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Abstract

Young children with limited knowledge of formal mathematics can intuitively perform basic
arithmetic-like operations over nonsymbolic, approximate representations of quantity. However, the
algorithmic rules that guide such nonsymbolic operations are not entirely clear. We asked whether
nonsymbolic arithmetic operations have a function-like structure, like symbolic arithmetic. Children
(n = 74 4- to -8-year-olds in Experiment 1; n = 52 7- to 8-year-olds in Experiment 2) first solved two
nonsymbolic arithmetic problems. We then showed children two unequal sets of objects, and asked
children which of the two derived solutions should be added to the smaller of the two sets to make
them “about the same.” We hypothesized that, if nonsymbolic arithmetic follows similar function rules
to symbolic arithmetic, then children should be able to use the solutions of nonsymbolic computations
as inputs into another nonsymbolic problem. Contrary to this hypothesis, we found that children were
unable to reliably do so, suggesting that these solutions may not operate as independent representations
that can be used inputs into other nonsymbolic computations. These results suggest that nonsymbolic
and symbolic arithmetic computations are algorithmically distinct, which may limit the extent to which
children can leverage nonsymbolic arithmetic intuitions to acquire formal mathematics knowledge.
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1. Introduction

Marr (1982) noted that to understand any information processing system, including the
human mind, we must define not only how the system represents information but the algo-
rithms by which these representations can be processed by the system, since the algorithm
constrains the representational format of its inputs and outputs. For example, while one can
add two Arabic numerals together, and one can add two Roman numerals together, the algo-
rithms by which one does so are not the same: place value addition can operate over Arabic
numerals, but not Roman numerals. The study of representation and algorithm must go hand
in hand in order to fully understand the computational capacity of any information processing
system, from cash registers to minds.

A critical case study for the theoretical importance of studying both representation and
algorithm in the human mind is the approximate number system (ANS). The ANS is a basic
and universal cognitive system that enables us to quantify sets of items without language or
formal symbols1 (Dehaene, 1997; Feigenson, Dehaene, & Spelke, 2004). The ANS represents
sets of individual items as a single magnitude that is noisy and imprecise (Dehaene, 1997;
Gallistel & Gelman, 1992; Meck & Church, 1983; Wynn, 1995), and the discriminability of
ANS representations depends on the ratio between the quantities they represent (Gallistel &
Gelman, 2000; Lipton & Spelke, 2003; Pica, Lemer, Izard, & Dehaene, 2004; Xu, 2003; Xu
& Spelke, 2000). The ANS is what allows us to get a rough sense of the size of a crowd,
or to tell whether our sibling got more cereal than we did, without having to count. Cru-
cially, the ANS is operational from infancy (Coubart, Izard, Spelke, Marie, & Streri, 2014;
de Hevia, Izard, Coubart, Spelke, & Streri, 2014; Libertus & Brannon, 2009), and therefore,
its emergence is not dependent on language acquisition or formal tuition. Its representational
precision increases with development (Halberda & Feigenson, 2008).

From very early in development, humans can manipulate ANS representations in response
to real-world changes to visible arrays of items. Infants and children can add to or subtract
from quantities represented by the ANS (Booth & Siegler, 2008; Barth et al., 2006; McCrink
& Wynn, 2004; Gilmore & Spelke, 2008; Kibbe & Feigenson, 2015, 2017; see Christodoulou
et al., 2017, for a meta-analysis) and children can scale ANS representations up or down
by a factor of, for example, 2 or 4 (McCrink & Spelke, 2010, 2016; McCrink & Wynn,
2007; McCrink, Shafto, & Barth, 2017). For example, after viewing two separate sets of items
hidden sequentially behind an occluder, infants and children can generate an approximate
representation of the total sum (e.g., McCrink & Wynn, 2004, 2009; Park, Bermudez, Roberts,
& Brannon, 2016). Children’s success in these tasks is dependent on the precision of their
ANS representations, providing evidence that children are indeed using the ANS, and not
symbolically mediated representations (like counting).

Children’s untutored capacity to manipulate ANS representations has been taken as evi-
dence of an early, pre-symbolic capacity for arithmetic computation that precedes formal
mathematics education (e.g., Carey, 2001; Dehaene, 1997; Wynn, 1992). Indeed, before they
have formal mathematics instruction, children appear to be able to manipulate nonsymbolic
representations of quantity in a way that bears at least surface similarity to arithmetic with
numerals–adding, subtracting, multiplying, and dividing representations of sets of items.
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However, the algorithmic rules that guide such nonsymbolic manipulation processes are not
entirely clear. One wedge into this problem is to examine whether the computational structure
of the human capacity for nonsymbolic manipulations of ANS representations bears algorith-
mic similarity to the computational rules of symbolic arithmetic. True symbolic arithmetic is
defined by function rules (Dedekind & Beman, 1901). These rules hold that (1) operations
(like addition or subtraction) are functions performed over independent numerals, and (2) the
outputs of these operations are themselves independent numerals that can be used as input
into other arithmetic operations. For example, to solve the symbolic arithmetic problem 8+7
= _, one performs an operation (addition) over two independent numerals (8 and 7), and that
operation specifies how these numerals should be combined. The result is another numeral
(the output of the operation, 15), which is independent of the operation from which it was
derived and can be used as input into another operation (e.g., 15 could now be used as an
operand in a subtraction problem).

Function arithmetic is powerful because it allows for the principled combination of inde-
pendent numerals. It is an open question whether the nonsymbolic manipulation of ANS
representations affords similar computational power. That is, while children’s early nonsym-
bolic capacities may bear a surface resemblance to symbolic arithmetic, it is unclear whether
they bear algorithmic similarity to symbolic arithmetic. Understanding the algorithms that
support nonsymbolic ANS computation is crucial for understanding the operational structure
and computational capacity of our early quantificational abilities.

