttenlocher, J. (1992). Develop-
ment of calculation abilities in young children. Journal of Exper-
imental Child Psychology, 53(1), 72–103. https://doi.org/10.1016
/S0022-0965(05)80005-0, PubMed: 1545190

Libertus, M. E., & Brannon, E. M. (2009). Behavioral and neural
basis of number sense in infancy. Current Directions in Psycho-
logical Science, 18(6), 346–351. https://doi.org/10.1111/j.1467
-8721.2009.01665.x, PubMed: 20419075

Martin, L., Marie, J., Brun, M., de Hevia, M. D., Streri, A., & Izard,
V. (2022). Abstract representations of small sets in newborns.
Cognition, 226, 105184. https://doi.org/10.1016/j.cognition
.2022.105184, PubMed: 35671541

McCrink, K., Shafto, P., & Barth, H. (2017). The relationship
between non-symbolic multiplication and division in childhood.
Quarterly Journal of Experimental Psychology, 70(4), 686–702.
https://doi.org/10.1080/17470218.2016.1151060, PubMed:
26880261

McCrink, K., & Spelke, E. S. (2010). Core multiplication in child-
hood. Cognition, 116(2), 204–216. https://doi.org/10.1016/j
.cognition.2010.05.003, PubMed: 20537618

McCrink, K., & Spelke, E. S. (2016). Non-symbolic division in child-
hood. Journal of Experimental Child Psychology, 142, 66–82.
https://doi.org/10.1016/j.jecp.2015.09.015, PubMed: 26513326

McCrink, K., & Wynn, K. (2004). Large-number addition and sub-
traction by 9-month-old infants. Psychological Science, 15(11),
776–781. https://doi.org/10.1111/j.0956-7976.2004.00755.x,
PubMed: 15482450

McCrink, K., & Wynn, K. (2007). Ratio abstraction by 6-month-old
infants. Psychological Science, 18(8), 740–745. https://doi.org/10
.1111/j.1467-9280.2007.01969.x, PubMed: 17680947

Meck, W. H., & Church, R. M. (1983). A mode control model of
counting and timing processes. Journal of Experimental Psychol-
ogy: Animal Behavior Processes, 9(3), 320–334. https://doi.org
/10.1037/0097-7403.9.3.320, PubMed: 6886634

National Governors Association Center for Best Practices, Council
of Chief State School Officers. (2010). Common core state
standards for English Language Arts. National Governors Asso-
ciation Center for Best Practices, Council of Chief State School
Officers.

Odic, D., & Starr, A. (2018). An introduction to the Approximate
Number System. Child Development Perspectives, 12(4), 223–229.
https://doi.org/10.1111/cdep.12288, PubMed: 30534193

Simmering, V. R. (2012). The development of visual working mem-
ory capacity during early childhood. Journal of Experimental
Child Psychology, 111(4), 695–707. https://doi.org/10.1016/j
.jecp.2011.10.007, PubMed: 22099167

Simon, T. J., Hespos, S. J., & Rochat, P. (1995). Do infants under-
stand simple arithmetic? A replication of Wynn (1992). Cognitive
Development, 10(2), 253–269. https://doi.org/10.1016/0885
-2014(95)90011-X

Slater, A. M., Bremner, J. G., Johnson, S. P., & Hayes, R. A. (2010).
The role of perceptual processes in infant addition/subtraction
experiments. In L. M. Oakes, C. H. Cashon, M. Casasola, &
D. H. Rakison (Eds.), Infant perception and cognition: Recent
advances, emerging theories, and future directions (pp. 85–110).
Oxford University Press. https://doi.org/10.1093/acprof:oso
/9780195366709.003.0005

Uller, C., Carey, S., Huntley-Fenner, G., & Klatt, L. (1999). What
representations might underlie infant numerical knowledge?
Cognitive Development, 14(1), 1–36. https://doi.org/10.1016
/S0885-2014(99)80016-1

Walden, T., Kim, G., McCoy, C., & Karrass, J. (2007). Do you
believe in magic? Infants’ social looking during violations of
expectations. Developmental Science, 10(5), 654–663. https://
doi.org/10.1111/j.1467-7687.2006.00607.x, PubMed: 17683349

Wang, J., & Kibbe, M. M. (2024). “Catastrophic” set size limits on
infants’ capacity to represent objects: A systematic review and
Bayesian meta-analysis. Developmental Science, 27(4), e13488.
https://doi.org/10.1111/desc.13488, PubMed: 38421117