Previous work has revealed both differences and similarities between nonsymbolic and
symbolic quantificational abilities in children and adults. The representational formats of
symbolic and nonsymbolic quantity are different in several aspects. Symbolic representations
are exact, while ANS representations are noisy and imprecise; symbolic and ANS repre-
sentations of quantity are coded differently in the brain (Bulthé et al., 2014; Cohen Kadosh
et al., 2011; Lyons et al., 2015); and different cognitive precursors (e.g., visuospatial skills
and phonological awareness) are found to uniquely predict children’s performance on sym-
bolic and nonsymbolic ANS tasks (Yang et al., 2020; Zhang & Lin, 2015). Yet, symbolic and
nonsymbolic operations also share some surface similarities. There is overlap in the brain
regions that are activated when adults and children solve nonsymbolic and symbolic arith-
metic problems (Butterworth & Walsh, 2011; Dehaene & Cohen, 2007; Dehaene, Piazza,
Pinel, & Cohen, 2003; Lussier & Cantlon, 2016; Piazza, Pinel, Le Bihan, & Dehaene, 2007),
and some evidence suggests that nonsymbolic numerical skills are related to symbolic math
performance in children and adults (Lourenco et al., 2012; Chu, vanMarle, & Geary, 2015;
DeWind & Brannon, 2012; Gilmore et al., 2010; Halberda, Mazzocco, & Feigenson, 2008;
Libertus, Odic, & Halberda, 2012; Mazzocco, Feigenson, & Halberda, 2011a; Piazza et al.,
2010; Mazzocco, Feigenson, & Halberda, 2011b; Starr, Libertus, & Brannon, 2013; Wang,
Halberda, & Feigenson, 2021; Wang, Odic, Halberda, & Feigenson, 2016; Wong, 2020; see
Chen & Li, 2014 and Fazio et al., 2014 for meta-analyses), although other studies have failed
to find such a relationship (see Szkudlarek, Park, & Brannon, 2021; Bugden, Szkudlarek,
& Brannon, 2021). And children can use approximate representations of quantity to sup-
port performance on symbolic tasks for which they are not yet adept (e.g., Gilmore et al.,
2007), suggesting some transference between nonsymbolic and symbolic arithmetic abilities.
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Nevertheless, the algorithms that underlie nonsymbolic arithmetic-like computation are not
well understood.

How is nonsymbolic arithmetic computation accomplished over ANS representations?
Despite surface-level similarities, nonsymbolic “arithmetic” could be accomplished in a way
that does not require computation over inputs to produce an output. Take the example of
nonsymbolic “addition.” When viewing the sequential hiding of two sets of objects, partic-
ipants could maintain a running total, updating a single magnitude in response to each new
visual encounter with an array. Such a process is not a function, because it does not require
the principled operation over independent input(s) to yield a specific, independent output.
Instead, such a process could be thought of as a visual updating process: a single ANS rep-
resentation whose magnitude is updated in response to visual input, metaphorically akin to
increasing or decreasing the amount of liquid in a single cup. The outcome of such a process
is, therefore, dependent upon the context in which it was initially formed (i.e., it is a modified
form of the initial representation). This updating process could be accomplished in the same
way ANS representations are initially formed (see, e.g., Meck & Church, 1983, Gallistel &
Gelman, 2000; Inglis & Gilmore, 2013; Whalen, Gallistel, & Gelman, 1999; Wynn, 1998),
and can explain the results of the majority of nonsymbolic arithmetic studies. For example,
“subtraction” can be accomplished by decrementing a single ANS representation in response
to visual input, and “multiplication” or “division” could be accomplished by scaling up or
scaling down a single ANS representation in response to visual input.

Alternatively, nonsymbolic arithmetic may be accomplished in a way that more closely
parallels the function rules of symbolic arithmetic computations, in which independent rep-
resentations are input into a function that produces some output, which itself is an indepen-
dent representation that can be further used in additional computations. For example, when
performing a nonsymbolic “addition” task, children could combine their (separate) repre-
sentations of the first set and second set using a mental operation, producing an output ANS
representation that represents their sum. This process is algorithmically distinct from updating
a single ANS representation, because it is a function that takes ANS representations as input
and outputs a separate ANS representation that is the (algorithmically defined) combination
of the inputs.

There is some initial evidence that at least one criterion for function arithmetic may be met
in children’s nonsymbolic arithmetic abilities. Kibbe and Feigenson (2015, 2017) showed
young children, with limited experience with formal math, problems like 5+x = 17 pre-
sented nonsymbolically: children viewed an initial quantity, observed a “magic cup” adding
an unknown quantity, and then observed the final quantity after the contents of the cup were
added. Children were then asked to choose which of two visible quantities matched the quan-
tity that was added by the magic cup–essentially requiring children to “solve for x” in a
nonsymbolic unknown-addend problem. Solving for an unknown nonsymbolic addend can-
not be accomplished by incrementing or decrementing a single ANS representation. Instead,
to succeed, children had to hold two separate ANS representations in working memory (the
initial quantity before the cup was added and the final quantity after the cup was added)
and perform an operation over these representations (e.g., taking their difference) to derive
a solution (the quantity in the cup). Kibbe and Feigenson (2015, 2017) found that 4- to
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6-year-old children successfully solved these kinds of problems, and follow-up studies ruled
out lower-level perceptual strategies or symbolically mediated strategies that could account
for children’s success.

Kibbe and Feigenson’s (2015, 2017) results suggest the possibility that nonsymbolic arith-
metic operations may partly satisfy one of the rules of symbolic function arithmetic: children
with little formal arithmetic training could perform a computation over two independent ANS
representations to derive their difference, suggesting that nonsymbolic arithmetic operations
may be performed over two separate ANS representations. However, the true test of whether
nonsymbolic arithmetic computations abide by arithmetic function rules requires evidence
that the output of a nonsymbolic arithmetic computation is an ANS representation that can
function independently of the context in which it arose, and that nonsymbolic arithmetic com-
putations can be performed over the outputs of such computations.

If children can use the solutions of nonsymbolic arithmetic computations as operands in
further nonsymbolic computations, it would suggest that nonsymbolic arithmetic computa-
tion may have a function-like structure that allows for the principled combination of inputs,
and, therefore, can take as input any ANS representation, even one that arose from an arith-
metic computation. Here, we make the distinction between “computationally derived” ANS
representations–referring to ANS representations that result from mental computations over
ANS representations (i.e., the “outputs” of ANS computations)–and “visually derived” ANS
representations–referring to ANS representations that arise from visual inputs (i.e., a set of
items in the world that gives rise to a representation of quantity in the mind). If nonsym-
bolic arithmetic computations yield independent ANS representations as outputs, and these
computationally derived outputs are treated computationally identically to purely visually
derived ANS representations, that would suggest a combinatorial, function-like structure to
nonsymbolic ANS computations which can operate over representations in the mind that are
not necessarily grounded in the world. Alternatively, if computationally derived ANS repre-
sentations cannot be readily used in further computations, it would suggest a more limited
computational capacity for nonsymbolic arithmetic.

In two experiments, we investigated the functional capacity of the ANS by asking whether
4- to 8-year-old children could use the solutions to nonsymbolic arithmetic computations over
ANS representations as operands in another nonsymbolic computation. We asked children to
solve two nonsymbolic unknown-addend problems (as in Kibbe & Feigenson, 2015, Exper-
iment 5), which required children to perform an arithmetic-like operation over two separate
ANS representations, obtaining their difference. Because it is not possible to accomplish the
nonsymbolic unknown-addend computation by incrementing or decrementing a single ANS
representation in response to visual input, we reasoned that this problem format would be a
strong test case, requiring children to combine two ANS representations to derive a third rep-
resentation (the solution). We then showed children two sets containing different quantities
of objects, and asked children which of the two solutions should be added to the smaller set
of objects to make the two sets “about the same.” Thus, the task required children to solve
two nonsymbolic arithmetic problems, and to then use the remembered solutions to solve
another nonsymbolic arithmetic problem with those solutions (i.e., deciding whether adding
one solution or the other solution to the smaller set will balance the unequal sets).
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We also included several additional measures to gain insights into potential sources of chil-
dren’s success or failure at the task, including examining children’s ability to balance unequal
sets by selecting between two visible quantities (thus requiring children to use visually derived
ANS representations rather than computationally derived ANS representations to perform a
similar nonsymbolic balancing operation) and examining the precision of children’s repre-
sentations of the computed addends by asking children to compare their representations of
the unknown addends to visible quantities. We hypothesized that, if nonsymbolic arithmetic
computations conform to arithmetic function rules, children should be able to use their rep-
resentations of the solutions to the two nonsymbolic unknown-addend problems to balance
the unequal sets. We also hypothesized that this ability may be limited by the precision of
children’s representations of the unknown addends.

2. Experiment 1

2.1. Method

2.1.1. Participants
Participants were 74 4- to 8-year-old children (mean age: 6.3 years; range: 4.01–9.02

years). To obtain the sample size for this experiment, we conducted a power analysis based
on the results of a small exploratory study (see Supplement for exploratory study details).
The sample was powered for a binomial comparison against chance assuming a small effect
using G*Power Version 3.1 (g = .166, 1-β = .8, α = .05, suggested sample size = 72). This
sample was also sufficiently large to reliably detect a correlation between age and test trial
performance, based on our exploratory study results (p H1 = .39, p H0 = 0, 1-β = .8, α =
.05, suggested n = 49).

We recruited child participants from the greater Boston area through public birth records
and family events. Participants were reported by their caregivers as female (n = 37) or male
(n = 37). Further demographic information was collected through an optional demographic
form. Among 27 returned forms, participants were identified by their caregivers as Asian (1),
Asian/Black (1), Asian/Brazilian (1), Asian/Indian (1), Asian/White (1), and White (19). Two
children were identified as Hispanic/Latinx. All families who completed the forms reported
that at least one caregiver had a college degree or higher. The study procedures were approved
by the Boston University Charles River Campus Institutional Review Board.

2.1.2. Apparatus and stimuli
Children completed the study online via Zoom videoconferencing software (see Supple-

ment for details on the Zoom setup and the devices families used in Experiments 1 and
2). The study stimuli were presented in Keynote presentation software by the experimenter
using the screen-sharing function in Zoom. Stimuli for Experiments 1 and 2 are available at
https://osf.io/yavqg/?view_only.

https://osf.io/yavqg/?view_only
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Fig. 1. Schematic of the four Pre-trials in Experiments 1 and 2.

2.1.3. Procedure
Children completed a series of four Pre-trials, two Unknown-Addend trials, a Test trial,

and a series of Post-test Precision trials designed to assess the precision of children’s repre-
sentations of the solutions to the unknown-addend problems.

2.1.3.1. Pre-trials: The four Pre-trials (see Fig. 1) were designed to orient children to the
kinds of events they would see in the experiment, and to gain a baseline measure of children’s
ability to perform a nonsymbolic balancing operation. The full details of these trials can be
found in the Supplement. The first Pre-trial showed children that two unequal sets of buttons2

could be balanced by adding the (visible) buttons contained inside a transparent cup. The
second and third Pre-trials were Balancing Baseline trials: to obtain a baseline measure of
children’s ability to balance unequal sets, children were asked to choose which of two visible
sets of buttons should be added to the smaller of two unequal sets of buttons to make them
“about the same.”3 In the final Pre-trial, children were shown that an opaque cup could add
buttons to an array. Children saw a set of buttons, and then saw an opaque cup move over
the buttons, leaving behind its contents. We then highlighted the buttons that the cup left
behind. Children were not asked to solve for the unknown addend in this trial; instead, this
trial served to familiarize children with the idea that opaque cups could add more objects to
sets of objects.

2.1.3.2. Unknown-Addend trials: The experimenter introduced children to two animated
characters and their cups by saying “I want to introduce you to my friends. This is Gator
[Gator jumped to attract attention] and his cup [the cup jiggled to attract attention]. He has
some buttons inside his cup. This is Cheetah [Cheetah jumped to attract attention] and his
cup [the cup jiggled to attract attention]. He also has some buttons inside his cup.” Then, the
experimenter said, “But I don’t know how many buttons they have in each of their cups, can
you help me figure it out?” Both characters and their cups were then removed from the screen.
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The experimenter then proceeded to demonstrate Gator’s and Cheetah’s cups adding to sets
of buttons. Whether Gator’s cup or Cheetah’s cup was demonstrated first was counterbalanced
across children. Here, for convenience, we describe the condition in which Gator’s cup was
demonstrated first.

Gator and his cup first appeared on the lower left side of the screen. The experimenter said.
“Here comes Gator again. He already has some buttons inside his cup [the cup jiggled].” A
pile of nine buttons appeared in the center of the screen, and the experimenter said, “If I put a
pile of buttons here, Gator’s cup is going to come and add more buttons to this pile. Like this!”
Gator’s cup then completely covered the visible set, and moved back to its original position,
revealing a set of 29 buttons. She then prompted children to examine the set by saying, “Did
it work? See the buttons now?”

Gator and his cup remained on the lower left side of the screen, and Cheetah and his cup
appeared. The experimenter said, “Now here comes Cheetah and his cup. He has also got
some buttons inside his cup. But his cup is different from Gator’s.” A set of nine buttons
appeared in the center of the screen, and the experimenter said, “If I put a pile of buttons
here in the center of the screen, Cheetah’s cup is going to come and add some more to this
pile, and it’s going to add a different number of buttons to this pile than Gator’s cup just did.
Like this!” Cheetah’s cup then completely covered the visible set and then moved back to
its original position, revealing a set of 17 buttons. The experimenter then prompted children
to examine the set by saying, “Did it work? See the buttons now?” The visible set was then
removed from the screen, while Gator, Cheetah, and their cups remained visible. Fig. 2 shows
a schematic of the Unknown-Addend trials.

The quantities in the Unknown-Addend trials were chosen such that the final quantity (after
the cup was added; 17 or 29) was sufficiently discriminable from the starting quantity (before
the cup was added; 9) by at least a roughly 2:1 ratio (see Kibbe & Feigenson, 2015, 2017),
to ensure that children could distinguish the difference between the two quantities. The vari-
ability of the sizes of the buttons and the pseudorandomized positions of the buttons within
the arrays meant that it was difficult to determine at a glance, after the cup was added, which
buttons were present before the addition and which were added. We randomized the positions
of the buttons and limited the visible duration of each set of buttons (starting and final quan-
tities) to roughly 3–4 s to make it very difficult for children to count or use other symbolic
strategies.