Wynn, K. (1992). Children’s acquisition of the number words and
the counting system. Cognitive Psychology, 24(2), 220–251.
https://doi.org/10.1016/0010-0285(92)90008-P

Xu, F. (2003). Numerosity discrimination in infants: Evidence for
two systems of representations. Cognition, 89(1), B15–B25.
https://doi.org/10.1016/S0010-0277(03)00050-7, PubMed:
12893126

OPEN MIND: Discoveries in Cognitive Science 46

Children's Operations Over Non-Symbolic Representations of Small Quantities Cheng and Kibbe

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00177/2497023/opm
i_a_00177.pdf by guest on 10 January 2025

https://doi.org/10.1073/pnas.0812142106
https://doi.org/10.1073/pnas.0812142106
https://doi.org/10.1073/pnas.0812142106
https://doi.org/10.1073/pnas.0812142106
https://doi.org/10.1073/pnas.0812142106
https://doi.org/10.1073/pnas.0812142106
https://doi.org/10.1073/pnas.0812142106
https://doi.org/10.1073/pnas.0812142106
https://pubmed.ncbi.nlm.nih.gov/19520833
https://doi.org/10.1016/j.cogpsych.2014.01.004
https://doi.org/10.1016/j.cogpsych.2014.01.004
https://doi.org/10.1016/j.cogpsych.2014.01.004
https://doi.org/10.1016/j.cogpsych.2014.01.004
https://doi.org/10.1016/j.cogpsych.2014.01.004
https://doi.org/10.1016/j.cogpsych.2014.01.004
https://doi.org/10.1016/j.cogpsych.2014.01.004
https://doi.org/10.1016/j.cogpsych.2014.01.004
https://doi.org/10.1016/j.cogpsych.2014.01.004
https://doi.org/10.1016/j.cogpsych.2014.01.004
https://doi.org/10.1016/j.cogpsych.2014.01.004
https://pubmed.ncbi.nlm.nih.gov/24680885
https://doi.org/10.1017/S0140525X23002030
https://doi.org/10.1017/S0140525X23002030
https://doi.org/10.1017/S0140525X23002030
https://doi.org/10.1017/S0140525X23002030
https://doi.org/10.1017/S0140525X23002030
https://doi.org/10.1017/S0140525X23002030
https://doi.org/10.1017/S0140525X23002030
https://pubmed.ncbi.nlm.nih.gov/37766618
https://doi.org/10.1111/desc.12177
https://doi.org/10.1111/desc.12177
https://doi.org/10.1111/desc.12177
https://doi.org/10.1111/desc.12177
https://doi.org/10.1111/desc.12177
https://doi.org/10.1111/desc.12177
https://doi.org/10.1111/desc.12177
https://doi.org/10.1111/desc.12177
https://pubmed.ncbi.nlm.nih.gov/24589420
https://doi.org/10.1016/j.cognition.2016.12.006
https://doi.org/10.1016/j.cognition.2016.12.006
https://doi.org/10.1016/j.cognition.2016.12.006
https://doi.org/10.1016/j.cognition.2016.12.006
https://doi.org/10.1016/j.cognition.2016.12.006
https://doi.org/10.1016/j.cognition.2016.12.006
https://doi.org/10.1016/j.cognition.2016.12.006
https://doi.org/10.1016/j.cognition.2016.12.006
https://doi.org/10.1016/j.cognition.2016.12.006
https://doi.org/10.1016/j.cognition.2016.12.006
https://doi.org/10.1016/j.cognition.2016.12.006
https://pubmed.ncbi.nlm.nih.gov/28068528
https://doi.org/10.1037/cjep2006020
https://doi.org/10.1037/cjep2006020
https://doi.org/10.1037/cjep2006020
https://doi.org/10.1037/cjep2006020
https://doi.org/10.1037/cjep2006020
https://doi.org/10.1037/cjep2006020
https://doi.org/10.1037/cjep2006020
https://pubmed.ncbi.nlm.nih.gov/17076436
https://doi.org/10.1016/S1364-6613(97)01113-3
https://doi.org/10.1016/S1364-6613(97)01113-3