2.1.3.3. Test trial: In the single Test trial, the experimenter said, “I want to show you
some buttons.” Two piles of buttons appeared sequentially at the top of the screen. The exper-
imenter told children, “Here is one pile of buttons, and here is the other pile of buttons.” Two
animated hands then appeared pointing to the sets. The experimenter said, “See these piles of
buttons? They have different numbers of buttons. But I want to make them about the same.”
Then, Gator and Cheetah jumped, and the experimenter said, “Whose cup do we have to use
on this pile [an arrow pointed to the smaller set], so these two piles [the two animated hands
pointing to the sets blinked] will be about the same?”

The smaller set always contained five buttons. Children were randomly assigned to one of
the two Test conditions: a +Cheetah condition, in which the larger set contained 13 buttons,
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Fig. 2. Schematic of the Unknown-Addend trials (left panel) and Test trial (right panel).

or a +Gator condition, in which the larger set contained 25 buttons. Thus, whether the
correct solution was the cup containing the larger quantity (+Gator) or the smaller quantity
(+Cheetah) was counterbalanced across children. See Fig. 2 for a schematic of the Test trial.

The quantities in the Test trials (5 and 13 in the +Cheetah condition, or 5 and 25 in the
+Gator condition) were chosen to allow us to detect whether children were using an alterna-
tive strategy that did not require attending to the components of the unknown-addend prob-
lems. Specifically, if children ignored the starting quantity and unknown addend action com-
pletely and attended only to the final quantities after the cups were added, and then attempted
to use those final quantities as addends in the balancing problem, children in the +Gator con-
dition would be more likely to choose Cheetah’s cup (final quantity = 17, and 5+17 = 23,
close to 25) than Gator’s cup (final quantity = 29, and 5+29 = 34, larger than 25), and chil-
dren in the +Cheetah would be more likely to choose at chance (since either final quantity,
when added to the smaller set, would yield a quantity much larger than 13).

2.1.3.4. Post-Test Precision trials: After children completed the Test trial, they com-
pleted a series of 11 trials to assess the precision of their representations of the quantities
in Gator’s and Cheetah’s cup (see Fig. 3). In the first Post-test trial, the experimenter showed
both Gator, Cheetah and their cups and asked “Whose cup adds more buttons?” In the next 10
trials, the experimenter asked children to compare Gator’s and Cheetah’s cups to visible sets
(five trials each, blocked). On each trial in the Gator block, the experimenter showed Gator
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Fig. 3. Schematic of the first Post-Test trial, and schematic examples of Post-Test Precision trial comparisons for
Cheetah’s cup and Gator’s cup. Children completed a total of 10 of these comparison trials (five for each cup).

and his cup on the left, a set of buttons on the right (either 10, 15, 25, 30, or 40 buttons) and
asked, “Which one has more?” On each trial in the Cheetah block, the experimenter showed
Cheetah and his cup on the right, a set of buttons on the left (either 4, 6, 12, 16, or 24 but-
tons), and asked “Which one has more?” The order of the blocks matched the order in which
the cups were presented in the Unknown-Addend trials (e.g., if Cheetah’s cup was demon-
strated first in the Unknown-Addend trials, children completed the Cheetah block first in the
Post-test).

2.2. Results

Data for Experiments 1 and 2 can be obtained at https://osf.io/yavqg/?view_only.
We found that 53/74 children (72%) correctly chose the cup that would balance the two sets

in the Test trials (binomial test p < .001; BF10 = 197.194). Children’s pattern of responses
was similar in the +Gator condition (25/36 [69%] chose correctly, binomial test p = .029,
BF10 = 4.07) and the +Cheetah condition (28/38 [74%] chose correctly, binomial test p =
.005, BF10 = 16.47), Fisher’s exact test p = .80. While very few children older than 6 1

2 years
responded incorrectly, a one-way ANOVA on children’s ages with success on the Test trial as
a factor was not statistically significant (F(1, 72) = 3.81, p = .055, η2 = .05). These results
are illustrated in Fig. 4, top panel.

We next investigated other potential contributors to children’s success or failure in the Test
trials. In the second and third Pre-test trials, children were asked to balance two unequal sets
by selecting which of two visible quantities should be added to the smaller of the two sets.
We asked whether children’s ability to balance sets using fully visible quantities was related
to their success in the Test trial. Across the two Pre-test Baseline Balancing trials, children
chose the correct quantities to balance the two sets at rates significantly above chance (mean
proportion correct = .68, SD = .36; Wilcoxon Signed Rank test asym. p < .001), and children
who succeeded in the Test trial (M = .71, SD = .35) did not significantly differ from children
who failed in the Test trial (M = .60, SD = .37) (F(1, 72) = 1.51 p = .223, η2 = .021) in their

https://osf.io/yavqg/?view_only
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Fig. 4. The top panel shows individual children’s responses on the Test trial as a function of age in Experiment 1.
The bottom panels show individual children’s mean proportion correct in the post-test precision trials as a function
of age (left panel) and Test trial response (right panel) in Experiment 1. The solid lines represent the line of best
fit, and the black dashed line represents chance-level performance (.5).

performance on the Pre-test Baseline Balancing trials, suggesting that children’s Test trial
performance was not significantly limited by their ability to execute the required balancing
computation. Further, children were as successful in the Test trial (in which the balancing
operation needed to be performed using derived solutions) as they were in the two Pre-test
Balancing trials (in which the balancing operation could be performed using visible arrays;
χ2 = .57, asym. p = .751).

We next examined the precision of children’s representations of the solutions to the two
unknown-addend problems, and whether the precision of their solutions related to their Test
trial performance. In the first Post-test trial, children correctly responded that Gator’s cup was
larger than Cheetah’s cup at rates significantly above chance (58/74 children, 78%, binomial
p < .001, BF10 = 30,978.46). Analysis of children’s responses to the remaining comparison
trials (conducted on 735 total trials; five trials were excluded from analysis because children
declined to respond on those trials) revealed that children correctly selected which was the
larger quantity (the quantity in the cup or the visible quantity) at rates significantly above
chance (mean proportion correct = .76, SD = .14, one-sample t(73) = 16.30, p < .001, BF10

> 100,000). Children’s responses were significantly above chance both for Gator’s addend
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(mean proportion correct = .80, SD = .17, one sample t(73) = 15.25, p < .001, BF10 >

100,000) and Cheetah’s addend (mean proportion correct = .72, SD = .19, one sample t(73)
= 10.09, p < .001, BF10 > 100,000), although their representations of Gator’s addend were
somewhat more precise than their representation of Cheetah’s addend (paired samples t(73)
= −2.84, p = .006), with Bayes factor yielding anecdotal support for the alternative (BF10

= 3.99). We speculate that this may be due to the fact that the final quantity after Gator’s
cup was added was more discriminable from the initial quantity than the final quantity after
Cheetah’s cup was added, which may have facilitated more precise representations of Gator’s
addend. Children’s overall performance on Post-Test Precision trials was not correlated with
age (r = .01, p = .94, BF10 = .092; see Fig. 4, bottom left panel).

To investigate whether the precision of children’s representations of the addends impacted
their Test trial performance, we conducted a repeated measures ANOVA on children’s mean
performance on the Post-Test Precision trials with Addend (Gator or Cheetah) as a within-
participants factor and Test Success (succeed or fail) as a between-participants factor. We
found a small main effect of Addend (reflecting children’s slightly higher precision for Gator’s
addend; F(1, 72 = 3.97, p = .050; η2

p = .052). We also observed a significant main effect
of Test Success (F(1, 72) = 6.97, p = .010, η2

p = .088) and no Test Success X Addend
interaction (F(1, 72) = 1.81, p = .183, η2

p = .024); children who represented the addends
with higher precision were more successful in the Test trial. To investigate further, we ran a
series of pairwise tests on each of the 10 Post-test Precision trials, comparing children who
responded correctly versus incorrectly in the Test trial, with alpha set to .005 to correct for 10
comparisons. We found a difference only in the Post-Test Precision trial in which Gator’s cup
(quantity = 20) was compared to a set of 25 items (Mann−Whitney U = 342.50, p = .003;
for the results of all comparisons, see Table S1 in the Supplement). On this trial, children who
responded correctly in the Test trial also tended to respond correctly that the set of 25 was
more than Gator’s cup (mean proportion correct = .62). However, children who responded
incorrectly in the Test trial were more likely to respond that the set of 25 was less than Gator’s
cup (mean proportion correct = .24), suggesting they overestimated the quantity in Gator’s
cup (although, critically, these same children still correctly responded that Gator’s cup was
smaller than the visible set of 30, mean proportion correct = .71, suggesting they were not
likely to be simply using the final quantity after Gator’s cup added (29) as their representation
of Gator’s quantity).

2.3. Discussion

The results of Experiment 1 suggest that children ages 4–8 were able to solve for two
unknown addends in problems presented nonsymbolically, providing the first direct repli-
cation (to our knowledge) of Kibbe and Feigenson’s (2015) Experiment 5, in which 4- to
6-year-old children solved for two unknown addends. Our study also extended this finding
by providing the first data on the precision of children’s representations of solved unknown
addends. We found that their representations of those addends were overall fairly precise, and
that they were able to compare their representations to a range of visible quantities with fairly
high accuracy.
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Further, children were successful at choosing which of the solved addends should be used
to balance unequal sets, and children with more precise representations of the addends were
overall more successful at doing so. These results suggest that children may be able to use
the output(s) of nonsymbolic arithmetic computations as inputs into a new nonsymbolic arith-
metic computation, and that this ability may be limited by the precision of the outputs.

Children were unlikely to be using symbolically mediated strategies to succeed in the task.
First, children’s solutions to the unknown-addend problems were noisy (as evidenced by their
performance on the Post-test Precision trials), a key signature of the ANS. Second, children
had limited time to view the sets, and did not show evidence of counting (i.e., children did not
count out loud or point to the screen during the study), and previous work has suggested that
children of this age struggle with the symbolic forms of unknown-addend problems while
succeeding with nonsymbolic forms (e.g., Kibbe & Feigenson, 2015; Sherman & Bisanz,
2009; although we did not specifically test children’s symbolic arithmetic abilities in our
task). However, it is possible that children could have used the ANS to solve the unknown-
addend problems in the Unknown-Addend trials, but then converted those to rough symbolic
estimates (e.g., “Cheetah had about 8”) and used those rough estimates in the Test trial to
balance the unequal sets.

The design of Experiment 1 also leaves open another possible explanation of children’s
success at the balancing task in the Test trial. While children were indeed able to solve for the
quantity inside each cup (as evidenced by their performance on the Post-Test Precision trials),
children did not necessarily have to use those representations as inputs into a new arithmetic
problem in the Test trial. Instead, children may have used a strategy of focusing only on the
outcomes produced by the cups in the Unknown-Addend trials. Specifically, because each
Unknown-Addend trial started with the same quantity (9), children observed that Cheetah’s
cup changed the starting quantity by a certain magnitude to the final quantity 17, and that
Gator’s cup changed the starting quantity by a different, larger magnitude to the final quantity
29. In the Test trial, children saw either 5 and 13 buttons, or 5 and 25 buttons, and had to
decide whose cup should be added to the smaller quantity to make the sets about the same. To
succeed, children could choose which of the two cups produced an outcome in the Unknown-
Addend trials that was similar in quantity to the larger of two sets in the Test trial. Using this
strategy, a child who is deciding which cup should be added to 5 to make it about the same
as 13 would correctly choose Cheetah’s cup, not because they added their representation of
Cheetah’s quantity to 5, but because the final quantity that Cheetah’s cup produced in the
Unknown-Addend trial (17) is closer to 13 than the final quantity that Gator’s cup produced
in the Unknown-Addend trial (29). Such a strategy would not, therefore, require children to
operate directly with the solutions to the problems they solved in the Unknown-Addend trials.

In Experiment 2, we investigated this possibility. The overall structure of the task was simi-
lar, except that in Unknown-Addend trials, the starting quantities on each trial were chosen so
that the final quantities after the cups were added would be the same. This meant that, while
the cups continued to add different quantities, the outcomes of two Unknown-Addend trials
were identical. If children can use the outputs of ANS computations as inputs into new com-
putations, children should again succeed in the Test trial. However, if children in Experiment
1 were using a simpler strategy of using the outcomes of the Unknown-Addend trials to solve
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the Test trial, children should have more difficulty in Experiment 2, since the outcomes in
both Unknown-Addend trials were the same. We tested a new sample of the oldest children
in our age range (7- to 8-year-olds), since these children demonstrated the clearest success in
Experiment 1.

3. Experiment 2

3.1. Participants

Participants were 52 7- to 8-year-old children (mean age = 8.01 years; range = 6.93–9.01
years). While the effect size for Test trial correct responses for 7- to 8-year-olds in Experiment
1 was fairly large (20/24 7- to 8-year-olds responded correctly in Experiment 1, g = .33), the
sample size in Experiment 2 was powered to detect a more conservative effect (g = .2, alpha
= .05, 1-beta = .8, suggested n = 49). Two additional children participated but were excluded
from analyses due to experimenter error (1) or declining to complete all study procedures (1).