https://doi.org/10.1016/S1364-6613(97)01113-3
https://doi.org/10.1016/S1364-6613(97)01113-3
https://doi.org/10.1016/S1364-6613(97)01113-3
https://doi.org/10.1016/S1364-6613(97)01113-3
https://doi.org/10.1016/S1364-6613(97)01113-3
https://doi.org/10.1016/S1364-6613(97)01113-3
https://doi.org/10.1016/S1364-6613(97)01113-3
https://doi.org/10.1016/S1364-6613(97)01113-3
https://pubmed.ncbi.nlm.nih.gov/21244957
https://doi.org/10.1016/S0022-0965(05)80005-0
https://doi.org/10.1016/S0022-0965(05)80005-0
https://doi.org/10.1016/S0022-0965(05)80005-0
https://doi.org/10.1016/S0022-0965(05)80005-0
https://doi.org/10.1016/S0022-0965(05)80005-0
https://doi.org/10.1016/S0022-0965(05)80005-0
https://doi.org/10.1016/S0022-0965(05)80005-0
https://doi.org/10.1016/S0022-0965(05)80005-0
https://doi.org/10.1016/S0022-0965(05)80005-0
https://pubmed.ncbi.nlm.nih.gov/1545190
https://doi.org/10.1111/j.1467-8721.2009.01665.x
https://doi.org/10.1111/j.1467-8721.2009.01665.x
https://doi.org/10.1111/j.1467-8721.2009.01665.x
https://doi.org/10.1111/j.1467-8721.2009.01665.x
https://doi.org/10.1111/j.1467-8721.2009.01665.x
https://doi.org/10.1111/j.1467-8721.2009.01665.x
https://doi.org/10.1111/j.1467-8721.2009.01665.x
https://doi.org/10.1111/j.1467-8721.2009.01665.x
https://doi.org/10.1111/j.1467-8721.2009.01665.x
https://doi.org/10.1111/j.1467-8721.2009.01665.x
https://doi.org/10.1111/j.1467-8721.2009.01665.x
https://doi.org/10.1111/j.1467-8721.2009.01665.x
https://pubmed.ncbi.nlm.nih.gov/20419075
https://doi.org/10.1016/j.cognition.2022.105184
https://doi.org/10.1016/j.cognition.2022.105184
https://doi.org/10.1016/j.cognition.2022.105184
https://doi.org/10.1016/j.cognition.2022.105184
https://doi.org/10.1016/j.cognition.2022.105184
https://doi.org/10.1016/j.cognition.2022.105184
https://doi.org/10.1016/j.cognition.2022.105184
https://doi.org/10.1016/j.cognition.2022.105184
https://doi.org/10.1016/j.cognition.2022.105184
https://doi.org/10.1016/j.cognition.2022.105184
https://pubmed.ncbi.nlm.nih.gov/35671541
https://doi.org/10.1080/17470218.2016.1151060
https://doi.org/10.1080/17470218.2016.1151060
https://doi.org/10.1080/17470218.2016.1151060
https://doi.org/10.1080/17470218.2016.1151060
https://doi.org/10.1080/17470218.2016.1151060
https://doi.org/10.1080/17470218.2016.1151060
https://doi.org/10.1080/17470218.2016.1151060
https://doi.org/10.1080/17470218.2016.1151060
https://doi.org/10.1080/17470218.2016.1151060
https://pubmed.ncbi.nlm.nih.gov/26880261
https://doi.org/10.1016/j.cognition.2010.05.003
https://doi.org/10.1016/j.cognition.2010.05.003
https://doi.org/10.1016/j.cognition.2010.05.003
https://doi.org/10.1016/j.cognition.2010.05.003
https://doi.org/10.1016/j.cognition.2010.05.003
https://doi.org/10.1016/j.cognition.2010.05.003
https://doi.org/10.1016/j.cognition.2010.05.003
https://doi.org/10.1016/j.cognition.2010.05.003
https://doi.org/10.1016/j.cognition.2010.05.003
https://doi.org/10.1016/j.cognition.2010.05.003
https://doi.org/10.1016/j.cognition.2010.05.003
https://pubmed.ncbi.nlm.nih.gov/20537618
https://doi.org/10.1016/j.jecp.2015.09.015
https://doi.org/10.1016/j.jecp.2015.09.015
https://doi.org/10.1016/j.jecp.2015.09.015