The recruitment procedure was the same as in Experiment 1. Participants were reported
by their caregivers as female (n = 26) or male (n = 26). Thirty-six families completed the
optional demographics form. Participants were identified by their caregivers as Asian (3),
Asian/Black (1), Asian/Other (2), Asian/White (3), or White (26), and one declined to report.
Two of those children identified as Hispanic/Latinx. All families who completed the forms
reported that at least one caregiver in the household had a college degree or higher. The
study procedures were approved by the Boston University Charles River Campus Institutional
Review Board.

3.2. Apparatus, stimuli, and procedure

The apparatus, stimuli, and procedure were identical to Experiment 1, with the exception
of the quantities used in the Unknown Addend trials. Specifically, the quantities added by
Gator’s cup (20) and Cheetah’s cup (8) were the same as in Experiment 1, but unlike in
Experiment 1 (in which the initial quantities in each demonstration were the same), in Exper-
iment 2, the final quantities after the cups were added were the same. In the trial in which
Gator’s cup was demonstrated, children viewed a set of 10 buttons, saw Gator’s cup move
over the set, and then move back to its original position (leaving its buttons behind) to reveal
the final set of 30 buttons. In the trial in which Cheetah’s cup was demonstrated, children
viewed a set of 22 buttons, saw Cheetah’s cup move over the set, and then back to its original
position (leaving its buttons behind) to reveal the final set of 30 buttons.

As in Experiment 1, children completed the four Pre-test trials, two Unknown-Addend
trials, the Test trial, and then the series of 11 Post-Test Precision trials.

3.3. Results

We found that 31/52 children (60%) chose correctly in the Test trial, not significantly dif-
ferent from chance (p = .212), although the Bayes factor yielded only anecdotal support for
the null hypothesis (BF10 = .77). Children’s responses were similar in the +Gator condition
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Fig. 5. The top panel shows individual children’s responses on the Test trial as a function of age in Experiment 2.
The bottom panels show individual children’s mean proportion correct in the post-test precision trials as a function
of age (left panel) in Experiment 2. The solid lines represent the line of best fit, and the black dashed line represents
chance-level performance (.5).

(15/26 correct) and the +Cheetah condition (16/26 correct), Fisher’s exact test p = 1.0. Chil-
dren who succeeded in the Test trial were not significantly different in age than children who
failed in the Test trial (succeeded in Test: M = 8.08 years, SD = .61; failed in Test: M = 7.90
years, SD = .61; (F(1, 50) = 1.07, p = .307, η2 = .021). These results are summarized in
Fig. 5.

Children overall were successful in the two Pre-trial Baseline Balancing trials, in which
they were asked to choose which of two visible quantities should be used to balance unequal
sets (mean proportion correct = .85, SD = .23; Wilcoxon Signed Rank test asym. p < .001),
and children performed significantly worse in Test trials compared to the two Balancing Base-
line trials (χ 2(2) = 11.47, asym. p = .003), suggesting that they struggled more with the bal-
ancing operation when they were required to use derived solutions from two unknown-addend
problems with equal final quantities.

We next examined the precision of children’s representations of the unknown addends.
Children successfully identified Gator’s addend as larger than Cheetah’s addend at rates sig-
nificantly above chance (35/52 [67%] chose correctly, binomial p = .018; BF10 = 5.48). While
an inspection of Fig. 5 shows a slight increase in precision with age, the correlation between
age and overall precision was not statistically significant (r = .26, p = .065, BF10 = .59).
Analysis of children’s responses to the 10 comparison trials (conducted on 511 total trials;
nine trials were excluded from analysis because children declined to respond on those trials)
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revealed that children overall correctly selected which was the larger quantity (the quantity in
the cup or the visible quantity) at rates significantly above chance (mean proportion correct
= .78, SD = .13, one sample t(51) = 15.06, p < .001, BF10 > 100,000; Fig. 5). Similar to
Experiment 1, children’s responses were significantly above chance both for Gator’s addend
(mean proportion correct = .82, SD = .16, one sample t(51) = 14.85, p < .001, BF10 >

100,000) and Cheetah’s addend (mean proportion correct = .74, SD = .20, one sample t(51)
= 8.64, p < .001, BF10 > 100,000), and children’s representations of Gator’s addend were
slightly more precise than their representation of Cheetah’s addend (paired samples t(51) =
−2.40, p = .02), with Bayes factor again yielding only anecdotal support for the alternative
(BF10 = 1.58).

A repeated measures ANOVA with Addend (Gator or Cheetah) as a within-participants
factor and Test Success (succeed or fail) as a between-participants factor revealed a main
effect of Addend (reflecting the slightly higher precision for Gator’s addend vs. Cheetah’s;
F(1, 50) = 6.89, p = .011, η2

p = .121), but no main effect of Test Success (F(1, 50) = .70, p
= .407, η2

p = .014) and no Test Success X Addend interaction (F(1, 50) = 1.74, p = .193,
η2

p = .034). The precision of children’s representations of the unknown addends was not
significantly different between children who succeeded versus failed in the Test trial.

3.3.1. Experiments 1 and 2 compared
We compared children’s data in Experiment 2 to the 7- to 8-year-olds’ data (n = 24)

from Experiment 1. Children were more successful in the Test trial in Experiment 1 (20/24
[83.33%] chose correctly) than in Experiment 2 (χ 2(1) = 4.19, p = .041). Crucially, there
was no significant difference in the precision of children’s representations overall (t(74) =
.66, p = .509, BF10 = .22), and no difference in the precision of their representations of
Gator’s addend (t(74) = .38, p = .703, BF10 = .20) or Cheetah’s addend (t(74) = .67, p =
.506, BF10 = .23) specifically, suggesting that the differences in Test trial responses across
the two experiments are unlikely to be due to differences in precision of the solutions to the
unknown addends.

3.4. Discussion

Experiment 2 was designed to rule out a potential alternative strategy that children could
use to succeed in the Test trial in Experiment 1 that did not require children to directly com-
pute with the outputs of ANS operations. To that end, the only difference between Exper-
iments 1 and 2 was the initial and final quantities used in the Unknown-Addend trials; the
Pre-Test trials, the quantities of the unknown-addends, the Test trial, and the Post-Test preci-
sion trials were identical, and thus the cognitive demands of the task were equated between
the two experiments. The results from Experiment 2 suggest that when the starting quantities
in the two unknown-addend problems were different and the final quantities (after the cup
was added) were the same, children still could successfully solve for both unknown addends.
This result extends previous work (Kibbe & Feigenson, 2015) to show that children can solve
for unknown addends in nonsymbolic problems, and can represent both with high fidelity and
compare their magnitudes to visible quantities, even when the problems included different
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quantities as their starting addend. However, children were not readily able to select which
addend should be used to balance unequal sets. Children’s failure in the Test trial did not
stem from difficulty with the balancing operation itself, since children were able to success-
fully choose which of two visible quantities should be used to balance unequal sets in the
Pre-test Balancing trials. Children’s failure in the Test trial also was not likely to be due to
the precision of their representations of the unknown addends, since children represented the
unknown addends with similar precision across Experiments 1 and 2. Further, these results
suggest that children were not likely to be using symbolically mediated strategies in Experi-
ment 1, converting the unknown-addends to symbolic estimates (e.g., “about 20”) and using
those estimates to balance the unequal sets, because such a strategy would also have led to
success in Experiment 2.

Instead, these results suggest that children in Experiment 1 may have been relying on a
strategy of focusing on the outcome of the unknown-addend operations (i.e., “how much did
each cup make the starting quantity increase?”) to decide which of the two cups should be
used to balance the unequal sets, a strategy that was not possible in Experiment 2.

The Test trial in both Experiments 1 and 2 made significant demands on working memory:
children had to hold the solutions to the unknown-addend problems in working memory, visu-
ally examine the two visible sets, and then perform one or more mental operations to decide
which solution to choose to balance the two sets. In the Pre-Test Balancing trial (in which
children succeeded), children did not have to hold as much information in working memory
because the quantities that could be used to balance the sets were visible. Could children’s
failure in Experiment 2 be due to working memory limitations? There are several reasons
to think not. First, children succeeded in the Test trial of Experiment 1, which made similar
demands on working memory as the Test trial in Experiment 2. Even if children were using
an alternative strategy in Experiment 1, that would still require children to hold two repre-
sentations in mind (e.g., representations of the outcomes of the different Unknown-Addend
demonstrations) and deploy them correctly to balance the two sets. Second, previous research
has shown that children of the ages tested in Experiment 2 have sufficient working memory
capacity to store at least four visual representations in working memory and to actively manip-
ulate those representations (i.e., updating the remembered location of an object following a
real-world change to its location; Cheng & Kibbe, 2022; Pailian et al., 2016). Furthermore, we
have some evidence that children in our study likely had sufficient working memory capacity:
a large subset of the children from Experiment 1 (n = 64 4- to 7-year-olds) also completed
a separate study after Experiment 1 that was designed to examine working memory strategy
use. While these studies were not designed a priori to be compared, we were able to conduct
an exploratory analysis examining children’s working memory in relation to their Test trial
performance in Experiment 1. The details of these exploratory results can be found in the
Supplement. We found no significant differences in children’s working memory performance
between children who succeeded versus failed in the Test trial, and children’s working mem-
ory capacity was overall quite high. Although children in Experiment 2 did not complete a
working memory study, these children were older than the children in Experiment 1 and are,
therefore, likely to have as much or more working memory capacity at their disposal (c.f.,
Cheng & Kibbe, 2022; Cowan, Naveh-Benjamin, Kilb, & Saults, 2006; Cowan et al., 2010;
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Cowan, AuBuchon, Gilchrist, Ricker, & Saults, 2011; Pailian et al., 2016). Combined with
the fact that the only difference we found between 7- and 8-year-olds children’s performance
in Experiments 1 and 2 was in the Test trial (and not in their ability to solve the Pre-Test
Balancing trial, nor in the precision of their representations of the solved addends), we think
that working memory limitations are unlikely to be the source of children’s failure in the Test
trials.

We discuss the implications for these results in the General Discussion.

4. General discussion

Previous work suggested that children’s early nonsymbolic capacities may bear a surface
resemblance to symbolic arithmetic, but the algorithms that support nonsymbolic ANS com-
putation were less clear. To gain insights into the operational structure and computational
capacity of our early quantificational abilities, we asked about the algorithmic structure of
nonsymbolic arithmetic by examining whether it operates with function rules like symbolic
arithmetic. In symbolic arithmetic, operations such as addition take as input independent
numerals and produce as output another independent numeral. Since arithmetic operations
can take as input any numeral, the solutions to arithmetic operations can serve as operands in
new problems, making function arithmetic combinatorially powerful. Here, we asked whether
nonsymbolic arithmetic computations obey such rules by testing children who have limited
knowledge of the formal rules of symbolic arithmetic. In two experiments, children solved
for unknown addends in two nonsymbolic arithmetic problems and were then asked to use
those solutions as inputs into a balancing operation. Solving for an unknown addend requires
the combination of two independent ANS representations to derive a previously unobserved
solution, and cannot be accomplished by manipulating a single ANS representation, making
it a strong test case to address whether computationally derived ANS representations can be
used as inputs into further computations.

In Experiment 1, each of the unknown addends (Cheetah’s and Gator’s cups) were added
to the same quantity (nine buttons) resulting in different final quantities (17 or 29 buttons).
In Experiment 2, each of the unknown addends were added to different quantities (22 or 10
buttons) resulting in the same final quantity (30 buttons). To examine whether children could
use the solutions to the addend-unknown problems in new computations, we showed children
two unequal sets of objects, and asked them to choose whether Cheetah’s or Gator’s buttons
should be added to the smaller set to make it about the same quantity as the larger set. We
also measured children’s ability to balance unequal sets using visible quantities and measured
the precision of children’s representations of the solutions to unknown addend problems.

We hypothesized that, if nonsymbolic arithmetic obeys similar function rules to symbolic
arithmetic, then the outputs of nonsymbolic arithmetic computations (the solved addends)
should be able to be used as inputs into another nonsymbolic arithmetic computation (the
balancing operation). Contrary to this hypothesis, our results suggested that the solutions to
nonsymbolic arithmetic computations may not operate as independent representations and
may not readily be used as inputs into a new nonsymbolic computation. Children were able
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to select which cup should be used to balance the unequal sets in Experiment 1, but did not
robustly do so in Experiment 2.

The contrast in results between Experiments 1 and 2 suggests that children in Experiment
1 were using a strategy in the Test trial that did not require them to operate directly with
their solutions to the unknown addend problems. When the problems started with the same
quantity, children could use a strategy of focusing on the final quantities in the unknown-
addend problems to try to produce the correct outcome on the smaller set in the Test trial.
That is, children could recall the degree to which Cheetah’s and Gator’s cup increased a
single quantity (i.e., Cheetah’s cup increased the initial quantity to ∼17, while Gator’s cup
increased the initial quantity to ∼29) and could then use that information in the Test trial to
choose which cup might produce an outcome on the smaller set similar in quantity to the
larger set. In Experiment 2, children could not use that strategy because the final quantities
were identical. Indeed, even though children in both experiments could (1) balance unequal
sets by selecting from two visible quantities, (2) estimate the quantity added by each cup in
both experiments, and (3) maintain those representations in memory long enough to respond
in the Post-test Precision trials, they did not readily use those representations directly to solve
a new problem in the Test trial.