https://doi.org/10.1016/j.jecp.2015.09.015
https://doi.org/10.1016/j.jecp.2015.09.015
https://doi.org/10.1016/j.jecp.2015.09.015
https://doi.org/10.1016/j.jecp.2015.09.015
https://doi.org/10.1016/j.jecp.2015.09.015
https://doi.org/10.1016/j.jecp.2015.09.015
https://doi.org/10.1016/j.jecp.2015.09.015
https://doi.org/10.1016/j.jecp.2015.09.015
https://pubmed.ncbi.nlm.nih.gov/26513326
https://doi.org/10.1111/j.0956-7976.2004.00755.x
https://doi.org/10.1111/j.0956-7976.2004.00755.x
https://doi.org/10.1111/j.0956-7976.2004.00755.x
https://doi.org/10.1111/j.0956-7976.2004.00755.x
https://doi.org/10.1111/j.0956-7976.2004.00755.x
https://doi.org/10.1111/j.0956-7976.2004.00755.x
https://doi.org/10.1111/j.0956-7976.2004.00755.x
https://doi.org/10.1111/j.0956-7976.2004.00755.x
https://doi.org/10.1111/j.0956-7976.2004.00755.x
https://doi.org/10.1111/j.0956-7976.2004.00755.x
https://doi.org/10.1111/j.0956-7976.2004.00755.x
https://doi.org/10.1111/j.0956-7976.2004.00755.x
https://pubmed.ncbi.nlm.nih.gov/15482450
https://doi.org/10.1111/j.1467-9280.2007.01969.x
https://doi.org/10.1111/j.1467-9280.2007.01969.x
https://doi.org/10.1111/j.1467-9280.2007.01969.x
https://doi.org/10.1111/j.1467-9280.2007.01969.x
https://doi.org/10.1111/j.1467-9280.2007.01969.x
https://doi.org/10.1111/j.1467-9280.2007.01969.x
https://doi.org/10.1111/j.1467-9280.2007.01969.x
https://doi.org/10.1111/j.1467-9280.2007.01969.x
https://doi.org/10.1111/j.1467-9280.2007.01969.x
https://doi.org/10.1111/j.1467-9280.2007.01969.x
https://doi.org/10.1111/j.1467-9280.2007.01969.x
https://doi.org/10.1111/j.1467-9280.2007.01969.x
https://pubmed.ncbi.nlm.nih.gov/17680947
https://doi.org/10.1037/0097-7403.9.3.320
https://doi.org/10.1037/0097-7403.9.3.320
https://doi.org/10.1037/0097-7403.9.3.320
https://doi.org/10.1037/0097-7403.9.3.320
https://doi.org/10.1037/0097-7403.9.3.320
https://doi.org/10.1037/0097-7403.9.3.320
https://doi.org/10.1037/0097-7403.9.3.320
https://doi.org/10.1037/0097-7403.9.3.320
https://doi.org/10.1037/0097-7403.9.3.320
https://doi.org/10.1037/0097-7403.9.3.320
https://doi.org/10.1037/0097-7403.9.3.320
https://pubmed.ncbi.nlm.nih.gov/6886634
https://doi.org/10.1111/cdep.12288
https://doi.org/10.1111/cdep.12288
https://doi.org/10.1111/cdep.12288
https://doi.org/10.1111/cdep.12288
https://doi.org/10.1111/cdep.12288
https://doi.org/10.1111/cdep.12288
https://doi.org/10.1111/cdep.12288
https://doi.org/10.1111/cdep.12288
https://pubmed.ncbi.nlm.nih.gov/30534193
https://doi.org/10.1016/j.jecp.2011.10.007
https://doi.org/10.1016/j.jecp.2011.10.007
https://doi.org/10.1016/j.jecp.2011.10.007
https://doi.org/10.1016/j.jecp.2011.10.007
https://doi.org/10.1016/j.jecp.2011.10.007
https://doi.org/10.1016/j.jecp.2011.10.007
https://doi.org/10.1016/j.jecp.2011.10.007
https://doi.org/10.1016/j.jecp.2011.10.007
https://doi.org/10.1016/j.jecp.2011.10.007
https://doi.org/10.1016/j.jecp.2011.10.007
https://doi.org/10.1016/j.jecp.2011.10.007
https://pubmed.ncbi.nlm.nih.gov/22099167
https://doi.org/10.1016/0885-2014(95)90011-X
https://doi.org/10.1016/0885-2014(95)90011-X
https://doi.org/10.1016/0885-2014(95)90011-X
https://doi.org/10.1016/0885-2014(95)90011-X
https://doi.org/10.1016/0885-2014(95)90011-X
https://doi.org/10.1016/0885-2014(95)90011-X
https://doi.org/10.1016/0885-2014(95)90011-X
https://doi.org/10.1016/0885-2014(95)90011-X
https://doi.org/10.1016/0885-2014(95)90011-X
https://doi.org/10.1093/acprof:oso/9780195366709.003.0005
https://doi.org/10.1093/acprof:oso/9780195366709.003.0005
https://doi.org/10.1093/acprof:oso/9780195366709.003.0005
https://doi.org/10.1093/acprof:oso/9780195366709.003.0005
https://doi.org/10.1093/acprof:oso/9780195366709.003.0005
https://doi.org/10.1093/acprof:oso/9780195366709.003.0005
https://doi.org/10.1093/acprof:oso/9780195366709.003.0005
https://doi.org/10.1093/acprof:oso/9780195366709.003.0005
https://doi.org/10.1093/acprof:oso/9780195366709.003.0005
https://doi.org/10.1093/acprof:oso/9780195366709.003.0005
https://doi.org/10.1016/S0885-2014(99)80016-1
https://doi.org/10.1016/S0885-2014(99)80016-1
https://doi.org/10.1016/S0885-2014(99)80016-1
https://doi.org/10.1016/S0885-2014(99)80016-1
https://doi.org/10.1016/S0885-2014(99)80016-1
https://doi.org/10.1016/S0885-2014(99)80016-1
https://doi.org/10.1016/S0885-2014(99)80016-1
https://doi.org/10.1016/S0885-2014(99)80016-1
https://doi.org/10.1016/S0885-2014(99)80016-1
https://doi.org/10.1111/j.1467-7687.2006.00607.x
https://doi.org/10.1111/j.1467-7687.2006.00607.x
https://doi.org/10.1111/j.1467-7687.2006.00607.x
https://doi.org/10.1111/j.1467-7687.2006.00607.x
https://doi.org/10.1111/j.1467-7687.2006.00607.x
https://doi.org/10.1111/j.1467-7687.2006.00607.x
https://doi.org/10.1111/j.1467-7687.2006.00607.x
https://doi.org/10.1111/j.1467-7687.2006.00607.x
https://doi.org/10.1111/j.1467-7687.2006.00607.x
https://doi.org/10.1111/j.1467-7687.2006.00607.x
https://doi.org/10.1111/j.1467-7687.2006.00607.x
https://doi.org/10.1111/j.1467-7687.2006.00607.x
https://doi.org/10.1111/j.1467-7687.2006.00607.x
https://pubmed.ncbi.nlm.nih.gov/17683349
https://doi.org/10.1111/desc.13488
https://doi.org/10.1111/desc.13488
https://doi.org/10.1111/desc.13488
https://doi.org/10.1111/desc.13488
https://doi.org/10.1111/desc.13488
https://doi.org/10.1111/desc.13488
https://doi.org/10.1111/desc.13488
https://doi.org/10.1111/desc.13488
https://pubmed.ncbi.nlm.nih.gov/38421117
https://doi.org/10.1016/0010-0285(92)90008-P
https://doi.org/10.1016/0010-0285(92)90008-P
https://doi.org/10.1016/0010-0285(92)90008-P
https://doi.org/10.1016/0010-0285(92)90008-P
https://doi.org/10.1016/0010-0285(92)90008-P
https://doi.org/10.1016/0010-0285(92)90008-P
https://doi.org/10.1016/0010-0285(92)90008-P
https://doi.org/10.1016/0010-0285(92)90008-P
https://doi.org/10.1016/0010-0285(92)90008-P
https://doi.org/10.1016/S0010-0277(03)00050-7
https://doi.org/10.1016/S0010-0277(03)00050-7
https://doi.org/10.1016/S0010-0277(03)00050-7
https://doi.org/10.1016/S0010-0277(03)00050-7
https://doi.org/10.1016/S0010-0277(03)00050-7
https://doi.org/10.1016/S0010-0277(03)00050-7
https://doi.org/10.1016/S0010-0277(03)00050-7
https://doi.org/10.1016/S0010-0277(03)00050-7
https://doi.org/10.1016/S0010-0277(03)00050-7
https://pubmed.ncbi.nlm.nih.gov/12893126

	What Kinds of Computations Can Young Children Perform Over &b_k;&b_k;Non-Symbolic&e_k;&e_k; Rep.....