These results suggest that, while nonsymbolic arithmetic computations with ANS represen-
tations may bear a surface resemblance to symbolic arithmetic, they may be algorithmically
distinct. Specifically, the outputs of nonsymbolic arithmetic computations may not be readily
manipulated independently of the computational context in which they arose. This has poten-
tial implications for the format of representations that arise from combinations of independent
ANS representations, as in the unknown-addend problems tested here. Our results suggest that
computationally derived representations (i.e., representations that arise from the mental com-
bination of ANS representations) are noisy, like the visually derived ANS representations
(i.e., the starting quantity and the final quantity) that they arise from. Yet, these computation-
ally derived ANS representations may not behave like visually derived ANS representations
in computational contexts. This also means that nonsymbolic arithmetic computations may
not be indifferent to the source of their inputs, and may be limited to operating over visually
derived representations.

However, despite these limitations, children appear to be flexible in their ability to make use
of past computations to help them solve a new problem, even if they may not readily use the
outputs of those computations directly. Children in Experiment 1 were able to use what they
observed in the Unknown-Addend trials to help them figure out how to solve the balancing
operation in the Test trial. These results suggest that ANS computations are not completely
quarantined from other computations, but rather may be drawn upon when the context of the
new computation is similar enough.

Our results also contribute to our understanding of children’s early capacity to solve
unknown-addend problems (the symbolic forms of which are notoriously difficult for both
children and adults; e.g., Booth, 1988; Kieran, 1992; Filloy & Rojano, 1989; Koedinger,
Alibali & Nathan, 2008; Riley & Greeno, 1988; Tabachneck, Koedinger & Nathan, 1995).
In both experiments, we successfully replicated and extended Kibbe and Feigenson’s (2015,
Experiment 5) finding that young children could concurrently solve two unknown-addend
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problems presented nonsymbolically. It is crucial to note that our method diverged from theirs
in a few respects. First, we gave children only one demonstration of each unknown addend
operating on a set, while Kibbe and Feigenson (2015) gave children three demonstrations of
the unknown addend adding to different quantities. Our results suggest that children can solve
“one-shot” nonsymbolic unknown-addend problems, just as previous work showed children
can solve one-shot nonsymbolic addition, subtraction, or scaling problems (e.g., Barth et al.,
2006; McCrink & Spelke, 2010), and imply a robust and stable operational capacity to solve
unknown-addend problems in children. Second, our measure of children’s success at solv-
ing for unknown addends diverged from Kibbe and Feigenson (2015). In their study, to test
whether children had solved for the unknown addends, they showed children a single quan-
tity and asked them to identify which addend it was, which did not allow them to examine
the precision with which the solutions were represented. Because we asked children to com-
pare their representations of the solved addends to a range of comparison quantities, we were
able to observe that children represented these solutions with fairly high fidelity. Finally, our
experiments included much larger samples than in Kibbe and Feigenson (2015; n = 24 4- to
6-year-olds in Experiment 5). Like them, we also observed little developmental improvement
in the ability to solve for unknown addends, although there was a slight suggestive trend in
Experiment 2. Together with this previous work, our results shed additional light on children’s
capacity for solving nonsymbolic unknown-addend problems.

Our results also have potential implications for the extent to which the ANS can be lever-
aged to support the acquisition of formal arithmetic competence. While previous work has
suggested a relationship between the precision of the ANS and some symbolic mathematics
outcomes (e.g., Libertus et al., 2012; Mazzocco, Feigenson, & Halberda, 2011b; Wang et al.,
2016), work that has explored the relationship between nonsymbolic and symbolic arithmetic
competence has yielded mixed results (Budgen et al., 2021; Park & Brannon, 2013; Szkud-
larek et al., 2016). Our results suggest that nonsymbolic arithmetic computations with the
ANS may be algorithmically distinct from symbolic arithmetic computations, which may
limit the extent to which children can draw on their early nonsymbolic intuitions to help
them master the rules of symbolic arithmetic. However, we speculate that uncovering the
algorithmic structure of the ANS can provide additional entry points for scholars who study
the relationships between nonsymbolic and symbolic math. Further work is needed to better
understand whether and to what extent the computational limits on nonsymbolic arithmetic
impact (for better or for worse) the acquisition of formal arithmetic.

Our studies also have some important limitations. By design, we specifically looked at chil-
dren’s ability to use the outputs of unknown-addend operations as inputs into a completely dif-
ferent computation (a balancing operation). This design allowed for the strongest test case for
our questions of interest since (1) unknown-addend operations require the combination of two
independent ANS representations to derive the solution, and therefore, produce computation-
ally derived ANS representations as outputs, and (2) children had to apply these outputs into
a completely different operation, allowing us to examine the computational independence of
the outputs of ANS operations. It is possible that the ANS may have some functional capacity,
albeit more limited than the functional computational range of true arithmetic. For example,
children may be able to use the outputs of unknown addend operations as the starting addend
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in another unknown-addend operation, leveraging the same computational context in order
to do so. It is also possible that, with age and/or education, the computational range of the
ANS expands. For example, adult observers may be effectively able to operate over compu-
tationally derived ANS representations in a variety of contexts. Further work should examine
the algorithmic structure of a full range of ANS computations (including function-like opera-
tions like unknown-addend problems as well as other operations like summation or scaling),
and their potential limits, across the lifespan. Finally, while we showed that children may not
spontaneously use the outputs of ANS computations into further computations (suggesting
an algorithmic limit on the ANS), our studies leave open the possibility that children may be
able to learn to do so. An important question for future research concerns whether the limits
on the computational ANS are fixed, or whether the computational structure of the ANS may
be responsive to instruction or training.
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Notes

1 We use the term “nonsymbolic” throughout to refer to ANS representations, to contrast
these with formal, learned symbolic representations of quantity, such as number words
or Arabic digits.

2 To highlight that the quantity of the sets (and not their continuous extent or density) was
the crucial dimension of the stimuli, we varied the size of the buttons within each set,
and used quantity-focused language (e.g., “how many”) throughout the experiment.

3 The experimenter described the sets as “about the same” rather than “equal,” since chil-
dren of this age often have difficulty understanding the concept of mathematical equiva-
lence (see McNeil, 2007) and since determining “equivalence” using the inherently noisy
ANS may be impossible.

4 All Bayes factors were computed using the Jeffreys−Zellner−Siow prior and two-tailed
test.
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